
SMT-Based Array Invariant Generation⋆

Daniel Larraz, Enric Rodrı́guez-Carbonell, and Albert Rubio

Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. This paper presents a constraint-based method for generating univer-
sally quantified loop invariants over array and scalar variables. Constraints are
solved by means of an SMT solver, thus leveraging recent advances in SMT solv-
ing for the theory of non-linear arithmetic. The method has been implemented in
a prototype of program analyzer, and a wide sample of examples illustrating its
power is shown.

1 Introduction

Discovering loop invariants is an essential task for verifying the correctness of software.
In particular, for programs manipulating arrays, usually one has to take into account in-
variant relationships among values stored in arrays and scalar variables. However, due to
the unbounded nature of arrays, invariant generation for these programs is a challenging
problem. In this paper we present a method for generating universally quantified loop
invariants over array and scalar variables.

Namely, programs are assumed to consist of unnested loops and linear assignments,
conditions and array accesses. Leta = (A1, . . . ,Am) be the array variables. Given an
integerk > 0, our method generates invariants of the form:

∀α : 0 ≤ α ≤ C(v) − 1 : Σm
i=1Σ

k
j=1ai j Ai [di jα + Ei j (v)] + B(v) + bαα ≤ 0,

whereC,Ei j ,B are linear polynomials with integer coefficients over the scalar variables
v andai j , di j , bα ∈ Z for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , k}. This family of properties is
quite general and allows handling a wide variety of programs.

Our method builds upon the so-calledconstraint-based invariant generationap-
proach for discovering linear invariants [CSS03], i.e., invariants expressed as linear
inequalities over scalar variables. By means of Farkas’ Lemma, the problem of the ex-
istence of an inductive invariant for a loop is transformed into a satisfiability problem
in propositional logic over non-linear arithmetic. Despite the potential of the approach,
its application has been limited so far due to the lack of goodsolvers for the obtained
non-linear constraints.

However, recently significant progress has been made in SMT modulo the theory
of non-linear arithmetic. In particular, theBarcelogic SMT solver has shown to be very
effective on finding solutions in quantifier-free non-linear integer arithmetic [BLO+12].
These advances motivated us to revisit the constraint-based approach for linear invari-
ants and extend it to programs with arrays.

⋆ Partially supported by Spanish MEC/MICINN under grant TIN 2010-68093-C02-01.

Related Work. There is a remarkable amount of work in the literature aimed at the
synthesis of quantified invariants for programs with arrays. Some of the techniques
fall into the framework ofabstract interpretation[CC77]. In [GRS05], the index do-
main of arrays is partitioned into several symbolic intervals I , and then each subarray
A[I] is associated to a summary auxiliary variableAI . Although assignments to in-
dividual array elements can thus be handled precisely, in order to discover relations
among the contents at different indices, hints must be manually provided. This short-
coming is overcome in [HP08], where additionally relational abstract properties of sum-
mary variables and shift variables are introduced to discover invariants of the form
∀α : α ∈ I : ψ(A1[α + k1], ...,Am[α + km], v), wherek1, . . . , km ∈ Z andv are scalar
variables. In comparison with our techniques, the previousapproaches force all array
accesses to be of the formα+k. As a consequence, programs likeArray palindrome or
Heap property (see Section 5) cannot be handled. Moreover, the universally quantified
variable is not allowed to appear outside array accesses. For this reason, our analysis can
be more precise, e.g., in theArray initialization and thePartial initialization [GRS05]
examples. Another technique based on abstract interpretation is presented in [GMT08].
While their approach can discover more general properties than ours, it requires that the
user provides templates to guide the analysis.

Predicate abstractionmethods [GS97] are also instances of abstract interpretation.
Here, a set of predefined predicates is considered, typically provided manually by the
user or computed heuristically from the program code and theassertions to be proved.
Then one generates an invariant built only over those predicates. This track of research
was initiated in [FQ02], where by introducing Skolem constants, universally-quantified
loop invariants for arrays can be discovered. In [LB04], it is shown how the strongest
universally quantified inductive invariant over the given predicates can be generated.
Further works integrate predicate abstraction into the CEGAR loop [JM07], apply al-
gorithmic learning [KJD+10] or discover invariants with complex pre-fixed Boolean
structure [SG09]. Unlike these predicate abstraction-based techniques, our approach
does not require programs to be annotated with assertions, thus allowing one to ana-
lyze code embedded into large programs, or with predicates,which sometimes require
ingenuity from the user. To alleviate the need of supplying predicates, in [Cou03]para-
metric predicate abstractionwas introduced. However, the properties considered there
express relations between all elements of two data collections, while our approach is
able to express pointwise relations.

Another group of techniques is based onfirst-order theorem proving. In [KV09],
the authors generate invariants with alternations of quantifiers for loop programs with-
out nesting. First, one describes the loop dynamics by meansof first-order formulas,
possibly using additional symbols denoting array updates or loop counters. Then a
saturation theorem prover eliminates auxiliary symbols and reports the consequences
without these symbols, which are the invariants. One of the problems of the method
is the limited capability of arithmetic reasoning of the theorem prover (as opposed to
SMT solvers, where arithmetic reasoning is hard-wired in the theory solvers). Although
the authors claim that the given simple axiomatization of integers is sufficient for prov-
ing many properties, there is lack of evidence that the method is widely applicable, as
just two examples are reported to have been analyzed. In [McM08] a related approach

2

is presented, where invariants are generated by examining candidates supplied by an
interpolating theorem prover. In addition to suffering from similar arithmetic reasoning
problems as [KV09], the approach also requires program assertions.

Other methods usecomputational algebra, e.g., [HHKR10]. One of the limitations
of [HHKR10] is that array variables are required to be eitherwrite-only or read-only.
Hence, unlike our method, programs such asSequential initialization [HP08] andAr-
ray insertion (see Section 5) cannot be handled.

The technique presented in this paper belongs to theconstraint-basedmethods. In
this sense it is related to that in [BHMR07a]. There, the authors present a constraint-
based algorithm for the synthesis of invariants expressed in the combined theory of
linear integer arithmetic (LI) and uninterpreted functionsymbols (UIF). By means of
the reduction of the array property fragment to LI+UIF, it is claimed that the techniques
can be extended for the generation of universally quantifiedinvariants for arrays. How-
ever, the language of our invariants is outside the array property fragment, since we can
generate properties where indices do not necessarily occurin array accesses (e.g., see
the Array initialization or thePartial initialization examples in Section 5). Finally,
the technique in [BHMR07a] is applied in [BHMR07b] to generating path invariants in
the context of the CEGAR loop. As the framework in [BHMR07b] is independent of
any concrete invariant generation technique, we believe that our method could be used
as an alternative in a portfolio approach to path invariant-based program analysis.

2 Preliminaries

2.1 Transition Systems

Henceforth we will model programs by means oftransition systems. A transition system
P = 〈u,L, ℓ0,T〉 consists of a tuple ofvariablesu, a set oflocationsL, an initial
locationℓ0 and a set oftransitionsT . Each transitionτ ∈ T is a triple〈ℓ, ℓ′, ρτ〉, where
ℓ, ℓ′ ∈ L are thepre andpost locations respectively, andρτ is thetransition relation:
a first-order Boolean formula over the program variablesu and their primed versions
u′, which represent the values of the variables after the transition. In general, to every
formula P (or expressionE) over the program variablesu we associate a formulaP′

(or expressionE′) which is the result of replacing every variableui in P (or E) by its
corresponding primed versionu′i .

In this paper we will considerscalarvariables, which take integer values, andarray
variables. We will denote scalar variables byv and array variables bya. The sizeof
an arrayA ∈ a is denoted by|A| and thedomainof its indices is{0 . . . |A| − 1} (i.e.,
indices start at 0, as inC-like languages). We assume that arrays can only be indexed
by expressions built over scalar variables. Hence, by meansof the read/write semantics
of arrays, we can describe transition relations as array equalities (possibly guarded by
conjunctions of equalities and disequalities between scalar expressions) and quantified
information of the form∀α : 0 ≤ α ≤ |A| − 1 ∧ P(α) : A′[α] = A[α], where P
does not depend on array variables. For example, Figure 1 shows a program together
with its transition system. Apathπ between two locations is associated to a transition
relationρπ which is obtained by composition of the corresponding transitions relations.

3

int main() {

int l=4, r=5, A[8];

while (l>=0 and r<8)

if (???)

A[r++]=0;

else

A[l--]=0;

}
l1

∀α : 0 ≤ α < 8 ∧ α 6= l : A′[α] = A[α]

τ4 : l
′ = l − 1 ∧ r′ = r ∧ A′[l] = 0 ∧

∀α : 0 ≤ α < 8 ∧ α 6= r : A′[α] = A[α]

τ3 : r
′ = r + 1 ∧ l′ = l ∧ A′[r] = 0 ∧

l2

l3

L = {l0, l1, l2, l3}

v = (l, r), a = (A) T = {τ0, τ1, τ2, τ3, τ4}

Initial location is l0

l0

τ2 : l ≥ 0 ∧ r < 8 ∧ Id(l, r, A)

τ0 : l
′ = 4 ∧ r′ = 5

τ1 : (l < 0 ∨ r ≥ 8) ∧ Id(l, r, A)

Fig. 1.Program and its transition system. Predicate Id(u1, . . . ,uk) is short foru1 = u′1 ∧ · · · ∧ uk =

u′k, i.e., indicates those variables that remain identical after a transition.

For instance, in the transition system in Figure 1, the transition relations of the paths
π0 = (l0, τ0, l1), π1 = (l1, τ2, l3, τ3, l1) andπ2 = (l1, τ2, l3, τ4, l1) are:

ρπ0 : l′ = 4 ∧ r ′ = 5

ρπ1 : l ≥ 0 ∧ r < 8 ∧ r ′ = r + 1 ∧ l′ = l ∧ A′[r] = 0 ∧
∀α : 0 ≤ α < 8∧ α , r : A′[α] = A[α]

ρπ2 : l ≥ 0 ∧ r < 8 ∧ l′ = l − 1 ∧ r ′ = r ∧ A′[l] = 0 ∧
∀α : 0 ≤ α < 8 ∧ α , l : A′[α] = A[α].

A path iscyclic if it contains a cycle. A set of locationsS is acutsetif every cyclic path
contains a location inS. Locations in a cutset arecutpoints. In our example, pathsπ1

andπ2 are cyclic,{l1} is a cutset and thusl1 is a cutpoint.
Let P be a transition system with initial locationℓ0, andS a cutset ofP. We call

thecontrol-flow-graph ofP induced byS the graph whose nodes areN = {ℓ0} ∪ S, and
such that for every pathπi j in the transition system connecting two locationsℓi andℓ j of
N there exists a directed edge〈ℓi , ℓ j, πi j 〉. Note that therefore, every edge of the graph
has an associated path in the transition system.

For a given strongly connected component (SCC)s of the control-flow-graph, its
initiation paths are those paths in the transition system that label an edge from a lo-
cation out ofs to a location ins, and itsconsecutionpaths are those labeling an edge
connecting only locations ins. For instance, the control-flow graph resulting from tak-
ing the cutset{l1} in our example has two nodes,l0 and l1, with one edge froml0 to
l1 (π0), and two self-edges atl1 (π1 andπ2). Thus, the SCC consisting ofl1 has one
initiation path (π0), and two consecution paths (π1 andπ2).

2.2 Constraint-Based Invariant Generation

Here we review theconstraint-based invariant generationapproach [CSS03]. Let us
assume that we have selected all cutpoints, obtained all theSCCs and identified all
respective initiation and consecution paths. The following well-known theorem estab-
lishes sufficient conditions for a set of properties to be invariant at the cutpoints:

4

Theorem 1. Let lC1 , . . . , l
C
p be a cutset of a SCC s. Let P1, . . . ,Pp be properties over the

program variablesu such that the following implications hold:

i) for all initiation pathsπI from some l to some lC
i : ∀u, u′ ρπI ⇒ P′i

ii) for all consecution pathsπC from some lCj to some lCi : ∀u, u′ ρπC ∧ P j ⇒ P′i

Then P1, . . . ,Pp are invariant at lC1 , . . . , l
C
p . We say P1, . . . ,Pp are inductive invariants.

The idea of the constraint-based method is to consider a template for candidate
invariant properties, e.g., linear inequalities in the scalar variables. These templates in-
volve both program variables as well as parameters whose values are initially unknown
and have to be determined so as to ensure invariance. To this end, the implications in
Theorem 1 are expressed by means ofconstraints(hence the name of the approach)
on the unknowns. If implications are encoded soundly, any solution to the constraints
yields invariant properties for the cutpoints. In particular, if linear inequalities are taken
as target invariants as in [CSS03], implications can be transformed into arithmetic con-
straints over the unknowns by means of the following result from polyhedral geometry:

Theorem 2 (Farkas’ Lemma [Sch98]).Consider a system S of linear inequalities
ai1x1 + · · · + ainxn + bi ≤ 0 (i ∈ {1, . . . ,m}) over real-valued variables x1, . . . , xn. When
S is satisfiable, it entails a linear inequality c1x1+ · · ·+ cnxn+d ≤ 0 iff there exist non-
negative real numbersλ0, λ1, . . . , λm, such that c1 =

∑m
i=1 λiai1, . . . , cn =

∑m
i=1 λiain, d =

(
∑m

i=1 λibi) − λ0. Further, S is unsatisfiable iff the inequality1 ≤ 0 can thus be derived.

Therefore, Farkas’ Lemma allows one to transform an∃∀ problem into an∃ prob-
lem. If all ai j andbi are known values, the resulting satisfiability problem is anSMT
problem over linear arithmetic. Otherwise, an SMT problem over non-linear arithmetic
is obtained. Moreover, if one is interested in linear invariants with integer coefficients,
as some unknowns are integer (the invariant coefficients) and some are real (the mul-
tipliers λ0, λ1, . . . , λm), an SMT problem in mixed arithmetic is obtained. However, as
Farkas’ Lemma applies to reals, one may lose some inductive invariants, namely those
that only hold using the fact that the program variables are integers.

3 Array Invariants

In this section we present a constraint-based technique forgenerating array invariants
for loop programs without nesting. Moreover, programs are assumed to contain linear
expressions in assignments,if andwhile conditions, as well as in array accesses.

The idea of the method is, similarly as in [CSS03], to expressthe conditions of
Theorem 1 as algebraic constraints on the parameters of a prefixed invariant template.
In order to provide the reader with intuition on how this is achieved, let us consider
again the example in Figure 1. In this program, an arrayA is filled with zeros from
the middle outwards, moving alternatively to the left and tothe right. Let us show that
propertyP ≡ ∀α : 0 ≤ α < r − l − 1 : A[α + l + 1] = 0 is an inductive invariant for
this program.

First of all, let us prove that initiation paths (namely,π0) entail the property. In
particular, we have to prove that1 l′ = 4 ∧ r ′ = 5 → P′. This is trivial, sincel′ = 4 and
1 From now on, program variables and their primed versions areuniversally quantified.

5

r ′ = 5 imply thatr ′ − l′ − 1 is 0, i.e., the domain of the universally quantified variableα
in P′ is empty.

In general, our invariant generation method is aimed at universally quantified formu-
las, and we ensure that initiation paths imply the invariants by forcing that the domains
of the universally quantified variables are empty.

Secondly, let us prove that consecution paths (i.e.,π1 andπ2) preserve the property.
For example, forπ1 we have to prove that

P ∧ l ≥ 0 ∧ r < 8 ∧ r ′ = r + 1 ∧ l′ = l ∧ A′[r] = 0
∧ ∀α : 0 ≤ α < 8∧ α , r : A′[α] = A[α] → P′.

Now notice that the expressionr ′ − l′ − 1, which determines the domain ofα in P′, also
has the property thatr ′− l′−1 = (r +1)− l−1 = (r − l−1)+1. This means that, afterπ1,
the domain ofα has exactly one new element,α = r− l−1. First, let us see that, after the
path, propertyA′[α+ l′ + 1] = A′[α+ l + 1] = 0 holds for the other values ofα, i.e.,α ∈
{0, . . . , r − l − 2}. Indeed this is the case: since∀α : 0 ≤ α < 8∧ α , r : A′[α] = A[α],
all positions ofA′ except for ther-th remain the same. ButA′[r] = A′[(r − l−1)+ l′ +1]
precisely corresponds toα = r − l − 1. Hence fromP we have thatA′[α+ l′ + 1] = 0 for
all α ∈ {0, . . . , r − l − 2}. Now we only need to proveA′[α+ l′ + 1] = 0 forα = r − l − 1,
which follows from the premiseA′[r] = 0. In conclusion,P′ holds.

In general, our invariant generation method will require that, after each consecution
path, at most one new element is added to the domain of our universally quantified
invariant, and that the contents of the arrays involved in the invariant are not changed
after the path.

Back to the example, as regardsπ2 we have to prove that

P ∧ l ≥ 0 ∧ r < 8 ∧ l′ = l − 1 ∧ r ′ = r ∧ A′[l] = 0
∧ ∀α : 0 ≤ α < 8∧ α , l : A′[α] = A[α] → P′.

Again, the expressionr ′− l′−1 also satisfies thatr ′− l′−1 = r−(l−1)−1 = (r− l−1)+1.
Hence the domain ofα has exactly one new element. But unlike in the previous case,l
changes its value. To proveP′ from P, it is convenient to rewriteP so that array accesses
are expressed in terms ofA[α + l′ + 1]. By making a shift,P is equivalent to∀α : 1 ≤
α < r ′− l′−1 : A[α+ l′+1] = 0. Again, since∀α : 0 ≤ α < 8 ∧ α , l : A′[α] = A[α],
all positions ofA′ except for thel-th remain the same. ButA′[l] = A′[l′ + 1] precisely
corresponds toα = 0. ThereforeA′[α+ l′+1] = 0 for allα ∈ {1, . . . , r ′− l′−2}. Further,
asA′[l] = 0, we have thatA′[α + l′ + 1] = 0 for α = 0. ThusP′ holds.

Apart from proving thatP is invariant, we may also want to check that the array
accesses that occur in it are correct. As regards initiationpaths, since the domain ofα
afterπ0 is empty, there is nothing to check. Regarding consecution paths, for example
for π1 we have to see that

l≥0∧ r<8∧ r ′= r + 1∧ l′= l → ∀α : 0≤α< r ′ − l′ − 1 : α + l′ + 1≥0∧ α + l′ + 1<8,

where for the sake of simplicity we have ignored the array variable. Now, given that
array accesses are linear functions inα, it is sufficient to check correctness forα = 0
andα = r ′ − l′−2, i.e., that the above premises entaill′+1 ≥ 0 ∧ l′+1 < 8 ∧ r ′ −1 ≥
0 ∧ r ′−1 < 8. Let us assume that we have already looked for linear inequality invariants

6

over scalar variables (e.g., with the techniques in [CSS03,CH78]), and have found that
l ≤ r − 1 is a loop invariant. Adding this invariant to the transition relation suffices to
prove the above implication. A similar argument applies forπ2.

In general, our invariant generation method guarantees that the array accesses oc-
curring in the synthesized invariants are correct. As in theexample, this is achieved
by ensuring that the accesses of the extreme values of universally quantified variables
are correct. Since this often requires arithmetic properties of the scalar variables of the
program, in practice it is convenient that, prior to the application of our array invariant
generation techniques, a linear relationship analysis forthe scalar variables has already
been carried out.

3.1 Invariant Generation for Programs with Arrays

Let a = (A1, . . . ,Am) be the tuple of array variables. Given a positive integerk > 0, our
method generates invariants of the form

∀α : 0 ≤ α ≤ C(v) − 1 : Σm
i=1Σ

k
j=1ai j Ai [di jα + Ei j (v)] + B(v) + bαα ≤ 0

whereC, Ei j andB are linear polynomials with integer coefficients over the scalar vari-
ablesv = (v1, . . . , vn) andai j , di j , bα ∈ Z, for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}.

This template covers a quite general family of properties. See Section 5 for a sample
of diverse programs for which we can successfully produce useful invariants and which
cannot be handled by already existing techniques.

The invariant generation process at the cutpoint of the unnested loop under consid-
eration is split into three steps, in order to make the approach computationally feasible:

1. ExpressionsC are generated such that the domain{0 . . .C − 1} is empty after every
initiation path reaching the cutpoint, andC does not change or is increased by one
after every consecution path. This guarantees that any property universally quan-
tified with this domain holds after all initiation paths and the domain includes at
most one more element after every consecution path. We avoidthe synthesis of dif-
ferent expressions that under the known information define the same domain. In the
running example, we generateC(l, r) = r − l − 1.

2. For every expressionC obtained in the previous step and for every arrayAi , linear
expressionsdiα+Ei over the scalar variables are generated such that: (i) Ai [diα+Ei]
is a correct access for allα in {0 . . .C − 1}; (ii) none of the already considered po-
sitions in the quantified property is changed after any execution of the consecution
paths; and (iii), after every consecution path, eitherEi does not change or its value
is Ei − di . Namely, ifC does not change, thenE′i = Ei ensures that the invariant
is preserved. Otherwise, the invariant has to be extended for a new value ofα. If
Ei does not change, from the previous condition for allα ∈ {0, . . . ,C − 1} we have
A′i [diα + E

′
i] = Ai [diα + Ei]. So we will try to extend the invariant withα = C.

Otherwise, ifE′i = Ei − di , then for allα ∈ {1, . . . ,C} we haveA′i [diα + E
′
i] =

Ai [di(α − 1)+ Ei]. So we will try to extend the invariant withα = 0.
In the running example, we generated = 1 andE = l + 1.

7

3. For the selectedC we choosek expressionsEi j for every arrayAi among the gener-
atedEi , such that for each consecution path either all selectedEi j remain the same
after the path, or all have as new valueEi j −di j after the path. Then, in order to gen-
erate invariant properties we just need to find integer coefficientsai j andbα and an
expressionB such that, depending on the case, either the property is fulfilled when
α = C at the end of all consecution paths that increaseC or it is fulfilled whenα = 0
at the end of all consecution paths that increaseC. Further,B andbα have to fulfill
that the quantified property is maintained forα ∈ {0 . . .C − 1}, assuming that the
contents of the already accessed positions are not modified.
For instance, in the running example fork = 1 we generatea = 1, B = bα = 0,
corresponding to the invariant∀α : 0 ≤ α < r − l −1 : A[α+ l +1] ≤ 0; anda = −1,
B = bα = 0, corresponding to the invariant∀α : 0 ≤ α < r− l−1 : −A[α+ l+1] ≤ 0.

Next we formalize all these conditions, which ensure that every solution to the last
phase provides an invariant, and show how to encode them as SMT problems.

While for scalar linear templates the conditions of Theorem1 can be directly trans-
formed into constraints over the parameters [CSS03], this is no longer the case for our
template of array invariants. To this end we particularize Theorem 1 in a form that is
suitable for the constraint-based invariant generation method. The proof of this spe-
cialized theorem, given in detail below, mimics the proof ofinvariance of the running
example given at the beginning of this section.

Let πI
1 . . . π

I
p be the initiation paths to our cutpoint andπC

1 . . . π
C
q the consecution

paths going back to the cutpoint.

Theorem 3. LetC, B andEi j be linear polynomials with integer coefficients over the
scalar variables, and ai j , di j , bα ∈ Z, for i ∈ {1 . . .m} and j ∈ {1 . . .k}. If

1. Every initiation pathπI
r with transition relationρπI

r
satisfiesρπI

r
⇒ C′ = 0.

2. For all consecution pathsπC
s with transition relationρπC

s
, we haveρπC

s
⇒ (C′ =

C ∨ C′ = C + 1).
3. For all consecution pathsπC

s , all i ∈ {1 . . .m} and j ∈ {1 . . .k}, we haveρπC
s
∧ C′ >

0⇒ 0 ≤ E′i j ≤ |Ai | − 1 ∧ 0 ≤ di j (C′ − 1)+ E′i j ≤ |Ai | − 1.
4. For all consecution pathsπC

s we have either
(a) ρπC

s
∧ C′ > 0⇒ E′i j = Ei j for all i ∈ {1 . . .m} and j ∈ {1 . . .k}, or

(b) ρπC
s
⇒ C′ = C + 1 ∧ E′i j = Ei j − di j for all i ∈ {1 . . .m} and j ∈ {1 . . .k}.

5. For all consecution pathsπC
s , we haveρπC

s
⇒ ∀α : 0 ≤ α ≤ C − 1 : A′i [di jα+ Ei j] =

Ai [di jα + Ei j] for all i ∈ {1 . . .m} and j ∈ {1 . . . k}.
6. For all consecution pathsπC

s , we have
– ρπC

s
∧ C′ = C + 1 ⇒ Σm

i=1Σ
k
j=1ai j A′i [di jC + E

′
i j] + B′ + bαC ≤ 0, if case 4a

applies.
– ρπC

s
⇒ Σm

i=1Σ
k
j=1ai j A′i [E

′
i j] + B′ ≤ 0, if case 4b applies.

7. For all consecution pathsπC
s , we have

– ρπC
s
∧ 0 ≤ α ≤ C − 1 ∧ x+ B + bαα ≤ 0⇒ x+ B′ + bαα ≤ 0 for some fresh

universally quantified variable x, if case 4a applies.
– ρπC

s
∧ 0 ≤ α ≤ C − 1 ∧ x+ B + bαα ≤ 0⇒ x+ B′ + bα(α + 1) ≤ 0 for some

fresh universally quantified variable x, if case 4b applies.

8

Then∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1ai j Ai [di jα + Ei j] + B + bαα ≤ 0 is invariant.

Proof. Following Theorem 1, we show that the property holds after each initiation path,
and that it is maintained after each consecution path.

The first condition easily holds by applying 1, since we have thatρπI
r
⇒ C′ = 0 for

every initiation pathπI
r , which implies∀α : 0 ≤ α ≤ C′−1 : Σm

i=1Σ
k
j=1ai j A′i [di jα+E

′
i j]+

B′ + bαα ≤ 0, since the domain of the quantifier is empty.
For the consecution conditions we have to show that for all consecution pathsπC

s ,
we haveρπC

s
∧ ∀α : 0 ≤ α ≤ C − 1 : Σm

i=1Σ
k
j=1ai j Ai [di jα + Ei j] + B + bαα ≤ 0 implies

∀α : 0 ≤ α ≤ C′ − 1 : Σm
i=1Σ

k
j=1ai j A′i [di jα + E

′
i j] + B′ + bαα ≤ 0.

By condition 2, we haveρπC
s
⇒ (C′ = C ∨ C′ = C + 1), and by condition 4 either

ρπC
s
∧C′ > 0⇒ E′i j = Ei j for all i ∈ {1 . . .m}, j ∈ {1 . . . k}, orρπC

s
⇒ C′ = C+1∧E′ i j =

Ei j − di j for all i ∈ {1 . . .m}, j ∈ {1 . . . k}. We distinguish three cases:

1. C′ = C and allE′i j = Ei j . Then we have to ensure∀α : 0 ≤ α ≤ C − 1 :
Σm

i=1Σ
k
j=1ai j A′i [di jα + Ei j] + B′ + bαα ≤ 0. By condition 5, we can replaceA′i by

Ai in the given domain, and hence we have to show that∀α : 0 ≤ α ≤ C − 1 :
Σm

i=1Σ
k
j=1ai j Ai [di jα + Ei j] + B′ + bαα ≤ 0. Then, since the array part coincides with

the one of the assumption, we can replace it in both places by some fresh variable
x. Now it suffices to show that, assumingx+B+bαα ≤ 0, we havex+B′+bαα ≤ 0
for all value ofx, which follows from the premises and condition 7.

2. C′ = C + 1 and allE′i j = Ei j . Then we have to ensure∀α : 0 ≤ α ≤ C :
Σm

i=1Σ
k
j=1ai j A′i [di jα + Ei j] + B′ + bαα ≤ 0. By conditions 1 and 2 we have 0≤ C,

and henceC = C′ − 1 belongs to the domain{0 . . .C} andC′ > 0. Then, by condi-
tion 3, we have that 0≤ di jC + Ei j ≤ |Ai | − 1 = |A′i | − 1 for all i and j. Therefore,
we can extract the caseα = C from the quantifier obtaining∀α : 0 ≤ α ≤ C − 1 :
Σm

i=1Σ
k
j=1ai j A′i [di jα+Ei j]+B′+bαα ≤ 0 andΣm

i=1Σ
k
j=1ai j A′i [di jC+Ei j]+B′+bαC ≤ 0.

The first part holds as before by the premises and conditions 5and 7, and the second
part holds by the premises and condition 6.

3. C′ = C + 1 and allE′i j = Ei j − di j . Then we have to ensure∀α : 0 ≤ α ≤ C :
Σm

i=1Σ
k
j=1ai j A′i [di jα+Ei j −di j]+B′+bαα ≤ 0. Since, by conditions 1 and 2, we have

0 ≤ C, we have thatC belongs to the domain{0 . . .C}. By condition 3, we have
0 ≤ E′i j = Ei j − di j ≤ |A′i | − 1. Therefore, we can extract the caseα = 0 from the
quantifier obtaining∀α : 1 ≤ α ≤ C : Σm

i=1Σ
k
j=1ai j A′i [di jα+Ei j−di j]+Σn

u=1B
′+bαα ≤

0 andΣm
i=1Σ

k
j=1ai j A′i [Ei j−di j]+B′ ≤ 0. For the first one, replacingα byα+1 we have

∀α : 1 ≤ α+1 ≤ C : Σm
i=1Σ

k
j=1ai j A′i [di j (α+1)+Ei j −di j]+Σn

u=1B
′+bα(α+1) ≤ 0, or

equivalently∀α : 0 ≤ α ≤ C−1 : Σm
i=1Σ

k
j=1ai j A′i [di jα+Ei j]+Σn

u=1B
′+bα(α+1) ≤ 0,

which holds by applying conditions 5 and 7 as before. The second part holds again
by the premises and condition 6, using the fact thatE′i j = Ei j − di j . ⊓⊔

As we have described, our invariant generation method consists of three phases.
The first phase looks for expressionsC satisfying conditions 1 and 2. The second one
provides, for every generatedC and for every arrayAi , expressionsEi with their corre-
sponding integersdi that fulfill conditions 3, 4 and 5. Note that, to satisfy condition 4,
we need to record for each expression and path whether we haveE′i = Ei orE′i = Ei−di ,
so as to ensure that all expressionsEi j have the same behavior. Finally, in the third phase
we have to find coefficientsai j andbα and an expressionB fulfilling conditions 6 and 7.

9

Solutions to all three phases are obtained by encoding the conditions of Theorem 3
into SMT problems in non-linear arithmetic thanks to Farkas’ Lemma. Note that, be-
cause of array updates, transition relations may not be conjunctions of literals. As in
practice the guarded array information is useless until thelast phase, in the first two
phases we use the unconditional part of a transition relation ρ, i.e., the part ofρ that is
a conjunction of literals, denoted byU(ρ).

3.2 Encoding Phase 1

Let C bec1v1 + . . . + cnvn + cn+1, wherev are the scalar variables andc are the integer
unknowns. Then conditions 1 and 2 can be expressed as:

∃c∀v, v′
∧p

r=1(U(ρπI
r
)⇒ C′ = 0) ∧

∧q
s=1(U(ρπC

s
)⇒ C′ = C ∨ C′ = C + 1).

We cannot apply Farkas’ Lemma directly due to the disjunction in the conclusion of
the second condition. To solve this, we move one of the two literals into the premise
and negate it. As the literal becomes a disequality, it can besplit into a disjunction
of inequalities. Finally, by distributing Farkas’ Lemma can be applied and an existen-
tially quantified SMT problem in non-linear arithmetic is obtained. We also encode the
condition that each newly generatedC must be different from all previously generated
expressions at the cutpoint, considering all already knownscalar invariants.

3.3 Encoding Phase 2

Here, for eachC obtained in the previous phase and for each arrayAi , we generate
expressionsEi and integersdi that satisfy conditions 3 and 5, and also condition 4 as a
single expression and not combined with the other expressions.

The encoding of condition 3 is direct using Farkas’ Lemma. Now let us sketch the
encoding of condition 4. LetEi bee1v1+ . . .+envn+en+1, whereeare integer unknowns.
Then, asEi is considered isolatedly, we need

∃e, di ∀v, v′
∧q

s=1 ρπC
s
⇒ ((C′ = C + 1 ∧ E′i = Ei − di) ∨ C′ ≤ 0 ∨ E′i = Ei).

To apply Farkas’ Lemma, we use a similar transformation as for condition 2. In addition,
it is imposed that the newly generated expressions are different from the previous ones.

Regarding condition 5, the encoding is rather different. In this case, for every con-
secution pathπC

s , arrayAi and expressionG⇒ A′i [W] = M in ρπC
s
, we ensure that

∀α
(

ρπC
s
∧ 0 ≤ α ≤ C − 1 ∧ G⇒ (W , diα + Ei ∨ M = Ai [W])

)

.

To avoid generating useless expressions, we add in the encoding a condition stating that
if E′i = Ei then for every consecution path whereC is incremented, there is at least an
accessAi [W] in the path such thatW = di(C′ − 1)+ E′i . Otherwise, i.e., ifE′i = Ei − di ,
then for every consecution path whereC is incremented, there is at least an accessAi [W]
in the path such thatW = E′i .

10

3.4 Encoding Phase 3

Condition 7 is straightforward. Regarding condition 6, theencoding does not need non-
linear arithmetic, but requires to handle arrays:

∃a, b, bα ∀v, v′,A,A′
∧q

s=1 (ρπC
s

⇒ Σm
i=1Σ

k
j=1ai j A′i [E

′
i j] + B′ ≤ 0) ∧

(ρπC
s
∧ C′ = C + 1 ⇒ Σm

i=1Σ
k
j=1ai j A′i [C + E

′
i j] + B′ + bαC ≤ 0)

Here, the use of the guarded array information is crucial. However, since we want to
apply Farkas’ Lemma, array accesses have to be replaced by new universally quantified
integer variables. In order to avoid losing too much information, we add the array read
semantics after the replacement; i.e., ifA[i] and A[j] have been respectively replaced
by fresh variableszi andzj , theni = j ⇒ zi = zj is added.

4 Extensions

4.1 Relaxations on Domains

Let us consider the following program:

int A[2*N], min, max, i;

if (A[0] < A[1]) { min = A[0]; max = A[1]; }

else { min = A[1]; max = A[0]; }

for (i = 2; i < 2*N; i += 2) {

int tmpmin, tmpmax;

if (A[i] < A[i+1]) { tmpmin = A[i]; tmpmax = A[i+1]; }

else { tmpmin = A[i+1]; tmpmax = A[i]; }

if (max < tmpmax) max = tmpmax;

if (min > tmpmin) min = tmpmin; }

It computes the minimum and the maximum of an even-length array simultaneously,
using a number of comparisons which is 1.5 times its length. To prove correctness, the
invariants∀α : 0 ≤ α ≤ i − 1 : v[α] ≥ min and∀α : 0 ≤ α ≤ i − 1 : v[α] ≤ maxare
required. To discover them, two extensions of Theorem 3 are required:

– The domain of the universally quantified variableα cannot be forced to be initially
empty. In this example, when the loop is entered, both invariants already hold for
α = 0, 1. This can be handled by applying our invariant generation method as de-
scribed in Section 3.1, and for each computed invariant trying to extend the property
for decreasing values ofα = −1,−2, etc. as much as possible. Finally, a shift ofα

is performed so that the domain ofα begins at 0 and the invariant can be presented
in the form of Section 3.1.

– The domain of the universally quantified variableα cannot be forced to increase
at most one by one at each loop iteration. For instance, in this example at each
iteration the invariants hold for two new positions of the array. Thus, for a fixed
parameter∆, Condition 2 in Theorem 3 must be replaced byρπC

s
⇒ (C′ = C ∨ C′ =

C + 1 ∨ · · · ∨ C′ = C + ∆). In this example, taking∆ = 2 is required. Further,
conditions 4b, 6 and 7 must also be extended accordingly in the natural way.

11

4.2 Sorted Arrays

The program below implements binary search: given a non-decreasingly sorted arrayA
and a valuex, it determines whether there is a position inA containingx:

int A[N], l = 0, u = N-1;

while (l <= u) {

int m = (l+u)/2;

if (A[m] < x) l = m+1;

else if (A[m] > x) u = m-1;

else break; }

To prove that, on exiting due tol > u, the property∀α : 0 ≤ α ≤ N− 1 : A[i] , x holds,
one can use that∀α : 0 ≤ α ≤ l−1 : A[α] < x and∀α : u+1 ≤ α ≤ N−1 : A[α] > x are
invariant. To synthesize them, the fact thatA is sorted must be taken into account. The
following theorem results from incorporating the propertyof sortedness into Theorem 3,
whose proof is given in the Appendix.

Theorem 4. LetC, B andEi j be linear polynomials with integer coefficients over the
scalar variables, and ai j , di j , bα ∈ Z, for i ∈ {1 . . .m} and j ∈ {1 . . .k}. If

1. For all i ∈ {1 . . .m} and j ∈ {1 . . .k} we have bα ≥ 0, and di j > 0⇒ ai j ≥ 0, and
di j < 0⇒ ai j ≤ 0.

2. Each initiation pathπI
r with transition relationρπI

r
fulfills ρπI

r
⇒ C′ = 0.

3. Each initiation pathπI
r with transition relationρπI

r
fulfills

ρπI
r
⇒ ∀β : 0 < β ≤ |A′i | − 1 : A′i [β − 1] ≤ A′i [β] for all i ∈ {1 . . .m}.

4. Each consecution pathπC
s with transition relationρπC

s
fulfills ρπC

s
⇒ C′ ≥ C.

5. For all consecution pathsπC
s all i ∈ {1 . . .m} and j ∈ {1 . . . k} we have

ρπC
s
∧ C′ > 0⇒ 0 ≤ E′i j ≤ |Ai | − 1 ∧ 0 ≤ di j (C′ − 1)+ E′i j ≤ |Ai | − 1.

6. For all consecution pathsπC
s we have one of the following:

(a) ρπC
s
∧ C′ > 0 ∧ ai j > 0⇒ E′i j ≤ Ei j and

ρπC
s
∧ C′ > 0 ∧ ai j < 0⇒ E′i j ≥ Ei j for all i ∈ {1 . . .m}, j ∈ {1 . . .k};

(b) ρπC
s
⇒ C′ > C and

ρπC
s
∧ ai j > 0⇒ E′i j ≤ Ei j − (C′ − C)di j and

ρπC
s
∧ ai j < 0⇒ E′i j ≥ Ei j − (C′ − C)di j for all i ∈ {1 . . .m}, j ∈ {1 . . . k}.

7. For all consecution pathsπC
s , we haveρπC

s
⇒ ∀β : 0 ≤ β ≤ |Ai | − 1 : A′i [β] = Ai [β]

for all i ∈ {1 . . .m}.
8. For all consecution pathsπC

s , we have
– ρπC

s
∧ C′ > C ⇒ Σm

i=1Σ
k
j=1ai j A′i [di j (C′ − 1)+ E′i j] + B′ + bα(C′ − 1) ≤ 0,

if case 6a applies.
– ρπC

s
⇒ Σm

i=1Σ
k
j=1ai j A′i [di j (C′ − C − 1)+ E′i j] + B′ + bα(C′ − C − 1) ≤ 0,

if case 6b applies.
9. For all consecution pathsπC

s , we have
– ρπC

s
∧ 0 ≤ α ≤ C − 1 ∧ x+ B + bαα ≤ 0⇒ x+ B′ + bαα ≤ 0 for some fresh

universally quantified variable x, if case 6a applies.
– ρπC

s
∧ 0 ≤ α ≤ C − 1 ∧ x+ B + bαα ≤ 0⇒ x+ B′ + bα(α + C′ − C) ≤ 0 for

some fresh universally quantified variable x, if case 6b applies.

Then∀α : 0 ≤ α ≤ C − 1 : Σm
i=1Σ

k
j=1ai j Ai [di jα + Ei j] + B + bαα ≤ 0 is invariant.

12

By means of the previous theorem, (an equivalent version of)the desired invariants
can be discovered. However, to the best of our knowledge, results on the synthesis of
invariants for programs with sorted arrays are not reportedin the literature. See Section
5 for other examples that can be handled by means of this extension.

5 Experimental Evaluation

The method presented in Sections 3 and 4 has been implementedin the toolCppInv2.
For solving the generated constraints, we use theBarcelogic SMT solver [BNO+08].
As discussed in Section 2.2, after applying Farkas’ Lemma anSMT problem for mixed
non-linear arithmetic is obtained. For this theory,Barcelogic has proved to be very
effective in finding solutions [BLO+12]; e.g., it won the division of quantifier-free non-
linear integer arithmetic (QFNIA) in the 2009 edition of the SMT-COMP competition
(www.smtcomp.org/2009). , and since then no other competing solver in this division
has solved as many problems.

In addition to the examples already shown in this paper,CppInv automatically gen-
erates array invariants for a number of different programs. The following table shows
some of them, together with the corresponding loop invariants:

Heap property: Partial initialization [GRS05]:

const int N;

assume(N >= 0);

int A[2∗N], i;

for (i = 0; 2∗i+2 < 2∗N; ++i)

if (A[i]>A[2∗i+1] or A[i]>A[2∗i+2])

break;

const int N;

assume(N >= 0);

int A[N], B[N], C[N], i, j;

for (i = 0, j = 0; i < N; ++i)

if (A[i] == B[i])

C[j++] = i;

Loop invariants: Loop invariant:
∀α : 0 ≤ α ≤ i − 1 : A[α] ≤ A[2α + 2] ∀α : 0 ≤ α ≤ j − 1 : C[α] ≤ α + i − j
∀α : 0 ≤ α ≤ i − 1 : A[α] ≤ A[2α + 1] ∀α : 0 ≤ α ≤ j − 1 : C[α] ≥ α

Array palindrome: Array initialization [GRS05]:

const int N;

assume(N >= 0);

int A[N], i;

for (i = 0; i < N/2; ++i)

if (A[i] != A[N-i-1]) break;

const int N;

assume(N >= 0);

int A[N], i;

for (i = 0; i < N; ++i)

A[i] = 2∗i+3;

Loop invariant: Loop invariant:
∀α : 0 ≤ α ≤ i − 1 : A[α] = A[N − α − 1] ∀α : 0 ≤ α ≤ i − 1 : A[α] = 2α + 3

Array insertion: Sequential initialization [HP08]:

const int N;

int A[N], i, x, j;

assume(0 <= i and i < N);

for (x = A[i], j = i-1;

j >=0 and A[j] > x; --j)

A[j+1] = A[j];

const int N;

assume(N > 0);

int A[N], i;

for (i = 1, A[0] = 7; i < N; ++i)

A[i] = A[i-1] + 1;

Loop invariant: Loop invariant:
∀α : 0 ≤ α ≤ i − j − 2 : A[i − α] ≥ x+ 1 ∀α : 0 ≤ α ≤ i − 2 : A[α + 1] = A[α] + 1

2 The tool, together with a sample of example programs it can analyze, can be downloaded at
www.lsi.upc.edu/˜albert/cppinv-bin.tar.gz.

13

First occurrence: Sum of pairs:

const int N;

assume(N >= 0);

int A[N], x = getX(), l, u;

// A is sorted in ascending order

for (l = 0, u = N; l < u;) {

int m = (l+u)/2;

if (A[m] < x) l = m+1;

else u = m; }

const int N;

assume(N >= 0);

int A[N], x = getX(), l = 0, u = N-1;

// A is sorted in ascending order

while (l < u)

if (A[l] + A[u] < x) l = l+1;

else if (A[l] + A[u] > x) u = u-1;

else break;

Loop invariants: Loop invariants:
∀α : 0 ≤ α ≤ l − 1 : A[α] < x ∀α : 0 ≤ α ≤ l − 1 : A[α] + A[u] < x
∀α : 0 ≤ α ≤ N − 1− u : A[N − 1− α] ≥ x ∀α : 0 ≤ α ≤ N − u− 2 : A[u+ 1+ α] + A[l] > x

As a final test, we have runCppInv over a collection of programs written by stu-
dents. The benchmark suite has been taken from an online programming judge (www.
jutge.org) and consists of 38 different divide-and-conquer solutions to the problem
of finding the first occurrence of an element in a sorted array.These can be considered
more realistic code than the examples above (First occurrence program) since most
often they are not the most elegant solution but a working solution with many more
conditional statements than necessary. For all analyzed programs that are correct our
tool was able to find automatically both standard invariants. The time consumed was
very different depending on how involved the code is. Anyway, the mainproblem as
regards efficiency is that in its current form our prototype exhaustively generates first
all the scalar invariants and then, using all of them, generates all array invariants. Fur-
ther work is thus needed to heuristically guide the search ofthe scalar invariants, so that
only useful information is inferred. On the other hand, our analysis was able to discover
programs that had been accepted via testing by the judge but were in fact incorrect.

6 Conclusions and Future Work

In short, the contributions of this paper are:

– a new constraint-based method for the generation of universally quantified invari-
ants of array programs.Unlike other techniques, it does not require extra predicates
nor assertions. It does not need the user to provide a template either, but it can take
advantage of hints by partially instantiating the global template considered here.

– extensions of the approach for sorted arrays.To our knowledge, results on the syn-
thesis of invariants for programs with sorted arrays are notreported in the literature.

– an implementation of the presented techniques that is freely available.The con-
straint solving engine of our prototype depends on SMT. Hence, our techniques
will directly benefit from any further advances in SMT solving.

For future work, we plan to extend our approach to a broader class of programs. As a
first step we plan to relax Theorem 3, so that, e.g., overwriting on positions in which the
invariant already holds is allowed. We would also like to handle nested loops, so that
for instance sorting algorithms can be analyzed. Another line of work is the extension
of the family of properties that our approach can discover asinvariants. E.g., a possibil-
ity could be considering disjunctive properties, or allowing quantifier alternation. The
former allows analyzing algorithms such as sentinel search, while the latter is necessary
to express that the output of a sorting algorithm is a permutation of the input.

14

References

[BHMR07a] D. Beyer, T. Henzinger, R. Majumdar, A. Rybalchenko. Invariant synthesis for
combined theories. InVMCAI, vol. 4349 ofLNCS, pp. 378–394. Springer, 2007.

[BHMR07b] D. Beyer, T. Henzinger, R. Majumdar, A. Rybalchenko. Path invariants. InPLDI,
pp. 300–309. ACM, 2007.

[BLO+12] C. Borralleras, S. Lucas, A. Oliveras, E. Rodrı́guez-Carbonell, A. Rubio. SAT Mod-
ulo Linear Arithmetic for Solving Polynomial Constraints.J. Autom. Reasoning,
48(1):107–131, 2012.

[BNO+08] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, A. Rubio. The
Barcelogic SMT Solver. InCAV, vol. 5123 ofLNCS, pp. 294–298. Springer, 2008.

[CC77] P. Cousot, R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. InPOPL, pp.
238–252, 1977.

[CH78] P. Cousot, N. Halbwachs. Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. InPOPL, pp. 84–96, 1978.

[Cou03] P. Cousot. Verification by abstract interpretation. In Verification: Theory and Prac-
tice, vol. 2772 ofLNCS, pp. 243–268. Springer, 2003.

[CSS03] M. Colón, S. Sankaranarayanan, H. Sipma. Linear Invariant Generation Using Non-
linear Constraint Solving. InCAV, vol. 2725 ofLNCS, pp. 420–432. Springer, 2003.

[FQ02] C. Flanagan, S. Qadeer. Predicate abstraction for software verification. InPOPL,
pp. 191–202, 2002.

[GMT08] S. Gulwani, B. McCloskey, A. Tiwari. Lifting abstract interpreters to quantified
logical domains. InPOPL, pp. 235–246. ACM, 2008.

[GRS05] D. Gopan, T. Reps, S. Sagiv. A framework for numeric analysis of array operations.
In POPL, pp. 338–350. ACM, 2005.

[GS97] S. Graf, H. Saı̈di. Construction of abstract state graphs with PVS. InCAV, vol. 1254
of LNCS, pp. 72–83. Springer, 1997.

[HHKR10] T. Henzinger, T. Hottelier, L. Kovács, A. Rybalchenko. Aligators for arrays. In
LPAR, vol. 6397 ofLNCS, pp. 348–356. Springer, 2010.

[HP08] N. Halbwachs, M. Péron. Discovering properties about arrays in simple programs.
In PLDI, pp. 339–348. ACM, 2008.

[JM07] R. Jhala, K. McMillan. Array abstractions from proofs. InCAV, vol. 4590 ofLNCS,
pp. 193–206. Springer, 2007.

[KJD+10] S. Kong, Y. Jung, C. David, B-Y. Wang, K. Yi. Automatically inferring quantified
loop invariants by algorithmic learning from simple templates. InAPLAS, vol. 6461
of LNCS, pp. 328–343. Springer, 2010.

[KV09] L. Kovács, A. Voronkov. Finding Loop Invariants forPrograms over Arrays Using
a Theorem Prover. InFASE, vol. 5503 ofLNCS, pp. 470–485. Springer, 2009.

[LB04] S. Lahiri, R. Bryant. Constructing quantified invariants via predicate abstraction. In
VMCAI, vol. 2937 ofLNCS, pp. 267–281. Springer, 2004.

[McM08] K. McMillan. Quantified invariant generation usingan interpolating saturation
prover. InTACAS, vol. 4963 ofLNCS, pp. 413–427. Springer, 2008.

[Sch98] A. Schrijver.Theory of Linear and Integer Programming. Wiley, 1998.
[SG09] S. Srivastava, S. Gulwani. Program verification using templates over predicate ab-

straction. InPLDI, pp. 223–234. ACM, 2009.

15

Appendix

A Proof of Theorem 4

Proof. First of all, let us remark that arrays are always sorted in non-decreasing order,
and that their contents are never changed. This follows by induction from conditions 3
and 7. Moreover, it can also be seen from conditions 2 and 4 that C ≥ 0 is an invariant
property.

Now, we will show that the property in the statement of the theorem holds after ev-
ery initiation path reaching our cutpoint and that it is maintained after every consecution
path going back to the cutpoint.

The first condition easily holds applying 2, since we have that ρπI
r
⇒ C′ = 0 for

every initiation pathπI
r , which implies∀α : 0 ≤ α ≤ C′−1 : Σm

i=1Σ
k
j=1ai j A′i [di jα+E

′
i j]+

B′ + bαα ≤ 0, since the domain of the quantifier is empty.
For the consecution conditions we have to show that for all consecution pathsπC

s ,
we haveρπC

s
∧ ∀α : 0 ≤ α ≤ C − 1 : Σm

i=1Σ
k
j=1ai j Ai [di jα + Ei j] + B + bαα ≤ 0 implies

∀α : 0 ≤ α ≤ C′ − 1 : Σm
i=1Σ

k
j=1ai j A′i [di jα + E

′
i j] + B′ + bαα ≤ 0.

By condition 4, we have thatρπC
s
⇒ C′ ≥ C. We distinguish three cases:

1. C′ = C and case 6a holds. IfC′ = 0 there is nothing to prove. OtherwiseC′ > 0, and
by hypothesis we have that∀α : 0 ≤ α ≤ C−1 : Σm

i=1Σ
k
j=1ai j Ai [di jα+Ei j]+B+bαα ≤

0. Together withρπC
s
, this implies∀α : 0 ≤ α ≤ C − 1 : Σm

i=1Σ
k
j=1ai j Ai [di jα + Ei j] +

B′ + bαα ≤ 0 by instantiating appropiatelyx in condition 9.
Now, let us show that for alli ∈ {1 . . .m}, for all j ∈ {1 . . . k} and for allα ∈
{0 . . .C − 1} we haveai j Ai [di jα + E

′
i j] ≤ ai j Ai [di jα + Ei j]. Let us consider three

subcases:
– ai j > 0. ThenE′i j ≤ Ei j by condition 6. Hence for allα ∈ {0 . . .C − 1} we have

di jα + E
′
i j ≤ di jα + Ei j . This impliesAi [di jα + E

′
i j] ≤ Ai [di jα + Ei j] as Ai is

sorted in non-decreasing order. Thereforeai j Ai [di jα+E
′
i j] ≤ ai j Ai [di jα+Ei j].

– ai j < 0. ThenE′i j ≥ Ei j by condition 6. Hence for allα ∈ {0 . . .C − 1} we
havedi jα + E

′
i j ≥ di jα + Ei j . This impliesAi [di jα + E

′
i j] ≥ Ai [di jα + Ei j] as

Ai is sorted in non-decreasing order (note that, by condition 5, we have that
0 ≤ di jα + E

′
i j ≤ |Ai | − 1 = |A′i | − 1, so array accesses are within bounds).

Thereforeai j Ai [di jα + E
′
i j] ≤ ai j Ai [di jα + Ei j].

– ai j = 0. Then the inequality trivially holds.
Altogether we have that∀α : 0 ≤ α ≤ C − 1 : Σm

i=1Σ
k
j=1ai j Ai [di jα + E

′
i j] + B′ +

bαα ≤ 0. Now our goal easily follows, taking into account thatC′ = C and that by
condition 7 we can replaceAi by A′i .

2. C′ > C and case 6a holds. ThenC′ > 0, and following the same argument as in the
previous case we get that∀α : 0 ≤ α ≤ C−1 : Σm

i=1Σ
k
j=1ai j A′i [di jα+E

′
i j]+B′+bαα ≤

0, whereAi has been replaced byA′i by virtue of condition 7.
It only remains to prove that∀α : C ≤ α ≤ C′ − 1 : Σm

i=1Σ
k
j=1ai j A′i [di jα + E

′
i j] +

B′ + bαα ≤ 0 (note that, by condition 5, we have that 0≤ E′i j ≤ |A′i | − 1 and
0 ≤ di j (C′ − 1) + E′i j ≤ |A′i | − 1, so again array accesses are within bounds). To
this end, let us considerα ∈ {C . . .C′ − 1} and let us show thatai j A′i [di jα + E

′
i j] ≤

16

ai j A′i [di j (C′ − 1)+ E′i j] for all i ∈ {1 . . .m} and for all j ∈ {1 . . . k}. We distinguish
three cases:

– di j > 0. Thenα ≤ C′ − 1 impliesdi jα ≤ di j (C′ − 1), and hencedi jα + E
′
i j ≤

di j (C′ − 1) + E′i j . As A′i is sorted in non-decreasing order, we haveA′i [di jα +

E′i j] ≤ A′i [di j (C′ − 1) + E′i j]. Finally, by condition 1 it must beai j ≥ 0, and
multiplying at both sides the last inequality the goal is obtained.

– di j < 0. Thenα ≤ C′ − 1 impliesdi jα ≥ di j (C′ − 1), and hencedi jα + E
′
i j ≥

di j (C′ − 1) + E′i j . As A′i is sorted in non-decreasing order, we haveA′i [di jα +

E′i j] ≥ A′i [di j (C′ − 1) + E′i j]. Finally, by condition 1 it must beai j ≤ 0, and
multiplying at both sides the last inequality the goal is obtained.

– di j = 0. The goal trivially holds.
ThusΣm

i=1Σ
k
j=1ai j A′i [di jα+E

′
i j]+B′ ≤ Σm

i=1Σ
k
j=1ai j A′i [di j (C′−1)+E′i j]+B′. Now, by

condition 1 we havebα ≥ 0, henceα ≤ C′ − 1 impliesbαα ≤ bα(C′ − 1). Therefore
Σm

i=1Σ
k
j=1ai j A′i [di jα + E

′
i j] + B′ + bαα ≤ Σm

i=1Σ
k
j=1ai j A′i [di j (C′ − 1) + E′i j] + B′ +

bα(C′ − 1) ≤ 0 by condition 8.
3. C′ > C and case 6b holds (notice thatC′ = C and case 6b together are not possible).

By hypothesis we have∀α : 0 ≤ α ≤ C−1 : Σm
i=1Σ

k
j=1ai j Ai [di jα+Ei j]+B+bαα ≤ 0.

Together withρπC
s
, this implies∀α : 0 ≤ α ≤ C−1 : Σm

i=1Σ
k
j=1ai j Ai [di jα+Ei j]+B′+

bαα ≤ 0 by instantiating appropiatelyx in condition 9. By shifting the universally
quantified variable the previous formula can be rewritten as∀α : C′ − C ≤ α ≤

C′ − 1 : Σm
i=1Σ

k
j=1ai j Ai [di j (α − (C′ − C)) + Ei j] + B′ + bα(α − (C′ − C)) ≤ 0.

Now, let us show that for alli ∈ {1 . . .m}, for all j ∈ {1 . . . k} and for allα ∈
{C′ −C . . .C′ − 1} we haveai j Ai [di jα+E

′
i j] ≤ ai j Ai [di j (α− (C′ −C))+Ei j]. Let us

consider three subcases:
– ai j > 0. ThenE′i j ≤ Ei j − (C′ − C)di j by condition 6. Hence for allα ∈
{C′ − C . . .C′ − 1} we havedi jα + E

′
i j ≤ di j (α − (C′ − C)) + Ei j . This implies

Ai [di jα + E
′
i j] ≤ Ai [di j (α − (C′ − C)) + Ei j] as Ai is sorted in non-decreasing

order. Thereforeai j Ai [di jα + E
′
i j] ≤ ai j Ai [di j (α − (C′ − C)) + Ei j].

– ai j < 0. ThenE′i j ≥ Ei j − (C′ − C)di j by condition 6. Hence for allα ∈
{C′ − C . . .C′ − 1} we havedi jα + E

′
i j ≥ di j (α − (C′ − C)) + Ei j . This implies

Ai [di jα + E
′
i j] ≥ Ai [di j (α − (C′ − C)) + Ei j] as Ai is sorted in non-decreasing

order. Thereforeai j Ai [di jα + E
′
i j] ≤ ai j Ai [di j (α − (C′ − C)) + Ei j].

– ai j = 0. Then the inequality trivially holds.

Altogether we have that∀α : C′ − C ≤ α ≤ C′ − 1 : Σm
i=1Σ

k
j=1ai j A′i [di jα + E

′
i j] +

B′ + bαα ≤ 0, whereAi has been replaced byA′i by virtue of condition 7.
It only remains to prove that∀α : 0 ≤ α ≤ C′ − C − 1 : Σm

i=1Σ
k
j=1ai j A′i [di jα +

E′i j] +B′ + bαα ≤ 0 (note that, by condition 5, we have that 0≤ E′i j ≤ |A′i | − 1 and
0 ≤ di j (C′ − 1)+ E′i j ≤ |A′i | − 1, so again array accesses are within bounds). To this
end, let us considerα ∈ {0 . . .C′ − C − 1} and let us show thatai j A′i [di jα + E

′
i j] ≤

ai j A′i [di j (C′−C−1)+E′i j] for all i ∈ {1 . . .m} and for all j ∈ {1 . . .k}. We distinguish
three cases:

– di j > 0. Thenα ≤ C′ − C − 1 implies di jα ≤ di j (C′ − C − 1), and hence
di jα+ E

′
i j ≤ di j (C′ −C − 1)+ E′i j . As A′i is sorted in non-decreasing order, we

haveA′i [di jα+E
′
i j] ≤ A′i [di j (C′ −C− 1)+E′i j]. Finally, by condition 1 it must

beai j ≥ 0, and multiplying at both sides the last inequality the goalis obtained.

17

– di j < 0. Thenα ≤ C′ − C − 1 implies di jα ≥ di j (C′ − C − 1), and hence
di jα+ E

′
i j ≥ di j (C′ −C − 1)+ E′i j . As A′i is sorted in non-decreasing order, we

haveA′i [di jα+E
′
i j] ≥ A′i [di j (C′ −C− 1)+E′i j]. Finally, by condition 1 it must

beai j ≤ 0, and multiplying at both sides the last inequality the goalis obtained.
– di j = 0. The goal trivially holds.

ThusΣm
i=1Σ

k
j=1ai j A′i [di jα+E

′
i j]+B′ ≤ Σm

i=1Σ
k
j=1ai j A′i [di j (C′−C−1)+E′i j]+B′. Now,

by condition 1 we havebα ≥ 0, henceα ≤ C′ −C−1 impliesbαα ≥ bα(C′ −C−1).
ThereforeΣm

i=1Σ
k
j=1ai j A′i [di jα+E

′
i j]+B′+bαα ≤ Σm

i=1Σ
k
j=1ai j A′i [di j (C′−C−1)E′i j]+

B′ + bα(C′ − C − 1) ≤ 0 by condition 8.
⊓⊔

18

