CAI Lab, Session 4: User Relevance Feedback

In this session:

e We will program a simple User Relevance Feedback cycle on top of ElasticSearch.

e We will evaluate this strategy over a collection of documents.

1 Document relevance

To show more precisely how ElasticSearch works, you have a script named SearchIndexWeights.py
that it is similar to the script from the first session, but now only shows a specific number of hits
(it shows the total number of documents that matches the query as the last line of the output) and
also has a relevance score computed by ElasticSearch representing how well the document matches
the query. The scripts has a -—-nhits flag that changes how many hits are shown and a --query flag
that accepts a list of words (performs an AND query with all the words), this flag has to be the last
one when invoking the script.

Play a little bit with this script, performing different queries and observing the scores. The syntax
of the query allows using the fuzzy operator “n, but also the boost operator “n with n indicating
how important is this term compared with the others, this changes the relevance score. For example
with the 20_newsgroups corpus try the following queries:

python SearchIndexWeights.py --index news --nhits 5 --query toronto nyc
python SearchIndexWeights.py —--index news --nhits 5 -—-query toronto”2 nyc
python SearchIndexWeights.py --index news --nhits 5 --query toronto nyc™2

You will see that the scores and the positions of the documents change. Invent new queries and
observe the results.

2 We will, we will Rocchio you

The goal of this session is to program a script Rocchio. py that implements a User Relevance Feedback
system using Rocchio’s rule. In fact, we will implement Pseudo-relevance Feedback since we will not
ask the user which documents s/he finds relevant: simply we will assume that the first & documents
are the relevant ones, for a k of our choice.

More precisely, we want our script to do the following:

1. Ask for a set of words to use as query
2. For a number of times (nrounds):

(a) Obtain the k£ more relevant documents

(b) Compute a new query applying Rocchio’s rule to the current query and the Tf-Idf repre-
sentation of the k& documents

3. Return the k most relevant documents after the n iterations



You will have to implement the function that computes the new query applying the Rocchio’s rule.
Applying the Rocchio’s rule to a query and a list of documents involves computing;:

di+dy+ -+ dy
k

Query’ = a x Query + 3 x

You will have to compute the tf-idf vector for each document. To average all the documents you will
have to sum vectors with many elements, you must use dictionaries to do it more efficiently instead
of merging ordered vectors. What is the difference in computational cost of merging ordered vectors
or using dictionaries for this operation? Discuss it in your report.

Also the resulting list of terms will be large. Consider pruning the list to only the R more relevant
terms (larger weights).

Most of the elements to solve this you already have from the provided scripts and from your solutions
from the previous sessions:

1. From SearchIndexWeights.py you have the code for building a query for a list of words and
then retrieving the £ more relevant documents.

2. Adding the weights computed using Rocchio’s rule to each word in the search needs only
concatenating the word, the boost operator (~) and the weight.

3. You will have to compute the tf-idf vector for a document, problem that you have solved in
the previous session.

Observe that there are several parameters you can play with, at least:

e nrounds, the number of applications of Rocchio’s rule

e k, the number of top documents considered relevant and used for applying Rocchio at each
round

e R, the maximum number of new terms to be kept in the new query

e « and (3, the weights in the Rocchio rule.

Please make easy to change them in the code (e.g., their values defined only once!).

3 Experimenting

Once you are done with your programming, try it out with the test collections from the previous
sessions. Do the queries that pseudorelevance feedback produce make sense? For example, do the
new terms seem related to what the user is looking for?

In which sense do the results improve? Recall? Precision?

Investigate to some extent the effect of each parameter. Do you get very different results if you
change the parameters nrounds, k, R, a, 87 Do you find, for each one, some value or value range
that seems to be optimal in some sense?



Rules of delivery

. You should solve the problem with one other person. You cannot repeat partners, i.e. each
session you have to work with a different person.

. No plagiarism; don’t discuss your work with other teams. You can ask for help to others for
simple things, such as recalling a python instruction or module, but nothing too specific to the
session.

. If you feel you are spending much more time than the rest of the classmates, ask us for help.
Questions can be asked either in person or by email, and you’ll never be penalized by asking
questions, no matter how stupid they look in retrospect.

. Write a short report with your results and thoughts. Make it at most 2 pages. Strive to
summarize what new things you learned in this session. You are welcome to add conclusions
and findings that depart from what we asked you to do.

. Turn the report to PDF. Make sure it has your names, date, and title. Create a single .zip
file all the python scripts that you created or modified; in the modified scripts, make sure you
mark visibly with comments the parts that you modified.

. Submit your work through the Rac. There will be a Practica open for each report. Both
members of the team must submit identical PDF files.

Deadline: Work must be delivered within 2 weeks from the end of the lab session. Late
submissions risk being penalized or not accepted at all. If you anticipate problems with the
deadline, tell us as soon as possible.


http://www.fib.upc.edu/en/serveis/raco.html

	Document relevance
	We will, we will Rocchio you
	Experimenting
	Rules of delivery

