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Connectivity for Dynamic Random Geometric Graphs.

Josep Daz, Dieter Mitsche, and Xavieréirez-Ginénez.

Abstract—We provide the first rigorous analytical results for connections in the network are created and destroyed as the
the connectivity of dynamic random geometric graphs — a model vertices move closer together or further apart. Mamypir-
for mobile wireless networks in which vertices move in random ical results have been obtained for connectivity issues and

directions in the unit torus. The model presented here follows . )
the one described in [11]. We provide precise asymptotic results routing performance and the different MANET models (see

for the expected length of the connectivity and disconnectivity for example [20]). The paper [10] also deals with the problem
periods of the network. We believe that the formal tools developed of maintaining connectivity of mobile vertices communingt

in this work could be extended to be used in more concrete py radio, but from an orthogonal perspective to the one in the
settings and in more realistic models, in the same manner as  agent paper: it describeskimetic data structurdo maintain

the development of the connectivity threshold for static random . . . .
geometric graphs has affected a lot of research done on ad hocthe F:onnected components of the union of unit-radius disks
networks. moving in the plane.

In this paper, we study a variation of tHeandom Walk
model introduced by Guerin [11]. This model can be seen
as the foundation for most of the mobility models developed
afterwards (see [15]). The setting of the model that we study
I. INTRODUCTION is the following: Given an initial RGG witm vertices and
a radiusr set to be at the known connectivity threshold

fluential and well-studied model of large networks, such ds' €ach vertex moves a distanceat every time step in
sensor networks, where the network nodes are represente&%&ne rand_om direction. The |n|t|_al direction of each vertex
the vertices of the RGG, and the direct connectivity betweh chosen independently and uniformly at random from the
nodes is represented by the edges. Informally, given a sadifjté’va [0,27), and at every step each vertex updates its
r, a random geometric graph results from placing a set ofdirection independently and with probabilitym. Therefore,

vertices uniformly and independently at random on the urfiic vertex moves in a particular direction for a geomelyica
torus [0, 1) and connecting two vertices if and only if theirdistributed number of steps, and in average it travels amufist

distances at most, where the distance depends on the chos@h @ = sm before changing direction. We denote this graph
metric. model theDynamic Random Geometric Grap®ur choice of

In the late 90's, Penrose [17], [18], Gupta and Kumar [15 diusr, !s dug_ to the fact that in many a}pplication.s which
and Appel and Russo [1] studied similar variations of thid'® not life-critical, temporary network disconnectiorsnc
model, and gave accurate estimations for the smaller veﬂuebS3 tolerated, especially if this goes along_W|th a significan
r at which, with high probability, a RGG becomes connecte€C'€ase Of energy consumption [20]. This means, that the

_ Ny Tog ntO(1) communication distance should be kept as small as possible,
This happens at the critical valug = / ==2== fora RGG 1yt gill Jarge enough to guarantee a mostly connected graph

under the Euclidean distance [in 1)?, and in particular. is  \hich happens for aroundr..
a sharp thresholdfor the connectivity of random geometric For the case of static random geometric graphs, the connec-
graphs. In fact, Goel et al. [9], proved that every monotoRgjity thresholds for the torug0, 1)2 and for the unit square
property of a RGG has a sharp threshold. Thereafter, maQy1]2 are asymptotically the same (see for instance [19]).
researchers have used those basic results on connectvitypthen talking about generic models of MANETS, most authors
design algorithms for more efficient coverage and commuRipnsider the unit square setting, where the vertices thahto
cation in ad hoc networks (see e.g. [14]). On the other hanfe boundary of0, 12, bounce back as a ball banging against
much work has been done on the graph theoretical propertiesyall. From the experimental point of view, when doing
of static RGG, which is comprehensively summarized in thgimylations on large areas, the tof0s1)? it seems to behave
monograph of M. D. Penrose [19]. similarly as [0,1]2 (see for ex. [4]). However, when using
Recently, there has been an increasing interest for MANEZSrigorous analytic approach as the one done in this paper,
(mobile ad hoc networks). Several “practical” models ahe model on0,1]2 adds a greater degree of difficulty (the
mobility have been proposed in the literature — for a surveyain problem is that at each step where one or more vertices
of these models we refer to [15]. In all these models, thgych the boundary, the probability space changes). We leav

_ , - the connectivity on the unit square as an open problem (see
The first and third authors were at the Department of LlengsitGistemes . IV
Informatics at the UPC, 08034 Barcelona. The second author waseat tﬁecnon ) ) ) . )
Institut fur Theoretische Informatik, ETHiich, 8092 Zirich. Emails:{diaz, Our main result (Theorem 1 in Section Il) provides precise
xperez @Isi.upc.edu, dmitsche@gmail.com asymptotic results for the expected number of steps that the
Partially supported by the Spanish CYCIT: TIN2007-6652®KMAL- d . h . ted itb ted
ISM) and the EC 7th Framework under contract ICT-2007.82 (RRS). ynamic grapn remains connected once It becomes connected,

A preliminar version was presented abi$a 2008. and the expected number of steps the graph remains discon-

Index Terms—Mobile communication systems, Dynamic Ran-
dom Geometric Graphs, Connectivity period.

Random Geometric Graph@RGG) have been a very in-
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in terms ofn, s and m. Surprisingly, the final expression|t is well known that the asymptotic behavior ¢f char-
on the length of connectivity periods (asymptotically) sloeacterizes the connectivity ofi(X;r) (see e.g. [19] and
not depend on the expected numberof the steps between Proposition 1 in [7]): if x — 0, then a.as.G(X;r) is
consecutive change of angles of a vertex (as long as thesanglénnected; ifu = ©(1), then a.a.sG(X;r) consists only
do eventually change, no matter how large the valug:0§). of isolated vertices and one giant component of size,/2,
It is worth to note here that the evolution of connectivitytlif  and moreoverK; is asymptotically Poisson with parameter
model isnotMarkovian, in the sense that staying connected for. if ;, — oo, then a.a.sG(X;r) is disconnected. In this
a large number of steps does have an impact on the probabifisper, we focus our attention on the cgse= ©O(1) or
of being connected at the next step. However, one key a@&uivalentlyr — . — ,/lenz0) | ot us denote byC
rather counterintuitive fact is that, despite of this alesenf - . ' .
the Markovian property, the argument to prove our result i’;\ndD the events that(X'; ) is connected and disconnected
. ' . L r%spectively. Observe that, when= ©(1), the probability
mainly based on the analysis of the connectivity ChangeStWatG(X-r) is (dis)connected can be easily obtained:
two consecutive steps (see Lemma 9). ’ y '
Throughout the paper, we consider the usual Euclidean Pr[C] ~Pr[K; = 0] ~ e "
distance on the unit toru), 1), but similar results can be _ 1)
obtained for any,-normed distancel, < p < co. Our results and Pr (D]~ Pr[K; > 0] ~1—e".
can also be extended to ttiedimensional torugo, 1)*, for
any fixedk.

nected once it becomes disconnected. Our results are sggreparametery = ne=m°n or reciprocallyr = [logn—logu

A result that we will use in this paper is the fact that, fottista

d tri hs at th tivity threshgldh
To the best of our knowledge, the present work is the firran om geometric graphs at the connectivity thresioldhe

}obabilit of having a component of size > 2 different
one in which the dynamic connectivity of RGG is studie om the éiant compgonent i@?l/logé‘ln) Moreover. a.a.s
formally. In [6] the loosely related pro_blem of the connetyl  yose components are cliques contained in circles of small
of the ad hoc graph produced hyvertices moving randomly diameter [7]

along the edges of ax n grid is studied. The authors of [16]
use a similar model to the one used in the present paper to
prove that if the vertices are initially distributed unifiolly at
random, the distribution remains uniform at any time. Feirth
analytical work on path length durations in mobile ad-hoc Given positive realss = s(n) and m = m(n), consider
networks and random walks in other models of dynamite following random processt;)icz = (Xi(n, s,m))icz: At
random graphs was done in [13] and [2]. stept = 0, n vertices are scattered independently and u.a.r.
a) Notation and Organization.Unless otherwise stated,over [0,1)?, as in the static model. Moreover, at any time
all our results are asymptotic as — oo. As usual, the stept, each vertexi jumps a distance in some direction
abbreviation a.a.s. stands fasymptotically almost surely.e. «;; € [0,27). The initial anglea; ¢ is chosen independently
with probability 1 — o(1) and u.a.r. stands founiformly at and uniformly at random for each vertex and then at
random every step each vertex changes its angle independently with
probability 1/m. New angles are also selected independently
and uniformly at random if0, 27). Observe that the number
STATEMENT OF THE MAIN RESULT AND OUTLINE OF THE  of steps that each vertex must wait between two consecutive
PROOF changes of angle has a geometric distribution with expiectat
A. Random Geometric Graphs m. Since the dynamic process is time-reversible, it also
We shall need some background about the known theory @akes sense to consider negative steps. The dynamic random
random geometric graphs, which will be the starting point @@eometric graph is then defined as a sequeiidets; 7)), .,
study the dynamic case. where for each particular value of G(X;;r) is the random
The formal definition of a random geometric graph is thgeometric graph with vertex set;.
following (see [19]): Given a set of vertices and a positive The case when tends to0 very fast is of special interest.
realr = r(n), each vertex is placed at some random positidn fact, given anyd = d(n) € RT, we can chooses
in the unit torus|0, 1)? selected independently and uniformlyarbitrarily small andm arbitrarily large such thatl = sm,
at random (u.a.r.). We denote by; = (z;,y;) the random and the distance travelled by each vertex between two con-
position of vertexi for i € {1,...,n}, and letX = X(n) = secutive changes of angles is approximately exponentially
U7, {X:}. Note that with probabilityl no two vertices choose distributed with meani = sm. As a result, our model can
the same position and thus we restrict the attention to the cée regarded as a discrete-time approximation of the foligwi
that |X'| = n. We defineG(X'; ) as the random graph havingnatural continuous-time counterpart, which we denote by
X as the vertex set, and with an edge connecting each pair(6f(X;; r))teR: the vertices move continuously at speéd
verticesX; and X, in X at distanced(X;, X;) < r, where around the torus rather than performing jumps at discrete
d(-,-) denotes the Euclidean distance in the torus. We refersteps, and each vertex changes direction according to an
G(X;r) as thestatic model independent Poisson process of intensity, thus the waiting
Let K; denote the number of isolated verticesGiiX’; r), time between two consecutive changes is exponential with
which play an essential role in connectivity issues. Defiree t meand.

B. Formal definition of the dynamic model

II. KNOWN RESULTS ON RANDOM GEOMETRIC GRAPHS
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C. Main result respectively. In this case we have
To state our main theorem precisely, we need a few defi- o~ T T/
nitions. We denote by, (D;) the event that (D) holds at dprn 4py/ninn’
stept. In (G(Xt;r))tez, define L;(C) to be the number of (et —1)  my/mler —1)
consecutive steps that holds starting at step (possibly co ™ ~ durn ~ Apv/nlnn

and also0 if C, does not hold). The distribution af;(C) ) )
does not depend on (see Lemma 2), and we often omitWhich asymptotically do not depend on Note that these

the t when it is understoodL, (D) is defined analogously by asymptotic relations still hold i tgnds to0 _arbitrarily fast,
interchanging? and D (in Lemma 11 it is shown thak,(C) @S long ass = o(1/(rn)). In particular, this suggests that

and L,(D) are indeed random variables). the related continuous-time moc(e?()(t;r))t g Nas a similar

We are interested in the length of the periods in Whictﬁehaviour, and thus in that model the travelled distancangur

(G(Xt; r)) stays connected (disconnected). More precise h.e periods of (dis)conngctivity does not presumably ddpen
/tEL ither on the average distande= sm between changes of

we consider the expected number of steps fidatt;; 7)), , anale

stays connected (disconnected) starting at stepnditional ge.

upon the fact that it becomes connected (disconnected) pre-

cisely at step: D. Overview of the Proof
The proof of the main result is structured into different
Ac =E(Li(C) [ Di-1 AC)  and lemmata, propositions and corollaries. The proofs of those
Ap =E (Ly(D) | Ct—1 A Dy). partial results are highly technical. In this section weegiv
the main waypoints to follow the proof.
Our main theorem then reads as follows: The main ingredient of the proof is the fact th#&

Theorem 1. Let r = r.. The expected lengths of the Congmd Pp can be expressed in terms of the probabilities of
. = Te.

nectivity and disconnectivity periods (IG(Xt;T))t _are as events mvo_lvmg only two _consecunve steps. Once more,
follows: € we would like to stress this fact because the sequence of

If srn — ©(1), then connected/disconnected states(afX;;r) is not Markovian,
' since staying connected for a long period of time makes it
1 et — 1 more likely to remain connected for one more step. More
1_ e,u(l,e_mn/w)v)‘l? ] el ern/my precisely, in Lemma 9 we show that it suffices to compute
the probabilities of the events:

(Ct AN Dt+1), (Dt A\ Ct+1), C and D. (2)

Ac ~

Otherwise, we have

Ae ~ Tusrn T st = o(1), However, the application of Lemma 9 requires that the expec-
— if srn=w(1), tations E (L;(C)) and E (L;(C)) are finite, which is proven

in Lemma 11, using the Monotone Convergence Theorem.

(=1 (1) To obtain the probabilities of the events in (2), we start
Ap ~ { dpsrn. 0 STIE= O, from Equation (1) in Subsection II-A and use Corollary 8,
e’ if srn = w(1). where we characterize the connectivity (@F(X;;r)),_, at

two consecutive steps. It turns out that the existence/non-
Note that the results ofc and Ap of both casesrn = o(1)  gyistence of isolated vertices is asymptotically equivai®
andsrn = w(1) correspond to the respective limits of the casg,g gisconnectivity/connectivity of the graph, both in gatic
wheresrn = O(1). case G(X;r) and for two consecutive steps df(X;;r).
Intuitively speaking, the consequences of the result afgopOsition 6 characterizes the changes of the number of
the following. First observe that, asymptotically, the esqed Solated vertices between two consecutive steps. The pgoof
number of steps in a period of connectivity (disconnegtvit Pased on the computation of the joint factorial moments ef th
does not depend on how often the vertices(6{;; ) variables accounting for these changes and using a well know

teZ . P . .
change their direction, since the expressions we obtaiaed theorem in probability (Theorem 1.23 in [3]), to charadteri

Ac and \p do not containm. Moreover,\c and \p are non- the fact that the random variables are Poisson. At first sight
increasing with respect te, which corroborates the intuitive IS NOt obvious that the probability of existence of compdaen
fact that having a big jump of the vertices at each step reiu@ 1arger sizes is negligible compared to the probability of
the positive correlation existing between consecutiveetinfudden apperance of isolated vertices, but this is indesdirsh
steps for stat€ (or stateD). In particular, forsrn = w(1), N Lemma 7. The proof is quite technlc_al and is ;pht into five
Ac and \p do not depend om, since for such a large the different cases, each case corresponding to a differeptafp
events of being (dis)connected at consecutive time steps gpMmpPonents.

roughly independent. The casen = o(1) deserves some

extra attention. Let us denote the expected total distance I1l. PROOF OF THEMAIN THEOREM

covered by each vertex during a connectivity period and aFor the analysis of the dynamic model we need further
disconnectivity period byrc = s- A¢c andp = s - Ap, definitions. We denote by, , = (x;4,y:.) the position of
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i at timet. Let X, = |J_,{X;.} be the set of positions of be described in two dimensions, but since part 3) and part
the vertices at timeé. The following lemma (see [16]) indicates4) are better explained in three dimensions, we use the third
that the dynamic model at any fixed tinhecan be seen as adimension throughout.

copy of the static model. Lemma 3. Assumeu = ©(1). There exists a constamat> 0

Lemma 2. At any fixed step € Z, the vertices are distributed such that for large enough the following statements are true:
over the torus[0,1)? independently and u.a.r. Consequentlyor any i, j € {1,...,n} (possiblyi = j),
for anyt € Z, G(X;;r) has the same distribution as(X’;r). 1) if d(X;, X;) > r thenVol(R; N'R; ) < Zr,

Let us consider two arbitrary consecutive stépsndt + 2) if 5 < r/,7 andd(X;, X; )2> r—2s thenVoI((Ri UR:)N
1 of (X;)iez, for an arbitrary fixed integet (omitted from (R URS)) < (1 —epmr?,
notation whenever it is understood). For edch{1,...,n}, 3) ifs= 7’/7 ands = O(r )thenVoI(R NR}) < (1—€)mr?
the random position&; ; andX; ,.; of vertexi at¢ andt+1  4) if s = w(r) thenVol(R; N R}) = O(r® H;l) = o(r?).
are denoted byX; = (x;,y;) and X = (2}, y}). Let alsoX = Proof:

Ay and X’ = Xy If 27z, (2 € [0, 1)) is the angle inwhichi (1) Assume w.l.0.g. that the segmekiX; is vertical and
moves betweenand+1, thenz; = z;+scos(2r2;) mod 1 hat X, is aboveX;. Let S c [0, 1)? be the upper halfcircle
andy; = y; + ssin(2mz;) mod 1 (hereinafter, the notation . centerX; and radius, andS = el (S) Sx[0,1) C
mod 1 will be often omitted for simplicity). That motivates [0,1). Notice that\/oI(S) —y ScR, andSmR =0,
the following description of the model atandt 4 1 in terms and the statement follows.

of a three dimensional placement of the vertices, in whieh th (2) The distance betweehi; and X/ is greater tharr/7,
third dimension is interpreted as a normalized angle: Fohegg;, o d(X[, X1) > d(X;, X;) — 25 > r— 4s. Let S; (S,

i € {31 .n}, define the random poink; = (x;, ;%) € respectively) be the set of points i, 1) at distance at most
[0,1)%, and let X — Ui, {Xi}. By Lemma 2, all random 8r/7 from X/ (X!, respectively). Note tha$; andsS; are two
pomtsX are chosen independently and u.a.r. fromaterus - gjrcles of rad|u58r/7 with centers at distance greater than
[0,1)3. Moreover,X encodes all the information of the modebrﬁ Straightforward computations show thlatea(s ns;)

at stepst andt + 1: If we map [0,1)® onto [0,1)* by the g 4 most(l—e)wrQ for somee > 0. We defineS = 1(51_)

following surjections andS =71 1(S;). We haveS; > R;UR/ andS DR, Uﬁ’
ot (I’,y,Z) = (xay) Hence
71 (2,9, 2) = (x + scos(27mz),y + ssin(27z)), Vol((Ri UR;) N (R; URY)) < Vol(SiN'S))
— 2
we can recover the positions of vertéxt timest andt + 1 = Area(5;N ;) < (1 —e)mr.
from X; and write X; = m(X;) and X/ = m5(X;). (3) Letk € {1,...,n} be different fromi and j. Observe

For any measurable set C [0, 1), the eventsX; € A and that Vol(R; \ R’) is the probability thatd(X;, X;) < r
X; € Aare respectively equivalent to the eveAtsc =; '(A4) but d(Xj, X;) > r. Suppose that(X;, X}) < r but also
and X; € 7; ' (A) in this new setting. Furthermore, by settingi( X, Xk) > 13r/14, which happens with probability at least

—

A =A- (3 cos(2mz), ssin(27z)) we get (1—13%/14%)7r2. Let o be the angle of(/ X;, with respect
to the horizontal axis. Recall that verte!x moves between
—1 _ _

Vol(my " (A)) = /[0 b (/A dxdy) dz = Area(A). time stepst andt + 1 towards a directior2rz;,, wherez; is

N " j1 the third coordinate ofXy. If 27z, € [a — /3, + 7/3],

In addition, observe tha¥ol(r; " (A)) = Vol(A x [0,1)) = then the vertex increases its distance with respect ‘ty at

Area(A), and hence we have leasts/2 > r/14, and thusd(X}, X}) > r/14 + 13r/14 = r.
Area(A) = Vol(/ﬂ;l(A)) _ Vol(ﬂ;l(A)). 3) This range of directions has probability/3. Summarizing,

we proved thatol(R; \R’) (1—-132/14?)7r2 /3, and the
In view of Lemma 2, for any measurable setsC [0,1)? and statement follows.

B C[0,1)% we haveP(X; € A) = Area(A), P(X] € A) = (4) Givenk € {1,...,n} different fromi and j, observe
Area(A) and P(X; € B) = Vol(B), which is compatible that Vol(R; OR’) is the probability thatl( Xy, X;) < r and
with (3). d(X}, X7}) < r. Suppose first that < 1/2. We claim that

For eachi € {1,...,n}, considerR; = {X € [0,1)? : the probability that/(X;, X7;) < r conditional upon any fixed
d(X, X;) <r} andR’ ={X e [0,1)? : d(X, X]) < r}. Let outcome of X} is at most(2 + ¢)r/s for somee > 0, no
R; = 7 '(R;) and R’ = 7, '(R}) be their counterparts in matter which particular poinf; is chosen. In fact, assume
[0,1)%. Note that vertey is connected to vertexat timet iff X, + X} and leta be the angle ofX;, X’ with respect to
X, € R,. Thus,X; is isolated inG(X;r) iff (X\{X })ﬂR = the honzontal axis. If vertet moves between stepsand
0, and analogouslyx! is isolated inG/(X”; r) iff (X'\{X;})N ¢+ 1 towards a directior2rz, not in [ — arcsin(r/s), o +
R, = 0. arcsin(r/s)] then d(X}, X)) > . Hence, Vol(R; N T\’,’)

The following technical lemma is needed in several placest mostP(d(Xy, X;) < r) = 7r? times (2 + €)r/s, which
It gives elementary bounds on the volume of the intersedifon satisfies the claim. The casé, = X is trivial.
two regions as a function of the distance of the correspandin The cases > 1/2 is similar, taking into consideration the
points and the stepsize. Note that part 1) and part 2) caty eagict that since vertex may loop many times around the torus
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share an edge at step+ 1. On the other handX; must
lie inside the circle of radiug centered atX;, and setting
& =rin (4), we get that the maximum valyecan achieve is
Vr2 + s2 — 2rscos@.

Let « be the angle determined from the range of all possible
values of2wz (i.e., possible directions for vertexto move).
By the law of cosines,

2 2 2
o = 2arccos (rsp) )
2sp

From (4) and the change of variables formula, we can deter-
mine the element of volume in coordinatgs 9, z):

&
& — scost

Using the fact that — 2s < £ < r, we can write

g_f»%:p(li@(;))

dxdydz = £ d€dOdz = dpdfdz.

Fig. 1. Case 1 in the proof of Lemma 4.

while moving between stepsandt + 1. In fact, as we move Therefore,
along the circumference of radigyscentered atXy, we cross

the axes of the toru®(1+s) times. This gives the extra factorqg = /A dxdydz
(1 + s) in the statement, which is negligible when= o(1) <

but grows large wher = w(1). R = o pVriast2rscost ¢

_For eachi € {1,...,n}, we defineQ, = R;\ R; and :/O /7,75 ﬂg_scosgdpde

Q; = Ri \ Rj. Given any two vertices and j, observe that s L

X; € @ iff X; € Q) iff d(X;, X;) <r butd(X},X}) >, = <1i0 (;)) 2/ 27T<—7“Ssin9—97"2

i.e. the vertices are joined by an edge at tiftmit not at time 0 ‘

¢ + 1. This holds with probabilityy = Vol(Q;) = Vol(Q}), b (4 5% — 2rs cos ) arceos 1230 =8 )de.
which neither depends on the particular vertices not.dfhe Vr? + 5% — 2rscosd
value ofq depends on the asymptotic relation betweeand Looking at the Taylor series with respect tg'r of the
s and is given in the following lemma. expression inside the integral divided by, we get

Lemma 4. The probability that two different verticesj < _ s Ty 20 cos 8 s s\ 2
{1,...,n} are at distance at mostat time¢ but greater than ¢~ (1 +0 (;)) A - +0 (;) 40

r at timet + 1 is ¢ < 7r2, which also satisfies
1= = (1:|:O<§)) é51".
2or  if s=o(r), r
g~20@?) ifs=0(r), Case2 (er < s < r/7). Recall thatR; is the circle of radius

r and centerX;. Take the chord ifR; which is perpendicular
to the segmenfX; X/ and at distance from X;. This chord
Proof: The first bound ong is immediate from the dividesR; into two regions. One of them, call &, has the
definition of ¢ and the fact thal&/ol(ﬁi) = 7r2. In order to property that all the points inside are at distance at least
obtain the second statement, we consider three cases.  from X/ and moreoverArea(S) > ev/2e — €2r?. Suppose

Casel (s < er, for some fixed but small enough > 0). thatX; € S (i.e., the vertexj is in S at ';ime t), which
In order to compute the probability thafj c le we happens with probability at least/2e — e2r?. Let us now

N ; : ; , , :
expressX; = (z;,y;,2;) in new coordinatesp, 0, z), where consider the circle centered &/ and passing througkx;.

! / ! H il
p=d(X;,X!), 0 is the angle between the horizontal axis anfi/¢ Observe thatl(X}, X7) > d(X;, X7) with probability at
ETaETas least1/2, since it is sufficient that the directidhrz; in which
X;Xj;, andz = z;. Integrate an element of volume over the : S .

O ) vertex j moves lies in the outer side of the tangent of that
region Q; in terms of these coordinates. Let= d(X;, X;), -
: g . . circle at X;. Therefore, the probability thaf(X,;, X;) < r
so that(¢, 0, z) are the cylindrical coordinates (see Figure 1)a'md dX7,XT) > or equivalentlyX. € O, is at least
Using the law of cosines, we write ARy " q yai i

?

7r? if s=w(r).

LevZe— 22,
p=\E+s*—2scosf and @ Case3 (s > /7). We can write
§=1/p? — s?sin® 0 + s cos b, q = Vol(Q}) = VoI(R; \ R}) = Vol(R;) — Vol(R; N'R}),

Notice that the minimum value that can take isr — s, and the result follows from the statements (1) and (4) in
since X; must lie outside the circle of radius— s and center Lemma 3.
X;. Otherwise asi(X;, X}) < r, the verticesi and j would [ |
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We need the following technical result, which allows u3he proof is based on the computation of the joint factorial
to compute the probability that a given subset [6f1)> moments of the variables accounting for these changes. At
contains no points oft’, but some other subsets contain dirst sight, it is not obvious that the probability of existen
least one. Roughly speaking, the lemma shows that under sasheomponents of larger sizes is negligible compared to the
mild conditions the probability of having a certain numbér gprobability of sudden appearance of isolated verticestHiat
points (including zero) in disjoint regions of the unit teruis indeed shown in Lemma 7.
is asymptotically equal to the prodqct of the probabilitads Proposition 6. Assumes — ©(1). Then for any two consec-
these events (that is, one can consider these events ay if the

. Utive steps,
were independent).

. o _ ~ _—qn ~ —qn
Lemma 5. For any fixed integerk > 0, let So,..., Sy be EB=ED~p(l—e™) and ES~ pe "

pairwise disjointksubsets db, 1), with volumesso,...,sx  Moreover we have that
respectively. I_;_, s: = o(1), then e If 5 = o(1/rn), thenP(B > 0) ~ EB; P(D > 0) ~
R koo ED; S is asymptotically Poisson; and3 > 0), (D > 0)
P=P ((So NX=0)A /\(Si NX # @)) and S are asymptotically mutually independent.
i=1 o If s = ©(1/rn), then B, D and S are asymptotically
k mutually independent Poisson.
~ (1 =s)" [ (1—e7m). o If s = w(1/rn), then B and D are asymptotically
i=1 Poisson; P(S > 0) ~ ES; and B, D and (S > 0)
Proof: Using inclusion-exclusion, are asymptotically mutually independent.
i o i " Proof: The central ingredient in the proof is the com-
pP= Z (—1)7=2 N [ S chsj ., putation of the joint factorial momen®&([B],, [D],,[S]¢,) of

these variables. In particular, we find the asymptotic \alofe

c;€{0,1}, 2<5<4
EB, ED andES. Moreover, in the case = ©(1/(rn)), we

Let o = (1 - (51 + Z;;ﬁ cjsj))n. Then, show that for any fixed naturalg, ¢, and/; we have
e E([Ble,[Dle, [Sle,) ~ (EB)" (ED)(ES)".  (6)
P (l—em) > B (=17 xa, The statement then follows from Theorem 1.23 in [3].
¢ €{0,1}, 25 <i—1 The other cases are more delicate since (6) does not always
and the argument follows by induction. m hold for extreme values of, and we obtain a weaker result.

Next, we study the changes of isolated vertices betwebthe cases = o(1/(rn)), we compute the moments for any
two consecutive stepsandt + 1. Let K; ; be the number of natural/s but only for ¢y, ¢, € {0,1,2} and obtain
isolated vertices irz(Xy; ). For any two consecutive steps ) X .
andt + 1, define the(foIIO\)/ving random variables: E([B]s, [D],[S]es) ~ (EB)™ (ED)*(ES)", if 1,6, <2,
« B, is the number of verticessuch thatX; is not isolated E([Bl2[D]e, [S]e;) = o(E(B [Dle; [S]es)):
in G(X,;r) but X! is isolated inG(X,41;7); E([Ble, [D]2[S]e) = o(E([Be, D [S]e,))- (@)
° gt;.thebnl:r;?e.r of \,:e.rml:efzu.crgﬂl‘?o(f IS _|solated n Using the upper and lower bounds in [3], Section 1.4, we get
(4; 7) but X; is not isolated inGi(Xi1;7); - ypar(p S 0), (D > 0) and S satisfy (5), andP(B > 0) ~
» S is the number of vertices such thatX; and X; are o ES (ES)
both isolated inG/(X;; ) and G(X.1; 7). EB, P(D > 0) ~ED andvk € N, P(§ = k) ~
For the case = w(1/(rn)), we compute the moments for any

Denote them byB, D and S whenevert andt¢ + 1 are
understood. Note tha® and D have the same distribution. naturalst, and¢, but only for £ € {0,1,2} and obtain

Recall that given a collection of even& (n),...,&(n)  E([Bls, [D]e,[S]e,) ~ (EB)(ED)=(ES), if (3 <2,

and of _random vari.ableswl(n),...7Wl_(n) taking values E([B]y, [D]s,[S]2) = o(E([B]y, [D]0,S)) 8)
in N, with £ and [ fixed, they are defined to bmutually
asymptotically independernt for any k’.1’.i,...,i;» € N From this and by using once more upper and lower bounds
and ji,...,jr,w1,...,wpy € N such thatk’ < k, I’ < [, givenin Section 1.4 of [3], we conclude th&t D and(S > 0)
1<ig < - <ip <k 1<j <---<jy<l, we have satisfy (5), and
k' U _ —EB (EB)k
Pr /\ £ A /\(ij — wy) P(B=k)~e i Vk € N,
a=1 b=1 —ED (ED)k
B) PDO=k) ~e o~ VkeNandP($ > 0) ~ ES,
~ H Pr&;, H Pr [W;, = wy). We proceed to compute the moments. For eaeh{1, ... ,n},

defineB;, D; andsS; as the indicator functions of the following
The next Proposition, characterizes the changes of teeents:B; = 1 iff X; is not isolated inG(X;;r), but X! is
number of isolated vertices between two consecutive stepmlated inG(X;+1;7); D; = 1 iff X, is isolated inG(X;;r)



but X! is not isolated inG(X,41;7), andS; = 1 iff X; and
X/ are both isolated it&7(X;; ) and G(X;q1;7). Then,

B:iBi, D:iDi, S:isi.
i=1 i=1 i=1

Recall thatQ; = R’\R andQ’ R \R’ Note thatB; =1
iff all points in X\ {X;} are 0utsrdeR’ “but at least one is
inside Q D; = 1 iff all points in X\ {X} are outsideR;
but at Ieast one is msrd@l, and frnaIIyS =1 |ff all points
in X'\ {X,} are outsideR; UR, =R, UQ; = R, U Q..
Given any fixed naturalg,, {5, {5 with £ = {1 + {5 + {3, we

choose an ordered tuplé of ¢ different verticesiy, ..., i, €
{1,...,n}, and define
J2 l1+4o l
E=N\NBi, =Dr N @i, =)~ N (S, =1).
a=1 b=t1+1 c=01+02+1
(9)

Then P (&) does not depend on the particular tuple and
multiplying it by the numbefn], of ordered choices of, we
get

E([Ble, [D]e,[S]e;) = [n]eP(E). (10)

Relabelling the vertices aé= (1, ..., /), lety = J'_, {X,}.

Define the set
£y
R=JRiU
=1
and the collection of sets

~ o A
Q={Q,....9,,Q41,---,

RenameQ* = Q’ for1 <i<¥y, Qi
O+ 0, SOQ {Q Qel+£2}
Casel (s = O(1/rn)). Say that a vertex € J is restrictedif
there is some othef € J with j > ¢ such thatd(X;, X,;) <
2r + 4s. Let F be the event thatl(X;, X;) > 2r + 4s for
all i,5 € J (i # j). This event has probability — O(r?).
Assume first thatF holds and compute the probability &f
conditional upon that. Notice thaft implies that for anyi, j €
J @ # 7) we must haveR, mR =0, R’HR’ = ( and
R; N R’ = . ThenVol(R) = ¢xr? + (3¢, and the sets in
0 are pairwise disjoint and also disjoint froM. Moreover

01+4Lo ¢

U =u U

1=01+1 1= +Llo+1

Oty i}
=Q,fort; +1<i<

observe that, conditional updf, £ is equivalent to the event giveniy, ..
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we only need to prove th&(EAF) = P(FAH)P(E | FAH)
is negligible compared to (11).

Suppose then thek/ holds and that a number > 0 of
vertices inJ arerestricted i.e. F does not hold. This happens
with probability O(r??). In this case, as each unrestricted
vertex in J contributes at least withrr2 to Vol(R) and the

first restricted one gives by Lemma 3 (2) the tetnr?, we

get Vol(R) > (¢ = p)mr® 4 emr?. Moreover, & implies that
all points in X y lie outside of R, which has probability
(1 - VoI(R)) O(1/n*~P*¢). Summarizing, the weight

in P(€ AF) coming from situations wittp restricted vertices

is O(r? /n'—P+€) = O(log? n/n'*¢), and is thus negligible

compared to (11). HencB(&) ~ P(E A F), and the required

condition on the moments announced in (6) follows from (10)

and (11).

Case?2 (s = o(1/rn)). Defining F and H as in the case
=©O(1/(rn)) and by an analogous argument, we obtain

p(g/\]:) ~ (ﬁ)e (1 _e—qn)él-r-fze—ésqn ~ (H)e (qn)fﬁ-le
n n
(12)

However, the analysis of the case th&tdoes not hold is
slightly more delicate here. Indeed, there is an additio(8)
factor in (12), namelyqn)“ 2, which forces us to get tighter
bounds orP (£ AF A'H) than the ones obtained before. Unlike
in the cases = ©(1/(rn)), we need to consider the role of
O when F does not hold, and special care must be taken
with several new situations which do not occur otherwise. Fo
instance, since the elements @fare not necessarily disjoint,
then for Q Q* S Q the condition that both contain some
element ofX can be satisfied by having just a single point
in Q* N Q* nx. Moreover, if¢; > 2 and1 < i,j < ¢, (or
ly > 2 andﬁl +1 <4, < {1 + £2), the previous condition is
also satisfied itX; € Q7, which is equivalent taX; Q;. If
the latter situation occurs, we say thaand j collaborate

We bound the weight i? (£ A F) due to situations in which
there are no pairs of elements ih which collaborate. Let
Ji={1,...,0 + 6} and Y, = U112 {X;}, and consider
the set? of partitions of.J;. A partltlon of J; is a collection of
nonempty subsets of, denotedlocks which are disjoint and
have union/;. The size of a partition is the number of blocks,
and for each block we calkaderto the maximal element in
the block. Given a partitionP = {A;,..., Ay} € & and
vk € {1,...,n}\ J, let&p,,, ik be the foIIow-

that all points inX'\ ' lie outsideRR, but at least one belongsing event: For each b|OCJ4 of P, we haveX;, € Nica, o;

to eachQ* € O. From Lemmata 4 and 5, we get:

P(EAF) = (1-0(?)P(E | F)
~ (%)[ (1— e amyhitlzg=taan  (11)

We claim thatP (& A F) is the main contribution td(&).
In fact, if 7 does not hold the® (€ | F) is larger than the

and moreover, all the points i\ (YUiy, .. zk}) lie outside

of R. We wish to bound the probability ﬂplh iy NFAH.
Notice that if€p;, .. 5, holds, then all the/; + ¢2 — k non-
leader elements i/; must be restricted, and possibly some
other p’ vertices inJ are restricted too. Moreover: does
not hold iff this p’ satisfies0 < ¢, + 4y — k +p' < L.
Given anyp’ with that property, suppose that is exactly

expression in (11), but this is balanced out by the fact théte number of restricted vertices i which are either in

P(F) is small. Before proving this claim, defirfé to be the
event thatd(X;, X;) > r —2s for all 4,5 € J (i # j). Notice
that £ implies H, since otherwise, for somgj € J, X; and
X, would be joined by an edge i@#(X;; ), and alsaX] and
Xj’- in G(X;41;7), which is not compatible witl€. Therefore

J \ J1 or are leaders of some block. We condition upon
this and also uport, which has probability-2*". Then for
each bIockA with leaderi;, event&pl1 ik requires that
X te andforallzeA (@ # 1), X e(QLJUQ’)

In addltlon since the number of restricted vertices.Jinis
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O+l —k +p > 0, arguing as in the case= ©(1/(rn)), If {3 <1, we claim that (15) is the main contribution R(E).
we haveVol(R ) (63 +k —p')mr? 4+ enr?. The contribution In fact, suppose thakl holds and thap > 0 of the vertices

to P(Epi,..in AF AH) for this particularp’ is in J are restricted X does not hold), which happens with
o0\ K pe 1l P probability O(r2?). Sincels < 1, then the only possible event
O(r)q"(2¢)" 7> 7"(1 — Vol(R)) which contributes taS in the definition of€ is (S, = 1)
1ng’ n ity (cf. (9)). This involves vertex, which cannot be restricted
=0 ke (qn) by definition. Therefor&/ol(R) > (£ — p)mr? + l3q + emr?
since by (2) and (3) in Lemma 3, the unrestricted vertlces

therefore for som® < ¢ < ¢, we can write in J contribute (¢ — p)wr? + £3¢ to Vol(R), and the first
o 1 restricted one gives the terenr?. Therefore in this situation,

P(&piy,.ic NFAH) =0 (HHH> (qn)“r+ee. the probability of€ is O(e~‘" /n‘~P+<), which combined

with the probabilityO(r??), thatp vertices are restricted, has
Finally, observe that if there are no pairs of elements/in negligible weight compared to (15). Hend@®(£) ~ P(EAF),
which collaborate, the& A F implies that€p;, ..i. A F A and the first line of (8) follows from (10) and (15).
H holds for someP € & of size k and someiy,. .., i € If /3 = 2 and we havep restricted vertices in], we can
{1,...,n}\ J, and therefore has probability only assure thaVol(R) > (¢ — p)mr? + ¢ + exr?. Then for

i 1 e, 1 . somel < € < €,
O (n*)O <ne+k+> (gn)" ™2 =0 (ne+) (qn)*e,

2p
P(EANF) =0 (f_p+> e~ =0 (Zi) e, (16)
which is negligible compared to (12). In particularfif, £ < n n
2, then no pair of elements i/ collaborates and then Using (10), (15) and (16), we verify that the second line 9f (8
P(€) ~ P(EAF). Hence, the first line of (7) follows from (10) is satisfied.

and (12). Case4 (s = w(r)). Let 7’ be the event that for any j € J

We extend the approach above to deal with situations @ ;) we have thati(X;, X;) > 2r and d(X!, X/) > 2r.
which some pair of elements id collaborate. Notice that This event has probability— O(r2). Observe that n%—“’ holds,
if s — 0 fast, their contribution tdP(£ A F A 'H) may be then for anyi,j € J (i # j) we must haveR n RJ — 0,

larger than (12). Hence we restri€t and /5 to be at mose R’HR’ — ) andR,; ﬂR’ — (). ThereforeVol(R ) — tnr2lsq
and prove only (7). Ift; = 2, let & be the following event:

X1 € Q’, R contalns no points ||:?(\y and for each natural =5

7, 3 <1< 244, Ql contains some pomt u?(\y If {9 =2,

let & be the followmg eventXQH S le+2, R contalns

no points inX \ Y; and for each natural, 1 < i < ¢4, O P(EAF) ~ (ﬁ)z (1 — e-tmyl+lzg=tsan (H)ee—ésqn.
n

and the sets iQ are pairwise disjoint and also disjoint from
R. Using Lemmata 4 and 5, and by the same argument that
leads to (11),

contains some point i’ '\ V. Finally if £, = £y =2, let & » n

be the following eventX; € Q/ and X3 € 0. The remaining of the argument is analogous to Case 3 but
In order to computeP(&; A H), we can repeat the same'eplacingZ with 7” and using Lemma 3 (3).

argument as above, but imposing that € Q’ and ignoring [ ]

other conditions orQ’ and Q’ We get that for some’ > 0 Taking into account thaf{,; = D; + S; and K3 ;11 =
1 1 S; + By, Proposition 6 completely characterizes the number
PEAH)=0 (W) q(qgn)? =0 ( ”6,) (qn)***2,  of isolated vertices at two consecutive steps in the case
" " (13) ©(1/(rn)). For the other ranges of, the result is weaker
but still sufficient for our further purposes. We remark that
if s =0(1/(rn)), then creations and destructions of isolated
P(&s AH) = O (el) (qn)ir+1, vertices are rare, but a Poisson number of isolated verisces
Te (14) present at both consecutive steps. Otherwise-ifw (1/(rn)),

and similarly

then the isolated vertices which are present at both cotigecu
P(&2AH)=0 (ne+e'> (qn)”. steps are rare since, but a Poisson number of them are created
] ] ) __and also a Poisson number destroyed.
Observe that if some vertices A collaborate, ther€ A F To characterize the connectivity "éG(Xt?T))tez’ we need

implies thatéy A H, &2 AH or & 2 A hold. Unfortunately, 4 poynd the probability of the event that components other
from (12), (13) and (14) we cannot guarantee tB& A\ F)  han isolated vertices and the giant one appear at some step.
is smaller thanP (& A F), but by (10), multiplying these Recql that in the static case, a.a.s. this does not occuneat o
probabilities by[n], we get (7). single stept [7]. However, during long periods of time this
Case3 (s = w(1/rn), butalsos = O(r)). Following the same event could affect the connectivity and must be considered.
notation as in the case = ©(1/rn) and by an analogous Given a componerit of G(X;r), ' is embeddabléf it can
argument, we obtain be mapped into the squafe 1 — r]? by a translation in the

ny: - B e, torus. Embeddable components do not wrap around the torus.
P(ENF) ~ (;) (1 —emam)atlzemboan (ﬁ) e~ 9" Components which are not embeddable must have a size of at

(15) leastQ(1/r) (see Figure 2).
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we defineﬁ- = @Z U é; = ﬁZAﬁ,’i (where A denotes the
symmetric difference of sets). Given algoe {1,...,n},
observe thatX; € P; iff X; € P; iff vertices and j share

an edge either at timeor at timet + 1 but not at both times,
which happens with probability/ol(P;) = 2¢. Throughout
this proof lete = 10718,

Part 1. First we consider all possible embeddable components
in G(X;r) with diameter betweerr and 6v/2r. Call them
components ofypel, and letM; denote their number at time

. . . . I
Fig. 2. Left picture:Two non-embeddable components which are not solitary. . .
Right picture: One solitary component and one embeddable component Th€ argument of this part follows the lines to the proof

(shaded). of Part 3 in Lemma 5 of [7], but taking into consideration
the peculiarities of the fact that the graph is dynamic. We
] tessellate the toruf), 1)? into square cells of sidevr, for
Sometimes several non-embeddable components can coedshe fixed but small enough > 0. Let T be a component
together. _However, there are some non-embeddable COMgPtype 1, and letS = Sr be the set of all points in the torus
nents which are so spread around the torus, that they do [P1)2 which are at distance at mostrom some vertex irT".
allow any room for other non-embeddable ones. Call theggmove froms the vertices of* and the edges (represented by
componentssolitary (see Figure 2). By definition, we canstrajght line segments) and denote &ythe outer connected
have at most one solitary component. We cannot disprojgological component of the remaining set. By construxtio

the existence of a solitary component, since with probbilis’ myst contain no vertex it (see Figure 3, left picture).
1 — o(1) there exists a giant component of this nature. For

components which are not solitary, we give asymptotic beund
on the probability of their existence according to theiresiz
The proof of the next lemma is an extension of the proofs
of Lemma 4 and Lemma 5 in [7], where exact probabilities for
the existence of components of size 2 are computed for the
static modelG(X;r). In the setup of the current paper, new
difficulties arise, since we must also take into considerati
changes between two consecutive time steps. The basic ide
is that at a step, if K5, denotes the number of non-solitary ‘ ‘
components other than isolated vertices occurring, ave
show that in the dynamic evolution of connectivity, thos€ig. 3. The tessellation for counting componentsygfe 1
components have a negligible effect when compared to the
isolated vertices. Now let i, ir, it andig, respectively, be the indices of the
leftmost, rightmost, topmost and bottommost verticesl'in
Lemma 7. Assumejhap = ©(1) and 5= 0<1/(7“”Z)- Then, gome of these indices are possibly equal. Assume w.l.0.g.
o« P(Kyy >0ANKoyy1 =0) =P(Kyy =0A K1 > that the vertical length oF is at leaster//2. Otherwise, the
0) = o(srn), horizontal length of" has this property and we can rotate the
e P(Ky;>0A B, >0)=o0(srn). descriptions in the argument. The upper halfcircle withteen
X, and the lower halfcircle with centr&;, are disjoint and
. are contained is’. If X, is at greater vertical distance from
¢ = O(rs). It suffices to prove thaP (K, > 0 A Kap41 = X, than fromX;,, consider the rectangle of height/(2+/2)
0) = olgn) and P(Kyy > 0 A By > 0) = olgn), Since oy yicth . — er/(2v/2) with one corner onX;, and above
(K2t = 0 A Kyeq1 > 0) corresponds in the time-reversedy (4 the right ofy;, . Otherwise, consider the same rectangle
process oKy, > 0 A Kyp41 = 0), and thus they have thepeiow and to the right ok, . This rectangle is also contained
same probability. . _ in S’ and its interior does not intersect the previously desdribe
Consider all the possible componentsiit'; ) which are  paicircles. Analogously, we can find another rectangle of
not solitary and have size at least They are classified into heighter/(2v/2) and widthr —er/(2+/2) to the left of X;, and
several types according to their size and diameter, and Weher above or belowX;, with the same properties. Hence,
deal with each type_separately. Denote My the number of Area(S') > (1+ %) ar2. LetS* be the union of all the cells in
components ofypei in G(;; ), we must show that for each e tessellation which are fully contained i (see Figure 3,
type right picture).
P(M; > 0A f(uﬂ =0)=o(¢n) and _ Choosin_ga sufficiently small, we can guarantee thst
' (17) is topologically connected and has ar@eea(S*) > (1 +
€/6)mr?. By removing some extra cells fron§*, we can
The following definition describes the changes of edges ba&ssume that the number of cells &f is exactly[%l.
tween G(X;;r) and G(X,y1;r). For eachi € {1,...,n} Now for eachi,j € {1,...,n} and each unionS* of

D

Proof: Recall from Lemma 4 that if = o(1/(rn)) then

P(M; >0A B, >0) =o(gn).
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[%1 cells that is topologically connected, I€t; s- be
the following event:S* contains no points it \ {X;, X},
X, is at distance at leastr from all the points inS*, R’
contains no points int’ \ {XZ,X }; and moreoverX; € P
Notice that if X; is at distance at leas?r from all the
points in S*, then 7, *(S*) and R’ are disjoint. Hence,

Vol(r ! (S*)UR') (2 + €/6)mr? and

P(ijs) < (1= Vol(rT (S UR))) (20,

Similarly, let F; ; s« be the following eventS* contains no
points in X'\ {X;, X;}; X; is at distance at mostr from
some point inS*; and moreoverX € 7? Notice that the
probability thatX; is at distance at mogt- from some point in S’ ThereforeArea(S’) > (5/2)mr2. Let S* be the union

Fig. 4. A component® of Type 3 of size exactly = 9 and all its vertices
at distance< er from the leftmost one.

in S*is O(r?) = O(log n/n). Hence, of all the cells in the tessellation which are fully containe
) log 72 in S&’. We loose a bit of area compared &. However, if
P(Fjs+) < (1—Area(8)" "0 <n> (29). a was chosen small enough, we can guarantee ftais

topologically connected and algoea(S*) > (11/5)mr2. This
Finally, observe that each of the evefild; > 0/\f~(2¢+1 =) « can be chosen to be the same for all componentgpe2.

and (M; > 0 A B; > 0) implies that eithe; ; s- or F; j s~ Part 3. Consider all the possible components @(.X;r)
hold, for somei,j € {1,...,n} and some topologically which have diameter at most- and size betweer2 and
connected uniorS* of ceIIs Therefore the probabilities oflogn/37. Call them components dfpe3, and letM; denote
(Msa > 0A Ko 441 = 0) and(Ms, > 0A B, > 0) are at most their number at time (see Figure 4, left).
qn Given anyi € {1,...,n}, let & be the event that there
Z Eijse+ Z Fijse = (W) is a component” of type 3 in G(X \ {X;};r) and more-
©3:8" 3,87 over, for somej € {1,...,n} such thatX; is a vertex
Part 2. Consider all the possible components @(x;r) of I' we have thatX; € P;. By Theorem 2 of [7], with
which are embeddable and have diameter at 16g&r. Call probability O(1/log”n), G(X \ {X;};r) has a component
them components dype 2, and letM, denote their number I' of size between3 and logn/37. Conditional upon this,
at timet. the probability thatX; € 73 for somej € {1,...,n}
We tessellate the torus into square cells of side for with X; € I' is at mOSﬂOgn/37 times 2. This contributes
some fixed but small enough > 0. Our goal is to show O(l/log n)(logn/37)(2q) = O(q/logn) to the probability
that if G(X;;r) has some component dype 2, then there of &;. Otherwise suppose that(X'\ {X;};r) has a component
exists some topologically connected uniéri of cells with T of type3 and size exactlg. Again, by Theorem 2 of [7], this
Area(S*) > (11/5)7r? and which does not contain any vertexhappens with probability)(1/logn). Conditional upon this,
in X. Then, arguing as in Part 1 before, we conclude thtite probability thatX; € P; for somej € {1,...,n} with
both P(M; > 0 A Ka441 = 0) andP(My > 0A B, > 0) X, being a vertex ofl’ is at most two time=q. This also
are O (qn/(n'/5logn)). We now proceed to prove the claimcontributesO(1/logn)(4q) = O(q/logn) to the probability
on the union of cellsS*. Given a component of type2 in of &;, and thereford?(&;) = O(q/logn).
G(Xy;r), letS’, it andig be defined as in Part 1. Repeating Given anyiq,is € {1,...,n} (i1 # i), let F;, ;, be the
the same argument in there but replacingvith 61/2r, we can event that there is a compondhbf type3in G(X\{X,,};7)
assume w.l.o.g. that the vertical distance betw&enand X,, with R;l (X \ {X,,,X;,}) = 0. To derive the proba-
is at least6r, and claim that the upper halfcircle with centrebility of F;, ;,, we distinguish two cases according to the
X, and radiug- and the lower halfcircle with centr&,, and distance betweenX;, and I'. Suppose first that for some
radiusr must be disjoint and contained &'. Now, consider h € {1,...,n} \ {i1,i2} we have that < d(X;,, X}) < 3r,
the region of points in the toru$, 1) with the y-coordinate which happens with probability)(r?) = O(logn/n). Let
between that of\;. and X,,, and split this region into three S, be the set of points irf0,1)? at distance greater than
horizontal bands of the same width. Observe that each bamdbut at mostr from X;, and letS;, be the circle with
has width at leas2r and hence must contain some verteX'of centre X;, and radiusr — 2s. At least one halfcircle of
For each of these bands, pick the rightmost vertek af the &;, has all points at distance greater thanfrom X, so
band. We select the right lower quartercircle of radigentred Area(S, US;,) > (1 — ¢)mr? + n(r — 25)%/2 > (5/4)7r?.
at the vertex if the vertex is closer to the top of the band, dotice that, if 7;, ;, holds for some componeri which
otherwise the right upper quartercircle. We also perform tltontains a verteX(, such thad(X;,, X};) < 3r, then we must
symmetric operation and choose three more quarterciroleshive d(X;,, X;) > r and moreoverS, U S;; must contain
the left of the leftmost vertices in the three bands. All thesho point in X' \ {X,,, X;,}, which occurs with probability
six quartercircles together with the two halfcircles poagly (1 — Area(S, U S;,))"~2 = O(1/n%/*). Multiplying this by
described are by construction mutually disjoint and corgdi the probability thatd(X;,, X;) < 3r and taking the union

19
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bound over the: — 2 possible choices df, the contribution to
P(F;, .,) due to situations of this type &(n(logn/n)/n°/*),
which is O(1/(nlogn)). On the other hand, we claim that
the probability thatF;, ;, holds for some componerit with
all vertices at distance greater tham from X, is also }

- Qy

O(1/(nlogn)). To prove this, we first introduce some addi-
tional notation: Fix an arbitrary set of indicesc {1,...,n}

of size |J| = ¢, with two distinguished elements and j.
Denote byY = |, ; X the set of random points A" with
indices inJ, and set) = 71 }()). Furthermore, letS be the
set of all points in the torug), 1)2 which are at distance atFig. 5. The tessellation for counting componentsypie4 with two particular
mostr from some vertex iny, and setS = 7;'(S). Define Poxes shaded.

£ to be the event that there is some nonnegative pedler

such thatX;; is placed at distance from X; and to the right part 4. Consider all the possible components @(X'; r)

of X;; all the remaining vertices i}y are inside the halfcircle \nich have diameter at most and size greater thdng n/37.

of center X; and radiusp; and all then — ¢ — 2 points in ca|| them components ofype 4, and let M, denote their
X\ (YU{X;,, X;,}) lie outside ofSUR; . This last situation nymbper at time.

occurs with probabilityP? = (1 — Vol(SU R}, ))"“2. By  We tessellate the torus with square cells of sige—
calculations that are analogous to those that yield (4) @ th(er)~1|~! (y > er but alsoy ~ er). We define a box to

proof of Lemma 4 in [7] (and similar in flavour to Part 1 ofhe a square of sidey consisting of the union of cells of

this lemma), we obtain the tessellation. Consider the set of all possible boxese No
) 1p - 137 that any component df/pe4 must be fully contained in some
r (2 + 6r> <Vol(SUR;,) < R box (see Figure 5).

) o o Given any boxb andi,j € {1,...,n} (¢ # j), we define
Using the fact thal —x < e~* and plugging in the definition ¢, ; . to be the event that bok contains more thaf&™ — 1
of pu (recall thaty = ne™" "), we also get points of X'\ {X;} and moreoverX; € P;. Observe that each

5o (K 24p/(6r) 1 of the eventg M, > 0A Ky 441 = 0) and(My > 0A B, > 0)
< (g) (1 — 13772 /4)t+1" implies thaté, ; ; holds for some bo% andi, j € {1,...,n}.
Notice that the number of vertices in each box follows

Then, one can calculat®(£) by integrating with respect
to p the probability density function ofi(X;, X;) times the
probability that the remaining— 2 selected vertices lie inside
the right halfcircle of centeX; and radiusp times the upper
bound onP (again, the calculations are analogous to the last 1 _ —2.1

lines of the proof of Lemma 4 of [7], with? from there PWw > 37 logn —1) <n™=",

replaced byP), and the claim is proven for components ofnd by taking a union bound over the set of allr—1) =

type3 of fixed size/ > 2. By calculating the expected numberg(y,/ log n) boxes we getP(M, > 0) = O(1/(n'1logn))
of components of this type and each size< k < logn/37 and we get

(the argument is as in Part 1 of Lemma 5 of [7], where all 1
details are given) this is extended to all componentypé3 P (M, > 0A Ky yyq =0) < O (11> ZP()A(j €P)
and we obtain thaP(F;, ;,) = O(1/(nlogn)). ni-tlogn ) 4=
Now we proceed to prove (17) for componentstygbe 3. qn
First observe that the evefidds > 0 A Kz 41 = 0) implies = < > :
that &; holds for some € {1,...,n}, since the only way for i
a component otype 3 to disappear within one time step isThe same bound applies B(M, > 0 A B; > 0).
getting joined to something else. Therefore, Part 5. Consider all the possible components G{X;7)
n which are not embeddable and not solitary. Call them com-
P(Ms>0AKypp1=0)<Y P(&)=0 ( an ) , ponents oftype 5, and let)M; denote their number at time
i1 logn t. The idea of the proof is the following: We tessellate the
torus[0, 1)? into ©(n/logn) small square cells of side length

a binomial distribution with meanEW = (2y)°n =
(2¢)?logn/m. Thus, by the Chernoff inequality (see e.g.
Theorem 12.7 of [8]), applied with ~ = > ¢" we have

n%1logn

Notice that(Ms >0A B, > 0) implies thatF;, ;, holds and

S , P . ) ar, wherea > 0 is a sufficiently small positive constant (see
_rpr:)erﬁoveer € Qi,. for someiy iz € {1,...,n} (i 7 42). Figure 6, left). By dividing[0, 1)? into horizontal and vertical
' R R bands of width2r and carefully choosing vertices af in
P(Ms>0ADB; >0) < Z P(Fi i N (Xiy € Q) each of those bands, one can show that each of the events
i1,z (M5 >0A Ky,41 =0) and (M5 > 0 A B, > 0) implies that
n%q qn for somei, j € {1,...,n}, there is some connected unisti
=0 <nlogn> =0 (logn) : of cells in the tessellation witArea(S*) > (11/5)7r* such

thatS* N (X \ {X;}) = 0, and moreoverX; € P,. The proof
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Fig. 6. Components which are not embeddable and not solitary.
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that P, < P(Kyy = 0A Ko yyq > 0) and P, < P(Kay >
0 A B; > 0), and from Lemma 7 we get

P = O(P(Kl_’t =0A K17t+1 > 0)) and
Py =0(P(K1; =0A K41 >0)).

Otherwise ifs = Q(1/(rn)), thenP(Ky; = 0 A Ky,441 >
0) = ©(1). In this case, we simply use the fact thaf <
P(K24+1 > 0) = o(1) and P, < P(K3,; > 0) = o(1), and
deduce that (20) also holds.

Finally, the asymptotic expression d(C; A Diy1) is
obtained from (18), (19) and (20). Moreover, by considering
the time-reversed process, we deduce &D, A C;y1) =

(20)

is similar to the one in Part 2 of this lemma. From there wB(Ct A Dt41). The remaining probabilities in the statement

obtainP (M5 > 0) = O(m) and therefore we get

P(Ms >0NK =0)<0|—F—
(M5 > 2041 =0) < <n1/5 logn> ’
and the same bound appliesBd M5 > 0 A B; > 0).

[ |
Now we can characterize the connectivity (@ (X;; 7)), _,
at two consecutive steps. We denote @y the event that
G(X;;r) is connected, and b, = C; the event that (X;; r)
is disconnected.

Corollary 8. Assume thaf, = ©(1). Then,
P(Ct A Dt+1) ~ 67H(1 — €7EB),
P(D; ACiy1) ~ e (1 — e BB,
P(Ct A\ Ct+1) ~ ef“efEB,
P(D; ADyy1) ~ 1 —2e H 4 e e BB,

Proof: First observe thaf(; ; = S; + D, and K ;41 =
S; + B;. Therefore,

P(Kl.’t = OAKl,t_A,_l > 0) = P(St =0AD;=0ANDB; > 0),
and by Proposition 6 we get
P(Ki;=0AKy41>0) ~e #(1—e BB, (18)

We want to relate this probability witP(C; A Dyy1). In fact,
by partitioning (K1, = 0A K1 441 > 0) and (C, A Dy4q) into
disjoint events, we obtain
P(Kl,t =0A K17t+1 > O) = P(Cf AN K17t+1 > 0)
+ P(Dt ANK1; =0NKq 41> 0),
P(Ct AN Dt+1) = P(Ct AN Kl,t+1 > O)
+ P(Ct A\ Dt+1 AN Kl,t+1 = O),

and thus we can write
P(Ct /\Dt+1) - P(K])t - 0/\K1}t+1 > 0) +P1 _PQ, (19)

WhereP1 = P(Ct AN Dt+1 A K17t+1 = 0) and P, = P(Dt AN
Kl,t =0A K17t+1 > O)

Suppose that = o(1/(rn)). In this caseP(K1; = 0 A
Ki441 > 0) = O(srn) (see (18) and Proposition 6). Also
observe thaD; A (K, = 0) implies thatK,, > 0. In fact,

are computed from (1) together with Lemma 2, and using the
fact that

P(Ct A Ct.;,_l) = P(Ct) - P(Ct A\ Dt+1),
P(Dt A\ Dt+1) = P(Dt) - P(Dt A Ct+1).

|

For the next lemma, recall the definition df;(C) and
L:(D) from Section 2.3. LetA be an event in the static
G(X;r). We denote byA; the event that4d holds at time
t. In the (G(X;; 7)), ., model, definel,(A) to be the number
of consecutive steps that holds starting at step (possibly
0 if A; does not hold). The distribution af;(.A) does not
depend on, and we often omit the when it is understood.

Lemma 9. Suppose thatE (L(C)) < +oo (but possibly
E(L(C)) — +o0 asn — +o0). Then conditional uport,
but notC,_; we have

E (Li(C) [ Di-1 NCt) = Pr[gj[lc}/\ct]’

which does not depend dn The same statement holds if we
interchangeC and D.

Proof: We have thal,_1(C)+1[D;—1]L(C) = 1[C;—1]+
L:(C), taking expectations and using the hypothesis that
E(L(C)) < +o0 we get

E (1[Dt71]Lt(C)) =Pr [C], Vt.

The statement follows from the fact that

E (1[Di—1 ACLi(C))
Pr [thl A\ Ct]

_ E(1[D,1]L(C))
Pr [’Dt—l N Ct]

E(L¢(C) | D=1 ACy) =

[ |
To prove thatE (L(C)) < +oo0 and E (L(D)) < +oo we
need the following technical lemma.

Lemma 10. Letb = b(n) be the smallest natural number such
that (b—2)s/3 > /2/2. Then, there exists = p(n) > 0 such
that for any fixed circleR C [0,1)? of radiusr/2, anyi €
{1,...,n}, anyt € Z, and conditional upon any particular
position of X; ; in the torus, the probability thai; ;, € R

is at leastp.

we must have at least two components of size greaterthan  Proof: First assume that vertexchanges its angle at each
so at least one of these must be non-solitary. Then, we haifethe b steps following timet. This holds with probability
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(1/m)® > 0, and is independent from the initial position anatonnected). Therefore, for ady< N,
the particular choices of the angles. . -
Fix an arbitrary position forX; ; € [0,1)? and an arbitrary } _on 4
position for circleR ¢ [0,1)2 of radiusr/2 and centerX. Pr /_\ODtﬂb < (L-p")Pr /_\(]Dtﬂb (24)
Let Y, = X, ,+x (0 < k < b) and denote byy, the angle in = . =
which vertexi moves betweet;, andY; ;. Recall that each < (1=p")"Pr[Dy].
oy is selected uniformly and independently at random from the, Li(D) =

_ = > 720 1Dy - - - 1[Dyyy], is satisfied pointwise,
interval [0, 27) and thatd (Y41, Yk) = s, Vk € {0,...,b—1}. ¢, every element in the probability space’;);cz, by the

To prove the statement, we compute a lower bound on tg)notone Convergence Theorem, (24) and the factithat),
probability of a strategy that is sufficient for vertéxo reach \ye conclude

R at timet+b. We start fromY; and build a sequence of points oo

Yo, ..., Y, satisfying the previous conditions and such that E (Li(D)) = ZPr [Dy A+ ADyy]
d(Y;, X) < r/2, by imposing some restrictions on the angles
ao,...,qp_1. For the sake of simplicity in the geometrical

j=0

descriptions, assume thgg, ..., Y; and X belong toR? and < bZPr [Di ADyyy A - A Digia)
d(Yp, X) < v/2/2. Once the construction is completed, we k=0
map them back to the torus by the usual projection. s 3
For eachk, 0 < k < b — 3, we restrictay, to be in [f; — <bPr[Dy] > (1-p")k < 4oc.
7/6,0x + /6] (mod 27), whered,, is the angle ofY}, X with k=0
respect to the horizontal axis. We claim that, with this ckoi A similar argument shows thd (L(C)) < +oo. [ |
of angle,d(Y, X) is decreased at each step by at legs Theorem 1 follows from Lemma 11, Lemma 9 and Corol-
until it is at mosts. By the law of cosines, lary 8.
d(Vier1, X) < 1/ (d(Vi, X)) + 52 = VBd(¥e, X) 5. (21) IV. CONCLUSION.
) In this work, we have formally introduced the dynamic
If d(Yy, X) > s, we can write random geometric graph in order to study analytically a
1 variation of the Random Walk model for MANETS, defined
d(Yit1, X) <d(Yy, X) — =s. (22) in [11]. One aim of the present paper was to present a formal
3 framework for highly dynamic networks where the use of ad-
If d(Yi, X) < s, from (21) we deduce that also hoc data structures is not feasible. We studied the expected

length of the connectivity and disconnectivity periodking

into account different step sizes and different lengthsn
during which the angle remains invariant, always considgri
the static connectivity threshold = r.. We believe that a
similar analysis can be performed for other values 6f r.

as well. A different setting to be studied is for the case when
the connectivity radii are different for different vertgelt
would also be interesting to obtain further information atbo
We want to set the angles; .andab*l SO thatYl’*l andY; the connectivity/disconnectivity periods like their \arte or
are close td¥/, and X, respectlvel_y. mdeed’_tﬁb*? andy—1 . their distribution. Another interesting parameter to heditd
M angle_s)between _the hqnzontal axis and, respeetiveluid be the lengths of the periods it takes (for a given wgrte
Y,—2W andW X, then by imposing thay, € ¢ —er/s, 9+ 1q reach a certain area of the unit torus (or to remain there,

er/s] (mod 2r) for some small enough > 0, we achieve that once it has arrived there).
d(¥p, X) < 7/2 and thusy, € R. Our model is defined on the unit torus. As mentionned
_ Therefore, the probabili_ty of choosing all the angles ageorj, section I, an interesting open problem is to compute the
ing to the strategy described {8/6)°~0((r/s)?), and the connectivity periods on thanit square[0, 1]2. In this model,
statement follows witlp = (1/m)"(1/6)*"©((r/s)*). B gach time a vertex touches the boundary of the square, it is
The next lemma allows us to apply Lemma 9. forced to change direction (in most models such a vertex is
Lemma 11. E(L(C)) < 400 and E (L(D)) < +oo. assumed to bounpe bgck). These forged changes seem t.o make
the formal analysis quite more complicated than the oneén th
Proof: Fix a circleR C [0,1)? of radiusr/2, and take present paper. We conjecture that asymptotically the etfec
b as in the statement of Lemma 10. Since all vertices chodse boundary is negligible, and that the connectivity rssul
their angles independently, we have by Lemma 10 that, cdo¥ [0, 1]?> are asymptotically equivalent to the ones obtained
ditional upon any arbitrary;, the probability that all vertices in the present paper.
end up insideR after b steps isPr [X;1, C R | X > p", The Random Walknodel simulates the behavior of a swarm
for somep = p(n) > 0. Observe that for any € Z the of mobile vertices as sensors or robots, which move randomly
event(X; C R) implies thatG(X;;r) is a cliqgue (and thus to monitor an unknown territory or to search in it. There exis

d(Virr, X) < /52 + (1= V3)(d(Vi, X))* < 5. (29)

From the definition ofb, it is easy to see that (21), (22)
and (23) imply thatd(Y,_2, X) < s.

Denote byl one of the two points on the perpendicula
bisector ofY,_» X which satisfyd(W,Y;_2) = d(W, X) = s.
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other models such as tHieandom Way-poinmodel, where pp
each vertex chooses randomly a fixed way-point (from a s

of pre-determined way-points) and moves there, and when
arrives it chooses another and moves there (see [5]). Algessi
line of future research is to do a study similar to the on
developed in this paper for this way-point model. We believ,
that the techniques developed in this paper will prove to b
very useful to carry out such a study.
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