
CAI Lab, Session 11: Introduction to igraph

In this session:

• We will learn about the igraph package for analyzing networks

• We will compute several descriptive measures of networks

• We will work on several network models seen in the theory class

1 Introduction

In this session we will introduce the igraph software package for network analysis. This guide uses R as the platform
to using igraph, but there exist python bindings for igraph as well in case you prefer to use that. RStudio is an
excellent IDE for R.

There are igraph bindings for Python and C++; it should be easy to translate the code in this guide into these other
languages.

R is “a language and environment for statistical computing and graphics”1 with a very active community of contrib-
utors. Available from http://www.r-project.org/.

RStudio is “a free and open source integrated development environment for R”2. It makes working with R more
pleasant. Available from http://www.rstudio.com/.

igraph is “a free software package for creating and manipulating undirected and directed graphs”3. Available from
http://igraph.sourceforge.net/.

The computers in the PC Lab should have these three components installed. If igraph is not installed, then you can do
so through RStudio’s install manager or directly through the command line with the install.packages instruction.
Then, to load the library so that you can use its functionality you should introduce the following command into the
console:

> library(igraph)

2 Basics

This section will cover the basic commands for creating, manipulating and visualizing graphs using igraph. It should
also help as an introduction to the main R commands. If you are unfamiliar with R, there are many online tutorials.
However, for this session there is very little programming involved so you are not required to learn a new programming
language from scratch.

2.1 Creating graphs

The objects we study in this course are graphs (or networks). They consist of a set of nodes and a set of edges. As an
example, if you type into the RStudio console the following command

g <- graph(c(1,2, 1,3, 2,3, 3,5), n=5)

In this command, we are assigning to the variable g a graph that has nodes V = {1, 2, 3, 4, 5} and has edges E =
{(1, 2), (1, 3), (2, 3), (3, 5)}

The commands V(g) and E(g) print the list of nodes and edges of the graph g:

1From http://www.r-project.org/about.html
2From http://www.rstudio.com/ide/
3From http://igraph.sourceforge.net/introduction.html

1

http://www.r-project.org/
http://www.rstudio.com/
http://igraph.sourceforge.net/
http://www.r-project.org/about.html
http://www.rstudio.com/ide/
http://igraph.sourceforge.net/introduction.html

> V(g)

Vertex sequence:

[1] 1 2 3 4 5

> E(g)

Edge sequence:

[1] 1 -> 2

[2] 1 -> 3

[3] 2 -> 3

[4] 3 -> 5

You can always try

> plot(g)

We will see later additional parameters to plot

You can add nodes and edges to an already existing graph, e.g.:

> g <- graph.empty() + vertices(letters[1:10], color="red")

> g <- g + vertices(letters[11:20], color="blue")

> g <- g + edges(sample(V(g), 30, replace=TRUE), color="green")

> V(g)

Vertex sequence:

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t"

> E(g)

Edge sequence:

[1] q -> q

[2] n -> a

[3] j -> p

[4] s -> h

[5] f -> c

[6] h -> f

[7] g -> r

[8] t -> t

[9] j -> o

[10] c -> f

[11] i -> a

[12] o -> q

[13] c -> j

[14] r -> i

[15] a -> b

These lines create a graph g with 20 nodes and 15 random edges. Notice that nodes and edges can also have attributes,
e.g. in this example we are assigning different colors to nodes. The command sample returns a vector containing a
sample of 30 random vertices from g.

2.1.1 Loading graphs

We have seen how to create graphs from scratch, but most often we will be loading them from a file containing the
graph in some sort of format. igraph handles many graph formats already. The simplest one is a file containing the
edge list. For example, create a file graph.txt containing the following three edges:

0 1

1 2

2 3

We can create a graph using the command

> g <- read.graph("graph.txt", format="edgelist")

> V(g)

2

Vertex sequence:

[1] 1 2 3 4

> E(g)

Edge sequence:

[1] 1 -> 2

[2] 2 -> 3

[3] 3 -> 4

Notice that the node ids within igraph start with 1, but the input file expects the first id to be 0. We believe this is
a bug in the implementation of igraph, but you should keep this in mind.

If you want the graph to be undirected, add the parameter directed=FALSE.

We can also access online graphs, e.g. the following command loads a Pajek graph from an online site

karate <- read.graph("http://cneurocvs.rmki.kfki.hu/igraph/karate.net", format="pajek")

2.1.2 Graph generators

igraph implements also many useful graph generators. We have already seen – or will see very soon – a few models
in class, in particular: the Edös-Rényi model (ER), the Barabasi-Albert model (BA), and the Watts-Strogratz model
(WS). The following commands generate graphs using these models:

er_graph <- erdos.renyi.game(100, 2/100)

ws_graph <- watts.strogatz.game(1, 100, 4, 0.05)

ba_graph <- barabasi.game(100)

Try changing the parameters in erdos.renyi.game (called n and p in theory), and see how many connected components
we get. A fascinating theoretical result, called “The Birth of the Giant Component” is that in this model, above a
certain threshold p in the order of 1/n, there is a single large connected component with Ω(n) vertices, with every
other having at most O(log n) vertices. For p slightly larger, the Giant Component quickly gathers almost all vertices.

2.2 Manipulating attributes in graphs

We can add attributes to nodes and edges of the graphs. These are useful for selecting certain types of nodes, and for
visualization purposes.

> g <- erdos.renyi.game(10, 0.5)

> V(g)$color <- sample(c("red", "black"), vcount(g), rep=TRUE)

> E(g)$color <- "grey"

> red <- V(g)[color == "red"]

> bl <- V(g)[color == "black"]

> E(g)[red %--% red]$color <- "red"

> E(g)[bl %--% bl]$color <- "black"

What these commands do is to generate a random graph with 10 nodes, assigns random colors to the nodes, colors
edges joining red nodes in red, and edges joining black nodes in black. All remaining edges are colored grey.

The next example assigns random weights to a lattice graph and then colors the ones having weight over 0.9 red, and
the rest grey.

> g <- graph.lattice(c(10,10))

> E(g)$weight <- runif(ecount(g))

> E(g)$color <- "grey"

> E(g)[weight > 0.9]$color <- "red"

2.3 Visualizing graphs

A very important part in the analysis of networks is being able to visualize them. As an example the following
commands render the three graphs depicted in the figure below.

3

> er_graph <- erdos.renyi.game(100, 2/100)

> plot(er_graph, vertex.label=NA, vertex.size=3)

> ws_graph <- watts.strogatz.game(1, 100, 4, 0.05)

> plot(ws_graph, layout=layout.circle, vertex.label=NA, vertex.size=3)

> ba_graph <- barabasi.game(100)

> plot(ba_graph, vertex.label=NA, vertex.size=3)

Erdös-Rényi Watts-Strogatz Barabási-Albert

The plot command is very flexible and has many parameters that control the behavior of the visualization. You can
already see a few in the example above. For example, vertex.label controls the label written in the nodes, if set to
NA then no text label is written. You can access all the parameters and their possible values through the help system
by typing

> help(igraph.plotting)

As another example, consider adding attributes to edges for a nicer visualization:

> g <- graph.lattice(c(10,10))

> E(g)$weight <- runif(ecount(g))

> E(g)$color <- "grey"

> E(g)[weight > 0.9]$color <- "red"

> plot(g, vertex.size=2, vertex.label=NA, layout=layout.kamada.kawai,

edge.width=2+3*E(g)$weight)

2.4 Measuring graphs

There are many measures that help us understand and characterize networks. We have seen three in class – or will
see them shortly: diameter (and average path length), clustering coefficient (or transitivity), and degree distribu-
tion. igraph provides functions that compute these measures for you. The functions are: diameter, transitivity,

4

average.path.length, degree, and degree.distribution. The examples below illustrate the usage of these func-
tions.

For diameter and average.path.length

> g <- graph.lattice(length=100, dim=1, nei=4)

> average.path.length(g)

[1] 8.79798

> diameter(g)

[1] 25

> g <- rewire.edges(g, prob=0.05)

> average.path.length(g)

[1] 3.132323

> diameter(g)

[1] 6

For transitivity

> ws <- watts.strogatz.game(1, 100, 4, 0.05)

> transitivity(ws)

[1] 0.5466147

> p_hat <- ecount(ws)/(vcount(ws)*(vcount(ws))/2)

> p_hat

[1] 0.08

> er <- erdos.renyi.game(100, p_hat)

> transitivity(er)

[1] 0.08411215

For degree and degree.distribution

> g <- graph.ring(10)

> plot(g)

> degree(g)

[1] 2 2 2 2 2 2 2 2 2 2

> ba <- barabasi.game(10000, m=3)

> p_hat <- ecount(ba)/ ((vcount(ba)-1)*vcount(ba)/2)

> er <- erdos.renyi.game(10000, p_hat)

> degree.distribution(er)

[1] 0.0025 0.0139 0.0468 0.0898 0.1358 0.1577 0.1555 0.1377 0.1034 0.0698 0.0417 0.0242

[13] 0.0127 0.0050 0.0027 0.0003 0.0003 0.0002

> hist(degree(er))

> hist(degree(ba))

> plot(degree.distribution(er))

> plot(degree.distribution(ba))

5

Barabási-Albert Erdös-Rényi

3 Node centrality

There are commands for computing degree, closeness and betweenness centrality, rank, and other measures. Some
examples:

> set.seed(1)

> g <- sample_gnp(10, 3/10)

> plot(g, vertex.size=25, layout=layout.kamada.kawai)

6

> betweenness(g)

[1] 6.0000000 3.2500000 13.2500000 2.5833333 0.9166667

[6] 0.9166667 13.2500000 2.5833333 3.2500000

[10] 6.0000000

> edge_betweenness(g)

[1] 12.500000 8.500000 4.250000 6.583333 7.166667

[6] 9.250000 6.583333 5.666667 4.083333 7.166667

[11] 4.250000 12.500000 8.500000

> degree(g)

[1] 2 3 4 2 2 2 4 2 3 2

> closeness(g)

[1] 0.05263158 0.05263158 0.06666667 0.04347826 0.04761905

[6] 0.04761905 0.06666667 0.04347826 0.05263158 0.05263158

> page.rank(g)$vector

[1] 0.08274197 0.10913228 0.14429762 0.08724407 0.07658406

[6] 0.07658406 0.14429762 0.08724407 0.10913228 0.08274197

4 Deliverables

Rules: Same rules as in previous labs about working solo/in pairs and plagiarism.

To deliver: You must deliver a pdf file with at most 5 (five) lines of text, indicating whether or not you successfully
completed the steps above and understood what was going on. If (and only if) you decided to use the python version
of igraph, please also say it; you get 3 additional lines for this. The header (title, authors, date. . .) does not count.

Procedure: Submit your work through the Racó.

Deadline: Work must be delivered within 2 weeks from the lab. Late deliveries risk being penalized or not accepted
at all. If you anticipate problems with the deadline, tell me as soon as possible.

7

	Introduction
	Basics
	Creating graphs
	Loading graphs
	Graph generators

	Manipulating attributes in graphs
	Visualizing graphs
	Measuring graphs

	Node centrality
	Deliverables

