SMT-Based Array Invariant Generation*

Daniel Larraz, Enric Rodriguez-Carbonell, and Albert Rub

Universitat Politecnica de Catalunya, Barcelona, Spain

Abstract. This paper presents a constraint-based method for gemgrativer-
sally quantified loop invariants over array and scalar \des Constraints are
solved by means of an SMT solver, thus leveraging recentraegin SMT solv-
ing for the theory of non-linear arithmetic. The method hasrbimplemented in
a prototype of program analyzer, and a wide sample of exanililstrating its
power is shown.

1 Introduction

Discovering loop invariants is an essential task for vémifythe correctness of software.
In particular, for programs manipulating arrays, usuatig das to take into account in-
variant relationships among values stored in arrays addrs@iables. However, due to
the unbounded nature of arrays, invariant generation &sglprograms is a challenging
problem. In this paper we present a method for generatingewsally quantified loop
invariants over array and scalar variables.

Namely, programs are assumed to consist of unnested lodgmaar assignments,
conditions and array accesses. Bet (A, ..., An) be the array variables. Given an
integerk > 0, our method generates invariants of the form:

Yo : 0<a<CW-1: 502 ajAldje+8&j(@] +B8() +b,a < 0,

whereC, &;j, B are linear polynomials with integer ciieients over the scalar variables
vV anda;j,dij,b, € Zforalli e {1,...,m}, j € {1,...,k}. This family of properties is
quite general and allows handling a wide variety of programs

Our method builds upon the so-callednstraint-based invariant generaticap-
proach for discovering linear invariants [CSS03], i.evainants expressed as linear
inequalities over scalar variables. By means of Farkas'meanthe problem of the ex-
istence of an inductive invariant for a loop is transformeit ia satisfiability problem
in propositional logic over non-linear arithmetic. Desgite potential of the approach,
its application has been limited so far due to the lack of gealgders for the obtained
non-linear constraints.

However, recently significant progress has been made in Skdduio the theory
of non-linear arithmetic. In particular, tigarcelogic SMT solver has shown to be very
effective on finding solutions in quantifier-free non-linedemper arithmetic [BLO12].
These advances motivated us to revisit the constraintebesieroach for linear invari-
ants and extend it to programs with arrays.

* Partially supported by Spanish MB@ICINN under grant TIN 2010-68093-C02-01.

Related Work. There is a remarkable amount of work in the literature ainmtetthe
synthesis of quantified invariants for programs with arré&gsme of the techniques
fall into the framework ofabstract interpretatiorfCC77]. In [GRS05], the index do-
main of arrays is partitioned into several symbolic intésuaand then each subarray
A[l] is associated to a summary auxiliary varialle Although assignments to in-
dividual array elements can thus be handled precisely, deroio discover relations
among the contents atftkrent indices, hints must be manually provided. This short-
coming is overcome in [HPO8], where additionally relatibatastract properties of sum-
mary variables and shift variables are introduced to discanwariants of the form
Ya : a €| y(Arla + K], ..., Am[@ + K], V), wherekg, ..., kn € Z andV are scalar
variables. In comparison with our techniques, the prevaqpsoaches force all array
accesses to be of the fowrr k. As a consequence, programs likeay palindrome or
Heap property (see Section 5) cannot be handled. Moreover, the univegigadintified
variable is not allowed to appear outside array accessethiB@eason, our analysis can
be more precise, e.g., in tAgray initialization and thePartial initialization [GRS05]
examples. Another technique based on abstract interjuretatpresented in [GMTO08].
While their approach can discover more general propettasours, it requires that the
user provides templates to guide the analysis.

Predicate abstractiomethods [GS97] are also instances of abstract interpoatati
Here, a set of predefined predicates is considered, typipedivided manually by the
user or computed heuristically from the program code anés#sertions to be proved.
Then one generates an invariant built only over those paéelic This track of research
was initiated in [FQO02], where by introducing Skolem conssauniversally-quantified
loop invariants for arrays can be discovered. In [LBO4]sishown how the strongest
universally quantified inductive invariant over the givereglicates can be generated.
Further works integrate predicate abstraction into the BE®op [JMO7], apply al-
gorithmic learning [KJD10] or discover invariants with complex pre-fixed Boolean
structure [SG09]. Unlike these predicate abstractioretydschniques, our approach
does not require programs to be annotated with assertious,alowing one to ana-
lyze code embedded into large programs, or with predicatieich sometimes require
ingenuity from the user. To alleviate the need of supplyiredicates, in [Cou03)ara-
metric predicate abstractiowas introduced. However, the properties considered there
express relations between all elements of two data cadiestiwhile our approach is
able to express pointwise relations.

Another group of techniques is based finst-order theorem provingln [KVV09],
the authors generate invariants with alternations of dfieurst for loop programs with-
out nesting. First, one describes the loop dynamics by meffisst-order formulas,
possibly using additional symbols denoting array updateap counters. Then a
saturation theorem prover eliminates auxiliary symbold esports the consequences
without these symbols, which are the invariants. One of ttoblpms of the method
is the limited capability of arithmetic reasoning of the dhem prover (as opposed to
SMT solvers, where arithmetic reasoning is hard-wired @nttteory solvers). Although
the authors claim that the given simple axiomatization tdgers is sfficient for prov-
ing many properties, there is lack of evidence that the nteihavidely applicable, as
just two examples are reported to have been analyzed. In D8}/ related approach

is presented, where invariants are generated by examiaindidates supplied by an
interpolating theorem prover. In addition tofaring from similar arithmetic reasoning
problems as [KV09], the approach also requires progranrisse.

Other methods useomputational algebrge.g., [HHKR10]. One of the limitations
of [HHKR10] is that array variables are required to be eitiete-only or read-only.
Hence, unlike our method, programs suctsasgjuential initialization [HP08] andAr-
ray insertion (see Section 5) cannot be handled.

The technique presented in this paper belongs t@tmstraint-basednethods. In
this sense it is related to that in [BHMRO7a]. There, the ardlpresent a constraint-
based algorithm for the synthesis of invariants expressetie combined theory of
linear integer arithmetic (LI) and uninterpreted functeymbols (UIF). By means of
the reduction of the array property fragment ta-UIF, it is claimed that the techniques
can be extended for the generation of universally quantifieatiants for arrays. How-
ever, the language of our invariants is outside the arragenty fragment, since we can
generate properties where indices do not necessarily ac@uray accesses (e.g., see
the Array initialization or thePartial initialization examples in Section 5). Finally,
the technique in [BHMRO073a] is applied in [BHMRO7b] to gentarg path invariants in
the context of the CEGAR loop. As the framework in [BHMRO78Jimdependent of
any concrete invariant generation technique, we belieaedtr method could be used
as an alternative in a portfolio approach to path invartzaged program analysis.

2 Preliminaries

2.1 Transition Systems

Henceforth we will model programs by meandrainsition systemsA transition system
P = (U, L, ¢, T) consists of a tuple ofariablest, a set oflocations £, aninitial
location¢y and a set ofransitions7". Each transitiorr € 7 is a triple(¢, ', p;), where
{, U’ € L are thepre andpostlocations respectively, and. is thetransition relation
a first-order Boolean formula over the program variahiesd their primed versions
U’, which represent the values of the variables after theitiansin general, to every
formula P (or expressiorE) over the program variabléswe associate a formul®’
(or expressiorke’) which is the result of replacing every variahlein P (or E) by its
corresponding primed versia.

In this paper we will considescalarvariables, which take integer values, arday
variables. We will denote scalar variables W@nd array variables bg. The size of
an arrayA € ais denoted byA| and thedomainof its indices is{0...|A| — 1} (i.e.,
indices start at 0, as i6-like languages). We assume that arrays can only be indexed
by expressions built over scalar variables. Hence, by mefhe readwrite semantics
of arrays, we can describe transition relations as arraglégs (possibly guarded by
conjunctions of equalities and disequalities betweeras@{pressions) and quantified
information of the formVa : 0 < a < |Al—= 1A P(a) : Ala] = Ala], whereP
does not depend on array variables. For example, Figurevisshgrogram together
with its transition system. dathsz between two locations is associated to a transition
relationp, which is obtained by composition of the corresponding titaorss relations.

v=(0r),a=(A4) T ={n,7,7m7,73 1}

int main
Od L= {ly,l,ls,13} Initial location is I

int 1=4, r=5, A[8];

while (1>=0 and r<8) i = LAV =IAA] =0 A

if (777) Va:0<a<8Aa#r: Ala] = Ald]
Alr++]1=0;

else m:l'=4n1" =5
A[1--1=0; Tl >0Ar <8AId(l,1, A)

m:(l<0vr>8) Ald(l,r, A)

Tl =l—1AT =r ANA=0A
Va:0<a<8Aa#l: Alla] = Al

Fig. 1. Program and its transition system. Predicateud(., uy) is short foru; = uj A--- AU =
u., i.e., indicates those variables that remain identicaraftransition.

For instance, in the transition system in Figure 1, the itimsrelations of the paths
o = (|0,T0,|1), T = (|1,T2,|3,T3,|1) andﬂ'z = (|1,T2,|3,T4,|1) are:
Pro V=4 AT =5
P I1Z20AT<8AT=r+1Al'=1 AA[r]=0A
Ya : 0<a<8Aa#r : Ala] = Ala]
P, 1Z20AT<8AV=I-1ATr=rAA[l]=0A
Ya : 0<a<8Aa#l: Ale] =Ae].

A path iscyclicif it contains a cycle. A set of locationSis acutsetif every cyclic path
contains a location 5. Locations in a cutset arutpoints In our example, paths;
andrn, are cyclic,{l;} is a cutset and thus is a cutpoint.

Let P be a transition system with initial locatiafg, andS a cutset ofP. We call
thecontrol-flow-graph of? induced byS the graph whose nodes a¥e= {{p} U S, and
such that for every path; in the transition system connecting two locatiénand¢; of
N there exists a directed edgg, ¢;, 7ij). Note that therefore, every edge of the graph
has an associated path in the transition system.

For a given strongly connected component (SG®f the control-flow-graph, its
initiation paths are those paths in the transition system that labetige ftom a lo-
cation out ofs to a location ins, and itsconsecutiorpaths are those labeling an edge
connecting only locations is. For instance, the control-flow graph resulting from tak-
ing the cutsetl;} in our example has two noddsg,andl;, with one edge fronig to
l1 (mo), and two self-edges &t (r1 andny). Thus, the SCC consisting &f has one
initiation path frg), and two consecution paths;(andxr).

2.2 Constraint-Based Invariant Generation

Here we review theonstraint-based invariant generati@pproach [CSSO03]. Let us
assume that we have selected all cutpoints, obtained alb@@s and identified all
respective initiation and consecution paths. The follgwvell-known theorem estab-
lishes stficient conditions for a set of properties to be invariant atdhtpoints:

Theorem 1. Let I‘f, el I% be a cutset of a SCC s. Let,P. ., P, be properties over the
program variablesi such that the following implications hold:

i) for all initiation pathsz' from some | to somé1 VG, T py = P
ii) for all consecution pathg® from some? to somef: VU,T p,c APj = P

Then R, ..., Py are invariant at f el I%. We say P, ..., Pp areinductive invariants

The idea of the constraint-based method is to consider alé¢enfor candidate
invariant properties, e.g., linear inequalities in thel@ceariables. These templates in-
volve both program variables as well as parameters whosewsalre initially unknown
and have to be determined so as to ensure invariance. Tortthjghee implications in
Theorem 1 are expressed by meangafistraints(hence the name of the approach)
on the unknowns. If implications are encoded soundly, ahytiem to the constraints
yields invariant properties for the cutpoints. In partanif linear inequalities are taken
as target invariants as in [CSS03], implications can besfamed into arithmetic con-
straints over the unknowns by means of the following resatinfpolyhedral geometry:

Theorem 2 (Farkas’ Lemma [Sch98]).Consider a system S of linear inequalities
Qi1Xy + - +anX + by <0(€ {1,...,m}) over real-valued variables;x. . ., X,. When

S is satisfiable, it entails a linear inequality)g + - - - + ¢y X, + d < O iff there exist non-
negative real numbetg, A1, ..., Am, such thatg = 3" a1, ..., = X0y 4ian, d =
(X", Aiby) — 0. Further, S is unsatisfiablgfithe inequalityl < 0 can thus be derived.

Therefore, Farkas’ Lemma allows one to transforndamproblem into ard prob-
lem. If all &; andb; are known values, the resulting satisfiability problem isSamT
problem over linear arithmetic. Otherwise, an SMT problemraon-linear arithmetic
is obtained. Moreover, if one is interested in linear inaats with integer cdécients,
as some unknowns are integer (the invariantiocents) and some are real (the mul-
tipliers Ao, 11, . . ., Am), @n SMT problem in mixed arithmetic is obtained. However, a
Farkas’ Lemma applies to reals, one may lose some induciwegiants, namely those
that only hold using the fact that the program variables ategjiers.

3 Array Invariants

In this section we present a constraint-based techniqugdioerating array invariants
for loop programs without nesting. Moreover, programs @&®imed to contain linear
expressions in assignmenis, andwhile conditions, as well as in array accesses.

The idea of the method is, similarly as in [CSS03], to exptessconditions of
Theorem 1 as algebraic constraints on the parameters ofiggurénvariant template.
In order to provide the reader with intuition on how this i©@wed, let us consider
again the example in Figure 1. In this program, an aiay filled with zeros from
the middle outwards, moving alternatively to the left andhe right. Let us show that
propertyP = Va : 0<a<r-1-1: Ala+I|+ 1] = 0is an inductive invariant for
this program.

First of all, let us prove that initiation paths (namety) entail the property. In
particular, we have to provetddt =4 A r' =5 — P’. Thisis trivial, sincd’ = 4 and

L From now on, program variables and their primed versionsiaieersally quantified.

r’ = 5imply thatr’ —I"’ = 1is 0, i.e., the domain of the universally quantified vamabl
in P’ is empty.

In general, our invariant generation method is aimed atarsally quantified formu-
las, and we ensure that initiation paths imply the invagdmytforcing that the domains
of the universally quantified variables are empty.

Secondly, let us prove that consecution paths @g£andr,) preserve the property.
For example, forr; we have to prove that

PAI>0AT<8Ar=r+1Al'=lAA[r]=0
AVa :0<a<8Aa#r : Ala]=Aa] — P.

Now notice that the expressioh— I’ — 1, which determines the domain@fn P’, also
has the property that—1'—1 = (r+1)-1-1 = (r —1-1)+ 1. This means that, aftet,
the domain ofr has exactly one new elemeant= r —| - 1. First, let us see that, after the
path, propertyN'[a + 1" + 1] = A'[a + | + 1] = 0 holds for the other values of i.e.,a €
{0,...,r—1—2}. Indeed this is the case: singe : 0<a <8Aa#r : Ale] = Ala],
all positions ofA” except for the-th remain the same. Bét[r] = A'[(r—1-1)+I" +1]
precisely corresponds to=r — | — 1. Hence fronP we have thaly'[a + I’ + 1] = O for
alla €{0,...,r—1-2}. Now we only need to prov&’[a+I" +1] =0fora =r-1-1,
which follows from the premis@&’[r] = 0. In conclusionP’ holds.

In general, our invariant generation method will requiratlafter each consecution
path, at most one new element is added to the domain of ouersailly quantified
invariant, and that the contents of the arrays involved @itlvariant are not changed
after the path.

Back to the example, as regargswe have to prove that

PAI0ATr<8Al'=l-1Ar=rnaAnA[l]l=0
AVa:0<a<8Aa#l: Ale] =Ae] - P.

Again, the expressiari—|’—1 also satisfies that—-I"'-1 =r—-(1-1)-1 = (r—1-1)+1.
Hence the domain af has exactly one new element. But unlike in the previous dase,
changesits value. To pro® from P, it is convenient to rewrit® so that array accesses
are expressed in terms Afa + I + 1]. By making a shiftP is equivalentto/a : 1 <

a<r’ —=I"-1: Ala+l"+1]=0.Again,sincé/a : 0<a<8Aa#l: Ala] = Alal,

all positions ofA’ except for thd-th remain the same. B&W/[l] = A’[I” + 1] precisely
correspondsta = 0. ThereforeN[a+1I"+1] =0foralla € {1,...,r" =" = 2}. Further,
asA'[l] = 0, we have that'[a + I’ + 1] = O for @ = 0. ThusP’ holds.

Apart from proving thatP is invariant, we may also want to check that the array
accesses that occur in it are correct. As regards initigiaghs, since the domain of
after g is empty, there is nothing to check. Regarding consecutathsy for example
for m1 we have to see that

I>0Ar<8Ar=r+1Aal'=l ->VYa:0<a<r’ -I"-1:a+l"+1>0Aa+I"+1<8,

where for the sake of simplicity we have ignored the arrayalde. Now, given that
array accesses are linear functionsrint is suficient to check correctness far= 0
anda =r’'-1"-2, i.e., that the above premisesental 1 >0 A I'+1 <8 A r'=1>
0 A r'=1 < 8. Let us assume that we have already looked for linear ingygirevariants

over scalar variables (e.g., with the techniques in [CSSA38]), and have found that
| <r—1isaloop invariant. Adding this invariant to the trangitielation stfices to
prove the above implication. A similar argument appliesifar

In general, our invariant generation method guarantedghbaarray accesses oc-
curring in the synthesized invariants are correct. As ingkample, this is achieved
by ensuring that the accesses of the extreme values of saliyequantified variables
are correct. Since this often requires arithmetic propsitif the scalar variables of the
program, in practice it is convenient that, prior to the aggilon of our array invariant
generation techniques, a linear relationship analysithiscalar variables has already
been carried out.

3.1 Invariant Generation for Programs with Arrays

Leta= (A ..., An) be the tuple of array variables. Given a positive intdger0, our
method generates invariants of the form

Ya : 0<a<CMV) -1 ZZirlej:laiin[dija+8ij(_/)] +BV) + b, < 0

whereC, &;; and8 are linear polynomials with integer ctheients over the scalar vari-
ablesv = (vi,...,v,) anda;j, dij, b, € Z, foralli e {1,...,mandj € {1,...,K}.

This template covers a quite general family of propertieg. Section 5 for a sample
of diverse programs for which we can successfully produeéuigwvariants and which
cannot be handled by already existing techniques.

The invariant generation process at the cutpoint of the steddoop under consid-
eration is split into three steps, in order to make the apgrecamputationally feasible:

1. Expressiong are generated such that the dom@n. . C — 1} is empty after every
initiation path reaching the cutpoint, adddoes not change or is increased by one
after every consecution path. This guarantees that anyepsopniversally quan-
tified with this domain holds after all initiation paths artetdomain includes at
most one more element after every consecution path. We #veslnthesis of dif-
ferent expressions that under the known information defiaséame domain. In the
running example, we genera®@gl,r) =r — 1 — 1.

2. For every expressiaf obtained in the previous step and for every ardgylinear
expressionsia+&; over the scalar variables are generated such that[(o +&i
is a correct access for allin {0...C — 1}; (ii) none of the already considered po-
sitions in the quantified property is changed after any etx@cwf the consecution
paths; andi{i), after every consecution path, eittf&grdoes not change or its value
is & — di. Namely, ifC does not change, thefij = & ensures that the invariant
is preserved. Otherwise, the invariant has to be extendea few value ofv. If
&; does not change, from the previous condition forad {0, ..., C — 1} we have
Aldia + &] = Aldia + &]. So we will try to extend the invariant withr = C.
Otherwise, if& = & - d;, then for alla € {1,...,C} we haveA[da + &] =
Aldi(@ — 1) + &]. So we will try to extend the invariant withh = 0.
In the running example, we generate- 1 andS = | + 1.

3. For the selecte@ we choos&k expressiong; for every array®h; among the gener-
ated&;, such that for each consecution path either all seleStedemain the same
after the path, or all have as new vaftie— d;; after the path. Then, in order to gen-
erate invariant properties we just need to find integeffanentsa;; andb, and an
expressiorB such that, depending on the case, either the property iiddlfithen
a = C atthe end of all consecution paths that incre@seit is fulfilled whena = 0
at the end of all consecution paths that incra@seurther,8 andb, have to fulfill
that the quantified property is maintained for {0...C — 1}, assuming that the
contents of the already accessed positions are not modified.

For instance, in the running example for= 1 we generata = 1,8 = b, = 0,
corresponding to the invariavitr : 0 < a <r—-I1-1:Ala+1+1] < 0;anda= -1,
B =h, =0, corresponding to the invariav : 0 < a < r—I1-1: -Ala+1+1] < 0.

Next we formalize all these conditions, which ensure thargsgolution to the last
phase provides an invariant, and show how to encode them agp&dblems.

While for scalar linear templates the conditions of Theofecan be directly trans-
formed into constraints over the parameters [CSS03], shi®ilonger the case for our
template of array invariants. To this end we particularibedrem 1 in a form that is
suitable for the constraint-based invariant generatiothote The proof of this spe-
cialized theorem, given in detail below, mimics the proofrafariance of the running
example given at the beginning of this section.

Let 7} ... 7, be the initiation paths to our cutpoint and ... x5 the consecution
paths going back to the cutpoint.

Theorem 3. LetC, B8 and&;; be linear polynomials with integer cfi€ients over the
scalar variables, and;g, dij, b, € Z, forie {1...mjand je {1...k}. If

1. Every initiation pathr! with transition relationo,, satisfieg,) = C’ = 0.
2. For all consecution paths$ with transition relationp,c, we havep,c = (C’
CvVvC_C=C+1).
3. For all consecution paths, alli € {1...m}and je {1...k}, we have,c A C’
0=0<&<IAI-1 A 0<dij(C -1)+&4 <IAl-1.
4. For all consecution pathsS we have either
@) prg AN C'>0=>8&=&jforallie{l...mandje{l...k}, or
0) pe=>C" =C+1 A &jj=&j—djforalli e{l...mand je{l...k}.
5. For all consecution pathsS, we have,c = Vo : 0<a <C-1:Afdja+&jjl
Aldja+ &;j] foralli e {1...mjand je {1...k}.
6. For all consecution pathsS, we have
—pe A C=C+1= 203K ajA[diC+ &) + 8 +b,C <0, if case 4a
applies.
— P = Z}rzlzll-(:laijA{[S/ij] + B <0, if case 4b applies.
7. For all consecution pathsS, we have
—pg ANO0<a<C-1A X+8B+b,a<0= x+8 +b,a <0for some fresh
universally quantified variable x, if case 4a applies.
—pPg ANO<a<C-1A X+B+Dbya<0= x+8 +by(a+1)<0forsome
fresh universally quantified variable X, if case 4b applies.

Vv

ThenVa:0<a<C-1 :Zi”:‘lzj:la”Ai[dija +&ij] + B + bya < Ois invariant.

Proof. Following Theorem 1, we show that the property holds afteheaitiation path,
and that it is maintained after each consecution path.

The first condition easily holds by applying 1, since we haap, = C’ = 0 for
every initiation pathr!, which impliesva : 0 < a <C'-1 :Ziﬂlzif:la”Ai'[dija+8'ij] +
B + b,a < 0, since the domain of the quantifier is empty.

For the consecution conditions we have to show that for alkeoution paths$,
we havep,c AVa :0<a<C-1: Z}n;lzj:lajin[dija + &ij] + B + by < 0 implies
YVa:0<a<(C -1 ZZinllZ]-:laiin/[dija' +8'ij] + 8 +b,a <0.

By condition 2, we havg,c = (C' = C v C’ = C + 1), and by condition 4 either
P AC' >0= & =§&jforallie{l..m}je(l...klorp,c =C =C+1A&j =
&j—djforallie{l...m}, je{l...k}. We distinguish three cases:

1. ¢ = C and all&jj = &j. Then we have to ensuiér : 0 < o < C -1 :
Z}n;lzz-(:lajin/[dija + &ij] + B’ + b,a < 0. By condition 5, we can replack by
A in the given domain, and hence we have to showthat 0 < o < C-1:
Zi”:“lzz‘zla”Ai[dija +&ij] + B’ + b,a < 0. Then, since the array part coincides with
the one of the assumption, we can replace it in both placesimg $resh variable
x. Now it sufices to show that, assuming 8+ b,a < 0, we havex+ 8’ +b,a < 0
for all value ofx, which follows from the premises and condition 7.

2.C" = C+1andall&j = &;j. Then we have to ensufér : 0 < @ < C :
Zi”:“lzj:la”Ai’[dija + &ij] + B’ + b,a < 0. By conditions 1 and 2 we haveC,
and henc& = C’ — 1 belongs to the domaif®...C} andC’ > 0. Then, by condi-
tion 3, we have that & d;;C + &;j < |A| -1 = |A]| - 1 foralli andj. Therefore,
we can extract the cage= C from the quantifier obtaininge : 0 <a <C-1:
ZiEleleajin'[dija+8ij]+B’+b0,a/ <0 andz}“glzjzlaijw[dijc+8ij]+B’+baC <0.
The first part holds as before by the premises and conditiansl%, and the second
part holds by the premises and condition 6.

3. C' = C+1landall&;; = &j — dij. Then we have to ensuf@r : 0 < @ < C :
Zi”:“lzj:la”Ai’[dija+8ij —dij] + 8" + b, < 0. Since, by conditions 1 and 2, we have
0 < C, we have that belongs to the domaifD...C}. By condition 3, we have
0 < &jj = &j — dij < |A]| - 1. Therefore, we can extract the case: 0 from the
quantifier obtaining/a : 1 < a < C : X1 3% &y A[dija+&ij—] + 21, B +b,a <
0 andZiTlZT:la”N[Si,— —di;]+8’ < 0. For the first one, replacingby «+1 we have
Vae:l<a+1l<C: Zinglzjzla;ﬂ[dij(a+1)+8ij —dij] +27 B +b,(a+1) < 0, or
equivalentlyva : 0 < a < C-1: 37 3% & Aldija+&;j]+ 2], 8 +b,(a+1) <0,
which holds by applying conditions 5 and 7 as before. Thesgpart holds again
by the premises and condition 6, using the fact &fgt= &;; — di;. O

As we have described, our invariant generation method stanef three phases.
The first phase looks for expressiafsatisfying conditions 1 and 2. The second one
provides, for every generatetland for every array, expressions; with their corre-
sponding integerd; that fulfill conditions 3, 4 and 5. Note that, to satisfy carah 4,
we need to record for each expression and path whether wethave; or & = &; - d;,
so as to ensure that all expressi@ishave the same behavior. Finally, in the third phase
we have to find coicientsa;; andb, and an expressias fulfilling conditions 6 and 7.

Solutions to all three phases are obtained by encoding theittmns of Theorem 3
into SMT problems in non-linear arithmetic thanks to Farkasmma. Note that, be-
cause of array updates, transition relations may not beuoatipns of literals. As in
practice the guarded array information is useless untilaeephase, in the first two
phases we use the unconditional part of a transition relatiae., the part op that is
a conjunction of literals, denoted k(o).

3.2 Encoding Phase 1

LetC becyvy + ... + €V + Coy1, Wherev are the scalar variables andre the integer
unknowns. Then conditions 1 and 2 can be expressed as:

TV, Vv AL (U(pn) = C =0)A AL (U(pe) >C =C Vv C' =C+1).

We cannot apply Farkas’ Lemma directly due to the disjumctiothe conclusion of
the second condition. To solve this, we move one of the tvesdls into the premise
and negate it. As the literal becomes a disequality, it casdié into a disjunction
of inequalities. Finally, by distributing Farkas’ Lemmandae applied and an existen-
tially quantified SMT problem in non-linear arithmetic istalmed. We also encode the
condition that each newly generat@dnust be diterent from all previously generated
expressions at the cutpoint, considering all already knesahar invariants.

3.3 Encoding Phase 2

Here, for eachC obtained in the previous phase and for each af@ywve generate
expressiong; and integersl, that satisfy conditions 3 and 5, and also condition 4 as a
single expression and not combined with the other expressio

The encoding of condition 3 is direct using Farkas’ LemmawNkt us sketch the
encoding of condition 4. Le&f; beejvi +. . .+ e,vh+€n.1, Whereg are integer unknowns.
Then, a<t; is considered isolatedly, we need

Fedi YW,V AL, pe = ((C'=C+1 A& =8-d) Vv <0V E=§).

To apply Farkas’ Lemma, we use a similar transformation esdodition 2. In addition,

itis imposed that the newly generated expressions dierdint from the previous ones.
Regarding condition 5, the encoding is rathdfetient. In this case, for every con-

secution pathr$, arrayA and expressio® = A[W] = M in Prs, We ensure that

Va(pe A 0<a<C-1AG= Wzde+& v M=A[W).

To avoid generating useless expressions, we add in the mgadondition stating that
if & = &; then for every consecution path wherés incremented, there is at least an
acces\[W] in the path such that = di(C’ - 1) + &/. Otherwise, i.e., i&] = & - d;,
then for every consecution path whérés incremented, there is at least an ac@gpg/|

in the path such thaw/ = &/.

10

3.4 Encoding Phase 3

Condition 7 is straightforward. Regarding condition 6, émeoding does not need non-
linear arithmetic, but requires to handle arrays:
Ja,b,b, YV, Vv, A A
AL (g = INICaAE] +8 < 0) A
(b NC'=C+1 = Zi@lzjzlajA{[C+ &l +8 +b,C < 0)

Here, the use of the guarded array information is crucialvéi@r, since we want to
apply Farkas’ Lemma, array accesses have to be replacedwynieersally quantified
integer variables. In order to avoid losing too much infotiora we add the array read
semantics after the replacement; i.e Ajf] and A[j] have been respectively replaced
by fresh variableg andz;, theni = j = z = z; is added.

4 Extensions

4.1 Relaxations on Domains
Let us consider the following program:

int A[2*N], min, max, i;
if (A[0] < A[1]) { min = A[®]; max = A[1]; }
else { min = A[1]; max = A[0]; }
for (i = 2; i < 2*N; i 4= 2) {

int tmpmin, tmpmax;

if (A[i] < A[i+1]) { tmpmin = A[i]; tmpmax

else { tmpmin = A[i+1]; tmpmax

if (max < tmpmax) max = tmpmax;

if (min > tmpmin) min = tmpmin; }

Ali+1]; 3
AL 115}

It computes the minimum and the maximum of an even-lengtiyasimultaneously,
using a number of comparisons which i times its length. To prove correctness, the
invariants¥a : 0 < @ <i—1:v[e] > minand¥a : 0 < @ <i-1:Vv[a] < maxare
required. To discover them, two extensions of Theorem 3exqqaired:

— The domain of the universally quantified variableannot be forced to be initially
empty. In this example, when the loop is entered, both iavasi already hold for
a = 0,1. This can be handled by applying our invariant generatiethod as de-
scribed in Section 3.1, and for each computed invariamdrio extend the property
for decreasing values of = -1, -2, etc. as much as possible. Finally, a shiftof
is performed so that the domain@tbegins at 0 and the invariant can be presented
in the form of Section 3.1.

— The domain of the universally quantified variaklecannot be forced to increase
at most one by one at each loop iteration. For instance, ;mia@kample at each
iteration the invariants hold for two new positions of theagr Thus, for a fixed
parameter!, Condition 2 in Theorem 3 must be replacedly = (C'=C v C’ =
C+1 vV -+ vV C =C+4).Inthis example, taking = 2 is required. Further,
conditions 4b, 6 and 7 must also be extended accordinglyeim#tural way.

11

4.2 Sorted Arrays

The program below implements binary search: given a nonedsigly sorted arra
and a value, it determines whether there is a positionAicontainingx:

int A[N], 1 =0, u = N-1;
while (1 <= u) {

int m = (1+u)/2;

if (A[m] < x) 1
else if (A[m] > x) u
else break; }

m+1;
m-1;

To prove that, on exiting due {o> u, the propertya : 0 < @ < N-1: AJi] # x holds,
onecanusethate :0<a <l-1:Ale] < xand¥Ya :u+l<a <N-1:Ala] > xare
invariant. To synthesize them, the fact tiais sorted must be taken into account. The
following theorem results from incorporating the propeartgortedness into Theorem 3,
whose proof is given in the Appendix.

Theorem 4. LetC, 8 and&;; be linear polynomials with integer cgiients over the
scalar variables, andig, dij, b, € Z, forie {1...mjand je {1...k}. If

1.

2.
3.

Forallie{l...mand je {1...k}we havep > 0,andd; > 0= a; > 0, and
dj <0=a; <0.

Each initiation pathr! with transition relationo, fulfills p,; = C" = 0.

Each initiation pathr} with transition relationo,, fulfills

Py = VB 0<B<|AI-1:A[B-1] < Alp]forallie{l...m}.

. Each consecution pattf with transition relationp,¢ fuffills p,c = C" > C.
. For all consecution pathsS alli € {1...m}and je {1...k} we have

JRA C’>0=>0S8'ij <|A|-1A OSdij(C'—1)+8’ij <|A| -1

. For all consecution pathsS we have one of the following:

@) pg A C'>0 A aj>0= 8 <& and

P AC >0A ajj <O$8’ij z&j for alli e{l...m},je{l...k};
(0) pre = C" >Cand

pre A &j > 0= & < &j - (C’' - C)djj and

pre A aj<0=&4>&;-(C'-C)djforallie{l...m}, je{l...k

s

. For all consecution pathsS, we havep,c = VB : 0< B < |A|-1:A[p] = A[,B]

foralli e {1...mj.

. For all consecution pathsS, we have

A C>C= Z}lell-(:laiin’[dij(C/ -1+ &5 +8 +b,(C'-1)<0,
if case 6a applies.

— pre = XN 2@ Ad(C' - C - 1)+ &1 + B +by(C'-C-1)<0,
if case 6b applies.

. For all consecution pathsS, we have

—pg ANO0<a<C-1A X+B+b,a<0= x+8 +b,a <0for some fresh
universally quantified variable x, if case 6a applies.

—pc ANO0<a<C-1A X+B+ba<0=x+8 +b,(a+C -C)<0for
some fresh universally quantified variable x, if case 6b iggpl

ThenVa:0<a<C-1 :Zi”:‘lz'j‘:la”Ai[dija +&ij] + B + bya < Ois invariant.

12

By means of the previous theorem, (an equivalent versiorthef)desired invariants
can be discovered. However, to the best of our knowledgeltsesn the synthesis of
invariants for programs with sorted arrays are not repdrt¢ie literature. See Section
5 for other examples that can be handled by means of this @gten

5 Experimental Evaluation

The method presented in Sections 3 and 4 has been impleniartegtool Cppinv?.
For solving the generated constraints, we useBheelogic SMT solver [BNO 08].
As discussed in Section 2.2, after applying Farkas’ Lemm@Nm problem for mixed
non-linear arithmetic is obtained. For this thedBarcelogic has proved to be very
effective in finding solutions [BLO12]; e.g., it won the division of quantifier-free non-
linear integer arithmetic (QINIA) in the 2009 edition of the SMT-COMP competition
(www . smtcomp.org/2009)., and since then no other competing solver in this division
has solved as many problems.

In addition to the examples already shown in this pa@ppinv automatically gen-
erates array invariants for a number oftdient programs. The following table shows
some of them, together with the corresponding loop invé&sian

Heap property: Partial initialization [GRSO05]:
const int N; const int N;
assume(N >= 0); assume(N >= 0);
int A[2xN], 1i; int A[N], B[N], C[N], i, j;
for (i = 0; 2*xi+2 < 2xN; ++i) for (1 =0, j =0; 1< N; ++i)
if (A[i]>A[2#i+1] or A[i]>A[2xi+2]) if (A[i] == B[iD)
break; C[j++] = 1i;
Loop invariants: Loop invariant:
Ya: 0<a<i-1: Ale] <ARa+2] Yo:0<e<j-1:Cla]<a+i-]j
Ya: 0<a<i-1: Ale] <ARa+1] Ya:0<a<]j-1:Cle] 2«
Array palindrome: Array initialization [GRS05]:
const int N; const int N;
assume(N >= 0); assume (N >= 0);
int A[N], i; int A[N], i;
for (i = 0; i < N/2; ++1) for (i = 0; i < N; ++1i)
if (A[i] != A[N-i-1]) break; A[i] = 2xi+3;
Loop invariant: Loop invariant:
Yo: 0<a<i-1: Ae] =AN-a-1] Yo: 0<a<i-1: Ae] =2a+3
Array insertion: Sequential initialization [HP08]:
const int N; . .
int AN, i, X, j; const int N;
. . assume(N > 0);
assume(® <= 1 and i < N); . .
for (x = A[i], j = i-1; int ALNI, 1;
X . . i . for (i = 1, A[0] = 7; i < N; ++1i)
j >=0 and A[j] > x; --7) A[i] = A[i-1] + 1;
A[j+11 = A[3]; ’
Loop invariant: Loop invariant:
Yo: 0<a<i-j-2:Ali-a] >2x+1 Yo: 0<a<i-2: Ale+1]=Aa]+1

2 The tool, together with a sample of example programs it catyaa, can be downloaded at
www.1lsi.upc.edu/~albert/cppinv-bin.tar.gz.

13

First occurrence: Sum of pairs:
const int N; const int N;
assume(N >= 0); assume (N >= 0);
int A[N], x = getX(, 1, u; int A[N], x = getX(), 1 =0, u=N-1;
// A is sorted in ascending order // A is sorted in ascending order
for (1 =0, u=N; 1<u;) { while (1 < uw)
int m = (1+u)/2; if (A[1] + A[u] < x) 1 = 1+1;
if (A[m] < x) 1 = m+1; else if (A[1] + A[u]l > x) u = u-1;
else u = m; } else break;
Loop invariants: Loop invariants:
Voe:0<a<l-1:Ale] <X Ya:0<a<l-1:Ale]+AlU <X
Vo:0<a<N-1-u:AN-1-a]>x [Ya:0<a<N-u-2:Alu+l+a]+Al]>x

As a final test, we have ru@pplnv over a collection of programs written by stu-
dents. The benchmark suite has been taken from an onlinegonoging judge ww .
jutge.org) and consists of 38 fierent divide-and-conquer solutions to the problem
of finding the first occurrence of an element in a sorted aifhgse can be considered
more realistic code than the examples abdvies{ occurrence program) since most
often they are not the most elegant solution but a workingtsmi with many more
conditional statements than necessary. For all analyzegr@ms that are correct our
tool was able to find automatically both standard invariaite time consumed was
very different depending on how involved the code is. Anyway, the rpedblem as
regards #iciency is that in its current form our prototype exhaustivgénerates first
all the scalar invariants and then, using all of them, gamrserall array invariants. Fur-
ther work is thus needed to heuristically guide the sear¢cheo§calar invariants, so that
only useful information is inferred. On the other hand, auailgisis was able to discover
programs that had been accepted via testing by the judgedyetiwfact incorrect.

6 Conclusions and Future Work

In short, the contributions of this paper are:

— a new constraint-based method for the generation of unaligrquantified invari-
ants of array programdJnlike other techniques, it does not require extra prediat
nor assertions. It does not need the user to provide a teengither, but it can take
advantage of hints by partially instantiating the globabpéate considered here.

— extensions of the approach for sorted arrays.our knowledge, results on the syn-
thesis of invariants for programs with sorted arrays areeywdrted in the literature.

— an implementation of the presented techniques that isyfreehilable. The con-
straint solving engine of our prototype depends on SMT. ldewar techniques
will directly benefit from any further advances in SMT solgin

For future work, we plan to extend our approach to a broadessobf programs. As a
first step we plan to relax Theorem 3, so that, e.g., ovemgibin positions in which the
invariant already holds is allowed. We would also like to dlemested loops, so that
for instance sorting algorithms can be analyzed. Anotimer ¢if work is the extension
of the family of properties that our approach can discoveneariants. E.g., a possibil-
ity could be considering disjunctive properties, or allogriquantifier alternation. The
former allows analyzing algorithms such as sentinel seavbhe the latter is necessary
to express that the output of a sorting algorithm is a pertiort@af the input.

14

References

[BHMRO7a] D. Beyer, T. Henzinger, R. Majumdar, A. Rybalcken Invariant synthesis for

combined theories. IWMCAI, vol. 4349 ofLNCS pp. 378-394. Springer, 2007.

[BHMRO7b] D. Beyer, T. Henzinger, R. Majumdar, A. Rybalcken Path invariants. If°LDI,

[BLO*12]

[BNO*08]

[CCT77]

[CH78]
[Cou03]
[CSS03]
[FQO2]
[GMTO8]
[GRS05]
[GS97]
[HHKR10]
[HPO8]
[IMO7]

[KID*10]

[KVO09]
[LBO4]
[McMO08]

[Schosg]
[SG09]

pp. 300-309. ACM, 2007.

C. Borralleras, S. Lucas, A. Oliveras, E. Rodriguezb@aell, A. Rubio. SAT Mod-
ulo Linear Arithmetic for Solving Polynomial Constraintd. Autom. Reasoning
48(1):107-131, 2012.

M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodriguezi@Ganell, A. Rubio. The
Barcelogic SMT Solver. IICAV, vol. 5123 ofLNCS pp. 294—-298. Springer, 2008.
P. Cousot, R. Cousot. Abstract interpretation: Afiedi lattice model for static
analysis of programs by construction or approximation gidirnts. InPOPL, pp.
238-252, 1977.

P. Cousot, N. Halbwachs. Automatic Discovery of lan&estraints Among Vari-
ables of a Program. IROPL, pp. 84-96, 1978.

P. Cousot. Verification by abstract interpretatibmVerification: Theory and Prac-
tice, vol. 2772 ofLNCS pp. 243—-268. Springer, 2003.

M. Colon, S. Sankaranarayanan, H. Sipma. Lineari@nt Generation Using Non-
linear Constraint Solving. I€AV, vol. 2725 ofLNCS pp. 420-432. Springer, 2003.
C. Flanagan, S. Qadeer. Predicate abstraction fowa verification. InPOPL,
pp. 191-202, 2002.

S. Gulwani, B. McCloskey, A. Tiwari. Lifting abstca interpreters to quantified
logical domains. IlPOPL, pp. 235-246. ACM, 2008.

D. Gopan, T. Reps, S. Sagiv. A framework for numenalygsis of array operations.
In POPL, pp. 338-350. ACM, 2005.

S. Graf, H. Saidi. Construction of abstract statehs with PVS. IfCAV, vol. 1254
of LNCS pp. 72-83. Springer, 1997.

T. Henzinger, T. Hottelier, L. Kovacs, A. Rybalehko. Aligators for arrays. In
LPAR vol. 6397 ofLNCS pp. 348-356. Springer, 2010.

N. Halbwachs, M. Péron. Discovering propertiesualarays in simple programs.
In PLDI, pp. 339-348. ACM, 2008.

R. Jhala, K. McMillan. Array abstractions from preoin CAV, vol. 4590 ofLNCS
pp. 193-206. Springer, 2007.

S. Kong, Y. Jung, C. David, B-Y. Wang, K. Yi. Automaticaiihferring quantified
loop invariants by algorithmic learning from simple tentpk INAPLAS vol. 6461
of LNCS pp. 328-343. Springer, 2010.

L. Kovacs, A. Voronkov. Finding Loop Invariants férograms over Arrays Using
a Theorem Prover. IRASE vol. 5503 ofLNCS pp. 470-485. Springer, 2009.

S. Lahiri, R. Bryant. Constructing quantified invanits via predicate abstraction. In
VMCAI, vol. 2937 ofLNCS pp. 267-281. Springer, 2004.

K. McMillan. Quantified invariant generation usirngn interpolating saturation
prover. INTACAS vol. 4963 ofLNCS pp. 413-427. Springer, 2008.

A. SchrijverTheory of Linear and Integer Programmin@iley, 1998.

S. Srivastava, S. Gulwani. Program verification gis@mplates over predicate ab-
straction. InPLDI, pp. 223—-234. ACM, 2009.

15

Appendix

A Proof of Theorem 4

Proof. First of all, let us remark that arrays are always sorted im-decreasing order,
and that their contents are never changed. This follows @ydtion from conditions 3
and 7. Moreover, it can also be seen from conditions 2 andt4thka0 is an invariant
property.

Now, we will show that the property in the statement of theotleen holds after ev-
ery initiation path reaching our cutpoint and that it is ntained after every consecution
path going back to the cutpoint.

The first condition easily holds applying 2, since we have tha= C" = 0 for
every initiation pathr!, which impliesva : 0 < a < C'-1 :Zi”jlzz‘zla”Ai’[dija+8’ij] +
B’ + b,a < 0, since the domain of the quantifier is empty.

For the consecution conditions we have to show that for alkeoution paths$,
we havep,c AVa:0<a<C-1: ZiZlezlaJAi[dija +&ij] + B + bya < 0implies
Ve:0<a<(C -1 IZiTlZIj(:laiin’[dija +8'ij] + B +b,a <0.

By condition 4, we have thatc = C’ > C. We distinguish three cases:

1. ¢’ = Cand case 6a holds.df' = 0 there is nothing to prove. Otherwigé > 0, and
by hypothesiswe have thédt : 0 < o < C-1 :Zi”:“lz}‘zla”Ai[dija+8ij]+B+bwa <
0. Together withp,¢c, this impliesVa : 0 <@ <C-1 :Zi”le}-‘zlaiin[dija + &ij] +
B’ + b,a < 0 by instantiating appropiatelyin condition 9.

Now, let us show that for all € {1...m}, for all j € {1...k} and for alla €
{0...C — 1} we havea;;Ai[dija + &4j] < ajAldija + &;]. Let us consider three
subcases:

— &; > 0. Then&'; < &;j by condition 6. Hence for alt € {0...C — 1} we have
dija/ + S'ij < dija + Sij. This impIiesAi[dija + S'ij] < Ai[dija/ + Sij] asA is
sorted in non-decreasing order. Therefajé[dije + &'j] < ajAldije + &;j].

— aj < 0. Then&j; > &;; by condition 6. Hence for all € {0...C — 1} we
havedija + S/ij > dija + Sij. This impIiesAi[dija + S'ij] > Aj[dija’ + Sij] as
A is sorted in non-decreasing order (note that, by conditioweshave that
0 < dja + &'j < |Al-1 = |A]| -1, so array accesses are within bounds).
Thereforeai,-Ai[di,-a + 8'”‘] < aiin[dija + Sij].

— aj = 0. Then the inequality trivially holds.

Altogether we have thate : 0 < a <C-1: Zinz‘lzz‘ @ijAldja + &l + B +

b, < 0. Now our goal easily follows, taking into account tigt= C and that by
condition 7 we can replack by A.

2. C’ > C and case 6a holds. Théh > 0, and following the same argument as in the
previous case we getthé : 0 < o < C-1 :Zi”:“lzzf:la;in'[dija+8’ij]+B'+baa <
0, whereA; has been replaced i# by virtue of condition 7.
It only remains to prove thala : C <a <C' -1: Z}rzlzlj-(zlaijA{[dija + &1 +
B’ + b,a < 0 (note that, by condition 5, we have that<0&’;; < |A]| -1 and
0 < dij(C" - 1)+ & < IA] -1, so again array accesses are within bounds). To
this end, let us consider € {C...C" — 1} and let us show tha; A/[djja + &'jj] <

16

gjA[dij(C' - 1)+ &l forall i e {1...m}and forallj € {1...k}. We distinguish
three cases:

— dij > 0. Thena < C’ - 1 impliesdija < d;j(C’ — 1), and henceljo + &'jj <
dij(C’ - 1) + &ij. As Al is sorted in non-decreasing order, we hayfgja +
&'ij] < Aldij(C’" - 1) + &5j]. Finally, by condition 1 it must be;; > 0, and
multiplying at both sides the last inequality the goal isadiéd.

— dij < 0. Thena < C’ - 1 impliesdija > d;;(C’ — 1), and hencelje + &'jj >
dij(C’ - 1) + &ij. As Al is sorted in non-decreasing order, we hayfgja +
&l 2 Aldij(C’" - 1) + &5j]. Finally, by condition 1 it must be;; < 0, and
multiplying at both sides the last inequality the goal isadiéd.

— dij = 0. The goal trivially holds.

ThusZi'QlZ}‘:la” Ai/[dija""a/ij] +8 < Z{le}‘:la” Ai,[dij (C'-1)+&'ij]1+ 8. Now, by
condition 1 we havé, > 0, hencer < C’ — 1 impliesb,a < b,(C’ — 1). Therefore
Z{leg‘zla”Ai’[dija + 8'”] + B + bya < Zinglz'j‘zlai,-A{[di,-(C’ - 1) + 8’”‘] + B +
b.(C’ — 1) < 0 by condition 8.

. C’ > C and case 6b holds (notice ti@t= C and case 6b together are not possible).
By hypothesiswe hava : 0<a <C-1 :zi";lzj:la”Ai[dijma,-]+$+an <0.
Together withp,¢, thisimpliesva : 0 <o < C-1 :Ziﬂlz'j‘:lai,—Ai[di,—a+8i,—] +B +
b, < 0 by instantiating appropiatelyin condition 9. By shifting the universally
qguantified variable the previous formula can be rewritteWas C' - C < a <
c-1 ZZiTlZ:-(:laiin[dij(af -(C'-Q)+E&ij]+B +b(a-(C'-0C) <0.

Now, let us show that for all € {1...m}, for all j € {1...k} and for alla €
{C’'-C...C’' -1} we haves;; A[djjer + &'j] < a;A[dij(a—(C’' -C)) + &jj]. Letus
consider three subcases:

—a; > 0. Then&'j; < & — (C’ — C)di; by condition 6. Hence for allv €
{C"=C...C’' -1} we havedjja + &'jj < dij(a - (C" = C)) + &;j. This implies
Aldje + &'j] < Alldij(e - (C' - C)) + &;j] asA is sorted in non-decreasing
order. Thereforey; A[djje + &'ij] < a;Adij(e — (C" - C)) + &jjl.

—a; < 0. Then&'jj > & — (C’ — C)di; by condition 6. Hence for allv €
{C"=C...C’' -1} we havedjja + &'jj > dij(a - (C" = C)) + &;j. This implies
Aldje + &'j] = Alldij(e — (C' - C)) + &;j] asA is sorted in non-decreasing
order. Thereforey; A[djje + &'4j] < a;Adij(e — (C" - C)) + &jj.

— &; = 0. Then the inequality trivially holds.

Altogether we have thata : C' - C < a < C' -1 : X0 2% a;Aldja + &j] +

B’ + b, < 0, whereA; has been replaced & by virtue og condition 7.

It only remains to prove thafa : 0 < a < C'-C-1: Z{le'j‘:la”,é{[di,—a +

&ij] + 8" + b,a < 0 (note that, by condition 5, we have that&’;; < |A/| - 1 and
0<dj(C"-1)+¢&j < IA| -1, so again array accesses are within bounds). To this
end, let us consider € {0...C" — C — 1} and let us show tha; A/[dija + E'jj] <
ajAl[dij(C'-C-1)+&] foralli e {1...m}andforallj € {1...k}. We distinguish
three cases:

—djj > 0. Thena < ¢’ - C - 1 impliesdjjee < d;j(C" - C - 1), and hence
dija + &' < dij(C' - C - 1)+ &'jj. As Al is sorted in non-decreasing order, we
haveA[dija + &'jj] < A[dij(C" - C - 1)+ &jj]. Finally, by condition 1 it must
beg; > 0, and multiplying at both sides the last inequality the geabtained.

17

—dj < 0. Thene < C' - C - 1 impliesdije > d;;(C’ - C - 1), and hence
dijo + &' = dij(C' —C - 1)+ &'j. As Al is sorted in non-decreasing order, we
haveA[dija + &'j] > A[d;j(C’ - C - 1)+ &';;]. Finally, by condition 1 it must
bea;; < 0, and multiplying at both sides the last inequality the geabtained.

— dij = 0. The goal trivially holds.

ThusZ, 2 & Aldije+&5]+8 < I 2% & Adij(C' ~C~1)+&'j] + 8. Now,
by condition 1 we have, > 0, hencer < C’' - C - 1 impliesb,a > b,(C’'—C-1).
Thereforeii“jlzzleajAi’[di,-a+8’i,-] +8B +b,a < Z}lez-(:laijpx{[dij (C/ -C- 1)8'”] +
B’ + b,(C’ - C - 1) < 0 by condition 8.

O

18

