
CAI Lab, Session 5: Crawling

In this session:

• You will learn to implement a simple web crawler to extract information from web pages, using
the Scrapy framework

• We will use ElasticSearch for storing the information

1 Scrapy: a framework for web crawling

Scrapy is a python library for developing web crawlers and extracting information from web pages.
This library is designed to make easy the deployment of crawlers that target specific web pages and
the analysis and extraction of their content.

In this session we are going to explain the basics of implementing a web crawler, you have a more
detailed example in the Scrapy documentation tutorial.

The basic code scaffolding for a web crawler is created automatically by the library, type in a terminal:

$ scrapy startproject caimscrapy

This will create a crawler project able to host different crawlers. As an example we are going
to extract from the UPC Commons website the information in the pages that store all the TFGs
presented by FIB students during the past years.

The url of this page is http://upcommons.upc.edu/handle/2099.1/18595/recent-submissions

In a terminal type the following:

$ cd caimscrapy/caimscrapy

$ scrapy genspider UPCCommonsTFG upcommons.upc.edu

This will generate the file UPCCommonsTFG.py inside the directory spider with a python class for the
spider and its basic configuration. You will have to modify the variable start urls so the starting
point of the spider is:

http://upcommons.upc.edu/handle/2099.1/18595/recent-submissions

The class has only one method called parse that is the one that receives the pages generated by
the crawler. This is the method that extracts information from the page and decides what links to
follow. This method has only one parameter (response) that contains the response of the web server
to the request of the spider. In its current state the spider does nothing, just downloads the first url
and does not generate any output.

2 Parsing webpages

2.1 Extracting TFG information

In order to decide what and how to extract information from a website, first we have to analyze how
the information is stored in its pages. Because HTML represents a webpage as a tree with different
tags and information in their nodes we can use that structure to access what we want to extract.

1

https://docs.scrapy.org/en/latest/
https://doc.scrapy.org/en/latest/intro/tutorial.html
http://upcommons.upc.edu/handle/2099.1/18595/recent-submissions

Scrapy has two methods for extracting information from a webpage, one based on CSS and other in
XPATH. We are going to use the first one because is simpler (but less powerful).

Fortunately for us the pages that we want to crawl are well structured and the HTML tags that have
the information that we want are more or less marked. In order to dissect a webpage we can download
it and open it with a text editor or we can use a browser like Chrome or Mozilla to inspect the page
using ctrl+shift+I.

Looking closely to the structure of the page (and I mean closely) we can find that all the TFGs are
inside a tag of class ds-artifact-item. The method css of the object stored in the response

parameter allows us to extract all the occurrences of this tag. We can iterate through all these
elements to extract the information inside. The css method just extract the part of the HTML tree
that begins with the tag passed as a parameter. We can use the attributes of the tag to be more
selective. Each element that we extract can also be parsed using the same method.

Each element has a title, an url that links to the detailed information of the TFG, an author, a
publisher, a date, the publication rights and an abstract.

This is the code that you will find in the function parse in the file parse1.txt within the files of
this session:

for tfg in response.css(’li.ds-artifact-item’):

doc = {}

doc[’title’] = tfg.css(’h4 a::text’).extract_first()

data = tfg.css(’div.artifact-info’)

doc[’url’] = response.urljoin(tfg.css(’h4 a::attr(href)’).extract_first())

doc[’author’] = data.css(’span.author span::text’).extract_first()

doc[’publisher’] = data.css(’span.publisher::text’).extract_first()

doc[’date’] = data.css(’span.date::text’).extract_first()

doc[’rights’] = data.css(’span.rights::text’).extract_first()

doc[’abstract’] = data.css(’div.artifact-abstract::text’).extract_first()

yield doc

Basically we extract all the adequate tags using the css method and for each one we use again
css to parse the adequate tags for each field of information. The extract first methods returns
the first occurrence or None if there is none. For the url we add the domain of the web to complete
the url if it is a relative one.

Everything is stored in a dictionary and returned to Scrapy using yield, this will make this function
a generator, so the elements of the page are retrieved one by one when the crawler needs them.

Now you can try this web spider using:

$ scrapy crawl UPCCommonsTFG -o tfg.json

You will see in the standard output (mixed with the log of scrappy actions) the information from
the first page of TFGs and it will also be stored in tfg.json in JSON format.

2.2 Going deeper

The information in the page with the list of TFGs is not complete. Each TFG has an individual
page with more information like the full summary and a list of keywords. We have obtained the link
to this page from each TFG and stored it in the url field.

2

Scrapy allows following links and adding the information from these links to the one that we already
have. This can be done using the Request method. This method needs a url, the function that will
process the webpage obtained from the url and also accepts the information that we have already
collected.

The parse2.txt file has the updated code, we have substituted the yield of the doc dictionary by
a yield of the value returned by the call to Request. This receives a new function for parsing the
detailed page (parse detail) and the already collected fields as the meta parameter. Notice that
if we also return to Scrapy the information already in the doc dictionary we will have two different
items for each TFG (the one from the list of TFGs and the one from the detailed page and that is
not what we want).

The function parse detail extracts the full summary and the keywords of a TFG. The designer of
this page was kind enough to mark the tags as expandable (the full summary) and descripcio (the
keywords). The summary in expandable is in different languages, but they are not indentified in the
tags. In the solution that you have all is joined as one string. We could use a language detection
algorithm to be able separate them, but this it is left as an exercise for you.

Substitute the first version of the code with the one in parse2.txt and run again the crawler to see
the results.

2.3 Storing the items in ElasticSearch

Storing the data in a text file is ok, but it is more useful to store it in a database. Scrapy allows
putting a pipeline in the middle of the scraping process and storing the data in a database (or
anything that you need to do)

Substitute the automatically generated pipelines.py file with the one that you have with the
session files. This file has a class that has methods that are called at the beginning and the end
of the crawling process and each time an item is extracted. If you open the file you will see that a
new index named scrapy is created in ElasticSearch and each item is stored as is. One additional
possibility is to check if all the fields extracted are valid, dropping the item if not or changing the
invalid values by a default, but that is beyond the scope of this session.

To activate the pipeline you will have to modify the settings.py file. Uncomment the line that has
the ITEM PIPELINES configuration and change it as:

ITEM_PIPELINES = {

’caimscrapy.pipelines.CaimscrapyElasticPipeline’: 300,

}

2.4 Going even deeper

A final step that is missing is to collect the information from more than just the first page of TFGs.
For doing this we only have to extract the link in the page that points to the next page. The page
designer was also kind enough to mark this link as a <a> tag of class next-page-link. The following
code at the end of the parse function will do the trick:

next = response.css(’a.next-page-link::attr(href)’).extract_first()

if next is not None:

next_page = response.urljoin(next)

yield scrapy.Request(next_page, callback=self.parse)

Basically we search for the next page link and if it exist we follow it.

3

The parse3.txt file has the updated code.

Now the crawler will follow the next link of each page until there is no more pages.

2.5 Scraping all the way

Now you can run the crawler and get all the TFGs data. First start ElasticSearch and after that
initiate the crawling process:

$ scrapy crawl UPCCommonsTFG

The process will take a couple of minutes (or more) and in the end you will have all the TFGs info
stored in the database. Now we can query the index and search for information. You have a modified
SearchIndex.py script among the session files. This script allows searching an index using LUCENE
query syntax.

This syntax allows putting as a prefix of a word the field you want to use for the search, for example
author:jordi will search for the word jordi only in the author field.

For example, you can try:

$ python SearchIndex.py --index scrapy --query keywords:bases AND keywords:dades

$ python SearchIndex.py --index scrapy --query keywords:machine AND keywords:learning

$ python SearchIndex.py --index scrapy --query description:game

$ python SearchIndex.py --index scrapy --query description:dades

$ python SearchIndex.py --index scrapy --query title:dades~2

$ python SearchIndex.py --index scrapy --query author:miquel~1

Invent your own queries and see the results.

Now you can play during the rest of the session with this crawler, for example, see if you can extract
the director of the project from the detailed TFG page or any other information.

There are no deliverables for this session.

4

	Scrapy: a framework for web crawling
	Parsing webpages
	Extracting TFG information
	Going deeper
	Storing the items in ElasticSearch
	Going even deeper
	Scraping all the way

