Mach Learn
DOI 10.1007/s10994-013-5416-x

Spectral learning of weighted automata

A forward-backward perspective

Borja Balle - Xavier Carreras - Franco M. Luque -
Ariadna Quattoni

Received: 8 December 2012 / Accepted: 3 September 2013
© The Author(s) 2013

Abstract In recent years we have seen the development of efficient provably correct algo-
rithms for learning Weighted Finite Automata (WFA). Most of these algorithms avoid the
known hardness results by defining parameters beyond the number of states that can be used
to quantify the complexity of learning automata under a particular distribution. One such
class of methods are the so-called spectral algorithms that measure learning complexity in
terms of the smallest singular value of some Hankel matrix. However, despite their sim-
plicity and wide applicability to real problems, their impact in application domains remains
marginal to this date. One of the goals of this paper is to remedy this situation by presenting
a derivation of the spectral method for learning WFA that—without sacrificing rigor and
mathematical elegance—puts emphasis on providing intuitions on the inner workings of the
method and does not assume a strong background in formal algebraic methods. In addition,
our algorithm overcomes some of the shortcomings of previous work and is able to learn
from statistics of substrings. To illustrate the approach we present experiments on a real
application of the method to natural language parsing.

Keywords Spectral learning - Weighted finite automata - Dependency parsing

Editors: Jeffrey Heinz, Colin de la Higuera, and Tim Oates.

B. Balle - X. Carreras (B<) - A. Quattoni
Universitat Politecnica de Catalunya, Barcelona 08034, Spain
e-mail: carreras@lsi.upc.edu

B. Balle
e-mail: bballe@lsi.upc.edu

A. Quattoni
e-mail: aquattoni @lsi.upc.edu

EM. Luque
Universidad Nacional de Cérdoba and CONICET, X5000HUA Cérdoba, Argentina
e-mail: francolq@famaf.unc.edu.ar

Published online: 03 October 2013 &\ Springer

mailto:carreras@lsi.upc.edu
mailto:bballe@lsi.upc.edu
mailto:aquattoni@lsi.upc.edu
mailto:francolq@famaf.unc.edu.ar

Mach Learn

1 Introduction

Learning finite automata is a fundamental task in Grammatical Inference. Over the years,
a multitude of variations on this problem have been studied. For example, several learning
models with different degrees of realism have been considered, ranging from query models
and the learning in the limit paradigm, to the more challenging PAC learning framework. The
main differences between these models are the ways in which learning algorithms can inter-
act with the target machine. But not only the choice of learning model makes a difference
in the study of this task, but also the particular kind of target automata that must be learned.
These can range from the classical acceptors for regular languages like Deterministic Fi-
nite Automata (DFA) and Non-deterministic Finite Automata (NFA), to the more general
Weighted Finite Automata (WFA) and Multiplicity Automata (MA), while also considering
intermediate case like several classes of Probabilistic Finite Automata (PFA).

Efficient algorithms for learning all these classes of machines have been proposed in
query models where algorithms have access to a minimal adequate teacher. Furthermore,
most of these learning problems are also known to have polynomial information-theoretic
complexity in the PAC learning model. But despite these encouraging results, it has been
known for decades that the most basic problems regarding learnability of automata in the
PAC model are computationally untractable under both complexity-theoretic and crypto-
graphic assumptions. Since these general worst-case results preclude the existence of effi-
cient learning algorithms for all machines under all possible probability distributions, lots of
efforts have been done in identifying problems involving special cases for which provably
efficient learning algorithms can be given. An alternative approach has been to identify ad-
ditional parameters beyond the number of states that can be used to quantify the complexity
of learning a particular automaton under a particular distribution. A paradigmatic example
of this line of work are the PAC learning algorithms for PDFA given in Ron et al. (1998),
Clark and Thollard (2004), Palmer and Goldberg (2007), Castro and Gavalda (2008), Balle
et al. (2013) whose running time depend on a distinguishability parameter quantifying the
minimal distance between distributions generated by different states in the target machine.

Spectral learning methods are a family of algorithms that also fall into this particular line
of work. In particular, starting with the seminal works of Hsu et al. (2009) and Bailly et al.
(2009), efficient provably correct algorithms for learning non-deterministic machines that
define probability distributions over sets of strings have been recently developed. A work-
around to the aforementioned hardness results is obtained in this case by including the small-
est singular value of some Hankel matrix in the bounds on the running time of spectral al-
gorithms. The initial enthusiasm generated by such algorithms has been corroborated by
the appearance of numerous follow-ups devoted to extending the method to more complex
probabilistic models. However, despite the fact that these type of algorithms can be used to
learn classes of machines widely used in applications like Hidden Markov Models (HMM)
and PNFA, the impact of these methods in application domains remains marginal to this
date. This remains so even when implementing such methods involves just a few linear al-
gebra operations available in most general mathematical computing software packages. One
of the main purposes of this paper is to try to remedy this situation by providing practical
intuitions around the foundations of these algorithms and clear guidelines on how to use
them in practice.

In our opinion, a major cause for the gap between the theoretical and practical develop-
ment of spectral methods is the overwhelmingly theoretical nature of most papers in this
area. The state of the art seems to suggest that there is no known workaround to these
long mathematical proofs when seeking PAC learning results. However, it is also the case

@ Springer

Mach Learn

that most of the times the derivations given for these learning algorithms provide no intu-
itions on why or how one should expect them to work. Thus, obliterating the matter of PAC
bounds, our first contribution is to provide a new derivation of the spectral learning algo-
rithm for WFA that stresses the main intuitions behind the method. This yields an efficient
algorithm for learning stochastic WFA defining probability distributions over strings. Our
second contribution is showing how a simple transformation of this algorithm yields a more
sample-efficient learning method that can work with substring statistics in contrast to the
usual prefix statistics used in other methods.

Finite automata can also be used as building blocks for constructing more gen-
eral context-free grammatical formalisms. In this paper we consider the case of non-
deterministic Split Head-Automata Grammars (SHAG). These are a family of hidden-state
parsing models that have been successfully used to model the significant amount of non-
local phenomena exhibited by dependency structures in natural language. A SHAG is com-
posed by a collection of stochastic automata and can be used to define a probability distribu-
tion over dependency structures for a given sentence. Each automaton in a SHAG describes
the generation of particular head-modifier sequences. Our third contribution is to apply the
spectral method to the problem of learning the constituent automata of a target SHAG. Con-
trary to previous works where PDFA were used as basic constituent automata for SHAG,
using the spectral method allows us to learn SHAG built out of non-deterministic automata.

1.1 Related work

In the last years multiple spectral learning algorithms have been proposed for a wide range
of models. Many of these models deal with data whose nature is eminently sequential, like
the work of Bailly et al. (2009) on WFA, or other works on particular subclasses of WFA
like HMM (Hsu et al. 2009) and related extensions (Siddiqi et al. 2010; Song et al. 2010),
Predictive State Representations (PSR) (Boots et al. 2011), Finite State Transducers (FST)
(Balle et al. 2011), and Quadratic Weighted Automata (QWA) (Bailly 2011). Besides direct
applications of the spectral algorithm to different classes of sequential models, the method
has also been combined with convex optimization algorithms in Balle et al. (2012), Balle
and Mohri (2012).

Despite this overwhelming diversity, to our knowledge the only previous work that has
considered spectral learning for the general class of probabilistic weighted automata is due
to Bailly et al. (2009). In spirit, their technique for deriving the spectral method is similar
to ours. However, their elegant mathematical derivations are presented assuming a target
audience with a strong background on formal algebraic methods. As such their presenta-
tion lacks the intuitions necessary to make the work accessible to a more general audience
of machine learning practitioners. In contrast—without sacrificing rigor and mathematical
elegance—our derivations put emphasis on providing intuitions on the inner working of the
spectral method.

Besides sequential models, spectral learning algorithms for tree-like structures appearing
in context-free grammatical models and probabilistic graphical models have also been con-
sidered (Bailly et al. 2010; Parikh et al. 2011; Luque et al. 2012; Cohen et al. 2012; Dhillon
et al. 2012). In Sect. 6.4 we give a more detailed comparison between our work on SHAG
and related methods that learn tree-shaped models. The spectral method has been applied as
well to other classes of probabilistic mixture models (Anandkumar et al. 2012c,a).

@ Springer

Mach Learn

2 Weighted automata and Hankel matrices

In this section we present Weighted Finite Automata (WFA), the finite state machine formu-
lations that will be used throughout the paper. We begin by introducing some notation for
dealing with functions from strings to real numbers and then proceed to define Hankel matri-
ces. These matrices will play a very important role in the derivation of the spectral learning
algorithm given in Sect. 4. Then we proceed to describe the algebraic formulation of WFA
and its relation to Hankel matrices. Finally, we discuss some special properties of stochastic
WEFA realizing probability distributions over strings. These properties will allow us to use
the spectral method to learn from substring statistics, thus yielding more sample-efficient
methods than other approaches based on string or prefix statistics.

2.1 Functions on strings and their Hankel matrices

Let X be a finite alphabet. We use o to denote an arbitrary symbol in X'. The set of all
finite strings over X' is denoted by X*, where we write A for the empty string. We use bold
letters to represent vectors v and matrices M. We use M* to denote the Moore—Penrose
pseudoinverse of some matrix M.

Let f : X* — R be a function over strings. The Hankel matrix of f is a bi-infinite matrix
H; € R¥™*¥" whose entries are defined as H (u, v) = f(uv) for any u,v € ¥*. That is,
rows are indexed by prefixes and columns by suffixes. Note that the Hankel matrix of a
function f is a very redundant way to represent f. In particular, the value f(x) appears
|x] + 1 times in Hy, and we have f(x) =Hy(x,A) = H;(X, x). An obvious observation
is that a matrix M € R¥"**" satisfying M(u |, v;) = M(us, v,) for any u,v; = u,v, is the
Hankel matrix of some function f : X* — R.

We will be considering (finite) sub-blocks of a bi-infinite Hankel matrix H;. An easy way
to define such sub-blocks is using a basis B = (P, S), where P € X* is a set of prefixes and
S C X a set of suffixes. We write p = |P| and s = |S|. The sub-block of H, defined by
Bis the p x s matrix Hz € RP*S with Hg(u, v) = Hy(u,v) = f(uv) for any u € P and
v € S. We may just write H if the basis 5 is arbitrary or obvious from the context.

Not all bases will be equally useful for our purposes. In particular, we will be interested
in so-called closed basis. Let B = (P, S) be a basis and write X’ = X U {A}. The prefix-
closure' of B is the basis B’ = (P’, S), where P’ = P X’. Equivalently, a basis B = (P, S) is
said to be p-closed if P =P’ X’ for some P’ called the root of P. It turns out that a Hankel
matrix over a p-closed basis can be partitioned into | X'| + 1 blocks of the same size. This
partition will be central to our results. Let H; be a Hankel matrix and B = (P, S) a basis.
For any o € X’ we write H, to denote the sub-block of Hy over the basis (Po, S). That
is, the sub-block H, € R”*% of H/ is the p x s matrix defined by H, (4, v) = H (uo, v).
Thus, if B’ is the prefix-closure of B, then for a particular ordering of the strings in P’, we
have

HT’:[HI | H;rl } | H:Trm]

The rank of a function f : X* — R is defined as the rank of its Hankel matrix: rank(f) =
rank(H ;). The rank of a sub-block of H; cannot exceed rank(f), and we will be specially
interested on sub-blocks with full rank. We say that a basis B = (P, S) is complete for f
if the sub-block Hyz has full rank: rank(Hg) = rank(H). In this case we say that Hy is a

1A similar notion can be defined for suffixes as well.

@ Springer

Mach Learn

complete sub-block of H. It turns out that the rank of f is related to the number of states
needed to compute f with a weighted automaton, and that the prefix-closure of a complete
sub-block of H contains enough information to compute this automaton. These two results
will provide the basis for the learning algorithm presented in Sect. 4.

2.2 Weighted finite automata

A widely used class of functions mapping strings to real numbers is that of functions de-
fined by weighted finite automata (WFA) or in short weighted automata (Mohri 2009).
These functions are also known as rational power series (Salomaa and Soittola 1978;
Berstel and Reutenauer 1988). A WFA over X with n states can be defined as a tu-
ple A = (o1, ¥, {As}), Where oy, @ € R” are the initial and final weight vectors, and
A, € R™" the transition matrix associated to each alphabet symbol o € X'. The function f4
realized by a WFA A is defined by

T _ T
- xp T Ay - X s
fa@) =0 Ay - Ay o =0 Al

for any string x =x;---x, € X* witht = |x| and x; € ¥ forall 1 <i <r. We will write |A|
to denote the number of states of a WFA. The following characterization of the set of func-
tions f : X* — R realizable by WFA in terms of the rank of their Hankel matrix rank(H)
was given in Carlyle and Paz (1971), Fliess (1974). We also note that the construction of
an equivalent WFA with the minimal number of states from a given WFA was first given in
Schiitzenberger (1961).

Theorem 1 (Carlyle and Paz 1971; Fliess 1974) A function f : X* — R can be defined by
a WFA iff rank(Hy) is finite, and in that case rank(Hy) is the minimal number of states of
any WFA A such that f = fq4.

In view of this result, we will say that A is minimal for f if f4 = f and |A| =rank(f).

Another useful fact about WFA is their invariance under change of basis. It follows
from the definition of f4 that if M € R"*”" is an invertible matrix, then the WFA B =
MTa;, Moy, (M~'A,M}) satisfies fz = f4. Sometimes B will be denoted by M—' AM.
This fact will prove very useful when we consider the problem of learning a WFA realizing
a certain function.

Weighted automata are related to other finite state computational models. In particular,
WFA can also be defined more generally over an arbitrary semi-ring instead of the field of
real numbers, in which case there are sometimes called multiplicity automata (MA) (e.g.
Beimel et al. 2000). It is well known that using weights over an arbitrary semi-ring more
computational power is obtained. However, in this paper we will only consider WFA with
real weights. It is easy to see that several other models of automata (DFA, PDFA, PNFA)
can be cast as special cases of WFA.

2.2.1 Example
Figure 1 shows an example of a weighted automaton A = (y, @, {A,}) With two states
defined over the alphabet X' = {a, b}, with both its algebraic representation (Fig. 1(b)) in

terms of vectors and matrices and the equivalent graph representation (Fig. 1(a)) useful for
a variety of WFA algorithms (Mohri 2009). Letting W = {¢, a, b}, then B= (WZX', W) is a

@ Springer

Mach Learn

/2 a,0 1/2
| vz

a,3/4 C@i_/@D a,1/3 al =[1/21/2] al =[1 1]

b,6/5 51 3/4 0 6/5 2/3
a,0 Aa = [0 1/3} Av = {3/4 1]
b,3/4

(a (b)

Fig. 1 Example of a weighted automaton over ¥ = {a, b} with 2 states: (a) graph representation; (b) alge-
braic representation

p-closed basis. The following is the Hankel matrix of A on this basis shown with two-digit
precision entries:

€ a b aa ab ba bb

e [0.00 020 0.14 022 0.15 045 0.31
H=a | 020 022 045 0.19 029 045 0.85
b [0.14 0.15 031 0.13 020 0.32 0.58

3 Observables in stochastic weighted automata

Previous section introduces the class of WFA in a general setting. As we will see in next
section, in order to learn an automata realizing (an approximation of) a function f : ¥* — R
using a spectral algorithm, we will need to compute (an estimate) of a sub-block of the
Hankel matrix H. In general such sub-blocks may be hard to obtain. However, in the case
when f computes a probability distribution over X'* and we have access to a sample of i.i.d.
examples from this distribution, estimates of sub-blocks of Hy can be obtained efficiently.
In this section we discuss some properties of WFA which realize probability distributions. In
particular, we are interested in showing how different kinds of statistics that can be computed
from a sample of strings induce functions on X* realized by similar WFA.

We say that a WFA A is stochastic if the function f = f4 is a probability distribution
over X*. Thatis, if f(x) >0 forallx € ¥*and) _s. f(x) = 1. To make it clear that f
represents a probability distribution we may sometimes write it as f (x) = P[x].

An interesting fact about distributions over X* is that given an i.i.d. sample generated
from that distribution one can compute an estimation H ¢ of its Hankel matrix, or of any
finite sub-block ﬁB. When the sample is large enough, these estimates will converge to the
true Hankel matrices. In particular, suppose S = (x', ..., x™) is a sample containing m i.i.d.
strings from some distribution P over X* and let us write]f"s (x) for the empirical frequency
of x in S. Then, for a fixed basis B, if we compute the empirical Hankel matrix given by
I:IB (u,v) = I@’S[uv], one can show using McDiarmid’s inequality that with high probability
the following holds (Hsu et al. 2009):

N 1
IHz —Hgllr < 0<—f)-

m

This is one of the pillars on which the finite sample analysis of the spectral method lies. We
will discuss this further in Sect. 4.2.1.

@ Springer

Mach Learn

Note that when f realizes a distribution over X*, one can think of computing other
probabilistic quantities besides probabilities of strings P[x]. For example, one can define
the function f, that computes probabilities of prefixes; that is, f,(x) = P[xX™]. Another
probabilistic function that can be computed from a distribution over X* is the expected
number of times a particular string appears as a substring of random strings; we use f; to
denote this function. More formally, given two strings w, x € X* let |w|, denote the number
of times that x appears in w as a substring. Then we can write f;(x) = E[|w|,], where the
expectation is with respect to w sampled from f: E[|w|,] = ZweE' |w|P[w].

In general the class of stochastic WFA may include some pathological examples with
states that are not connected to any terminating state. In order to avoid such cases we in-
troduce the following technical condition. Given a stochastic WFA A = («, &, {As}) let
A=Y .~ A,. Wesay that A is irredundant if |A| < 1 for some submultiplicative matrix
norm || - ||. Note that a necessary condition for this to happen is that the spectral radius of
A is less than one: p(A) < 1. In particular, irredundancy implies that the sum Y, A¥ con-
verges to (I — A)~!. An interesting property of irredundant stochastic WFA is that both fH
and f; can also be computed by WFA as shown by the following result.

Lemma 1 Let (o1, @00, {As}) be an irredundant stochastic WFA and write: A=Y"__s A,

a = otlT(I —A)7 ! and g = A — A) oty Suppose f: X* — R is a probability distri-
bution such that f(x) =P[x] and define functions f,(x) =P[xX*] and f,(x) = E[|w],].
Then, the following are equivalent:

1. A= (o, 0, {As}) realizes f,
2. Ap = (a1, Qoo, {As}) realizes f,,
3. Ay = (@1, @oo, {A,}) realizes fi.

Proof In the first place we note that because A is irredundant we have
~T
a, =a1TZAk = Z alTAX,
k=0 xexz*

where the second equality follows from a term reordering. Similarly, we have &, =
Y res Acos. The rest of the proof follows from checking several implications.

(1 = 2) Using f(x) = otlTA,cocOO and the definition of &., we have:

IP’[xE*] = Z Plxy] = Z otlTAxAyaoo :otlTAX&oo.

yex* yex*

(2 = 1) It follows from Plx X*t]=>"__, P[xo X*] that

oeX
Plx] =P[xZ*] - Px 2] =a| Attos — 0] Ay Adloo = 0| A, (I — A)iloe.
(1 = 3) Since we can write Zwep Plw]|w]|, = P[X*x X™], it follows that

Ellwl,)=) Plwllwl = Y Pluxvl=) o/ AAA0x =8 Adx.

wex* u,vex* u,veX*

(3 = 1) Using similar arguments as before we observe that

Plx] =P[Z*xZ* |+ P[Z*x ZF]| - P[ZFx 2* | - P[Z*x 27|

@ Springer

Mach Learn

=@ A& + & AAAG, — & AA @ — &) A A

=& I—A)A, (11— A)d. O

A direct consequence of this constructive result is that given a WFA realizing a probabil-
ity distribution P[x] we can easily compute WFA realizing the functions f, and f;; and the
converse holds as well. Lemma 1 also implies the following result, which characterizes the
rank of f, and f;.

Corollary 1 Suppose f : X* — R is stochastic and admits a minimal irredundant WFA.
Then rank(f) = rank(f,) =rank(fy).

Proof Since all the constructions of Lemma 1 preserve the number of states, the result fol-
lows from considering minimal WFA for f, f,, and f;.]

From the point of view of learning, Lemma 1 provides us with tools for proving two-sided
reductions between the problems of learning f, f,, and f;. Since for all these problems the
corresponding empirical Hankel matrices can be easily computed, this implies that for each
particular task we can use the statistics which better suit its needs. For example, if we are
interested in learning a model that predicts the next symbol in a string we might learn the
function f,. On the other hand, if we want to predict missing symbols in the middle of string
we might learn the distribution f itself. Using Lemma 1 we see that both could be learned
from substring statistics.

4 Duality, spectral learning, and forward-backward decompositions

In this section we give a derivation of the spectral learning algorithm. Our approach follows
from a duality result between minimal WFA and factorizations of Hankel matrices. We begin
by presenting this duality result and some of its consequences. Afterwards we proceed to
describe the spectral method, which is just an efficient implementation of the arguments
used in the proof of the duality result. Finally we give an interpretation of this method from
the point of view of forward and backward recursions in finite automata. This provides extra
intuitions about the method and stresses the role played by factorizations in its derivation.

4.1 Duality and minimal weighted automata

Let f be a real function on strings and H its Hankel matrix. In this section we consider
factorizations of H; and minimal WFA for f. We will show that there exists an interesting
relation between these two concepts. This relation will motivate the algorithm presented on
next section that factorizes a (sub-block of a) Hankel matrix in order to learn a WFA for
some unknown function.

Our initial observation is that a WFA A = (a1, ¢, {A,}) for f with n states induces a
factorization of Hy. Let P € R* "X be a matrix whose uth row equals] A, for any u € X*.
Furthermore, let S € R”*>” be a matrix whose columns are of the form A, forall v € X*.
It is trivial to check that one has H; = PS. The same happens for sub-blocks: if Hj is a sub-
block of H defined over an arbitrary basis B = (P, S), then the corresponding restrictions
Pz € R7”*" and Sz € R"*° of P and S induce the factorization Hz = P3S. Furthermore,
if H, is a sub-block of the matrix Hz corresponding to the prefix-closure of Hy, then we
also have the factorization H, = PgA,Sg.

@ Springer

Mach Learn

An interesting consequence of this construction is that if A is minimal for f—i.e. n =
rank(f)—then the factorization Hy = PS is in fact a rank factorization. Since in general
rank(Hg) < n, in this case the factorization Hz = P5Sj is a rank factorization if and only
if Hp is a complete sub-block. Thus, we see that a minimal WFA that realizes a function f
induces a rank factorization on any complete sub-block of Hy. The converse is even more
interesting: give a rank factorization of a complete sub-block of Hy, one can compute a
minimal WFA for f.

Let H be a complete sub-block of H; defined by the basis B = (P, S) and let H, denote
the sub-block of the prefix-closure of H corresponding to the basis (Po, S). Let hp; € R”
denote the p-dimensional vector with coordinates hp ; (#) = f(u), and h; s € RS the s-
dimensional vector with coordinates h;_s(v) = f(v). Now we can state our result.

Lemma 2 If H =PS is a rank factorization, then the WFA A = (a1, @oo, {A,}) With a] =
h! S*, e =P hyp;, and A, =PTH,S*, is minimal for f.

Proof Let A" = (a}, a/, {AL}) be a minimal WFA for f that induces a rank factorization
H = P'S'. It suffices to show that there exists an invertible M such that M—'A'M = A.
Define M = §’'S™ and note that P*P’'S'ST = PTHS™ = I implies that M is invertible with
M~! =P*P’". Now we check that the operators of A correspond to the operators of A" under
this change of basis. First we see that A, = P*H,S* = PTP'A/ S'ST = M~!A/ M. Now
observe that by the construction of S’ and P’ we have oc/,TS’ =h, s, and P'a,, = hp ;.
Thus, it follows that otT = (x/lTM and oo = M"otgo. O

This result shows that there exists a duality between rank factorizations of complete sub-
blocks of Hy and minimal WFA for f. A consequence of this duality is that all minimal
WFA for a function f are related via some change of basis. In other words, modulo change
of basis, there exists a unique minimal WFA for any function f of finite rank.

Corollary 2 Let A = (|, oo, {As}) and A" = (], al, {Al}) be minimal WFA for some f
of rank n. Then there exists an invertible matrix M € R such that A =M~ A’M.

Proof Suppose that Hy = PS = P’S’ are the rank factorizations induced by A and A’ respec-
tively. Then, by the same arguments used in Lemma 2, the matrix M = §'S™ is invertible
and satisfies the equation A = M~'A’M. |

4.2 A spectral learning algorithm

The spectral method is basically an efficient algorithm that implements the ideas in the proof
of Lemma 2 to find a rank factorization of a complete sub-block H of H; and obtain from
it a minimal WFA for f. The term spectral comes from the fact that it uses SVD, a type
of spectral decomposition. We describe the algorithm in detail in this section and give a
complete set of experiments that explores the practical behavior of this method in Sect. 5.

Suppose f : ¥* — R is an unknown function of finite rank n» and we want to compute
a minimal WFA for it. Let us assume that we know that 5 = (P, S) is a complete basis for
f. Our algorithm receives as input: the basis B and the values of f on a set of strings W. In
particular, we assume that PX’'S U P US C W. It is clear that using these values of f the
algorithm can compute sub-blocks H,, for 0 € X’ of H;. Furthermore, it can compute the
vectors h; s and hp ;. Thus, the algorithm only needs a rank factorization of H;, to be able
to apply the formulas given in Lemma 2.

@ Springer

Mach Learn

Recall that the compact SVD of a p x s matrix H;_ of rank » is given by the expression
H, = UAVT, where U € R?*" and V € R**" are orthogonal matrices, and A € R"*" is
a diagonal matrix containing the singular values of H,. The most interesting property of
compact SVD for our purposes is that H, = (UA)V is a rank factorization. We will use this
factorization in the algorithm, but write it in a different way. Note that since V is orthogonal
we have VTV =1, and in particular V* = V7. Thus, the factorization above is equivalent to
H, = H,V)V'.

With this factorization, equations from Lemma 2 are written as follows:

af =h{ V,
oo = H, V) hp .,
A, = (H,V)"H, V.

These equations define what we call from now on the spectral learning algorithm. The run-
ning time of the algorithm can be bound as follows. Note that the cost of computing a com-
pact SVD and the pseudo-inverse is O (|P| |S|n), and the cost of computing the operators is
O(|X| |P|n?). To this we need to add the time required in order to compute the Hankel ma-
trices given to the algorithm. In the particular case of stochastic WFA described in Sect. 3,
approximate Hankel matrices can be computed from a sample S containing m examples in
time O (m)—note that the running time of all linear algebra operations is independent of
the sample size. Thus, we get a total running time of O (m + n|P||S| + n?|P| | X|) for the
spectral algorithm applied to learn any stochastic function of the type described in Sect. 3.

4.2.1 Sample complexity of spectral learning

The spectral algorithm we just described can be used even when H and H,, are not known
exactly, but approximations H and H,, are available. In this context, an approximation means
that we have an estimate for each entry in these matrices; that is, we know an estimate of f
for every string in W. A different concept of approximation could be that one knows f ex-
actly in some, but not all strings in W. In this context, one can still apply the spectral method
after a preliminary matrix completion step; see Balle and Mohri (2012) for details. When
the goal is to learn a probability distribution over strings—or prefixes, or substrings—we are
always in the first of these two settings. In these cases we can apply the spectral algorithm
directly using empirical estimations H and I:IU. A natural question is then how close to f is
the approximate function f computed by the learned automaton A. Experiments described
in the following sections explore this question from an empirical perspective and compare
the performance of spectral learning with other approaches. Here we give a very brief out-
line of what is known about the sample complexity of spectral learning. Since an in-depth
discussion of these results and the techniques used in their proofs is outside the scope of this
paper, for further details we refer the reader to papers where these bounds were originally
presented (Hsu et al. 2009; Bailly et al. 2009; Siddiqi et al. 2010; Bailly 2011; Balle 2013).

All known results about learning stochastic WFA with spectral methods fall into the well-
known PAC-learning framework (Valiant 1984; Kearns et al. 1994). In particular, assuming
that a large enough sample of i.i.d. strings drawn from some distribution f over X* realized
by a WFA is given to the spectral learning algorithm, we know that with high probability the
output WFA computes a function f that is close to f. Sample bounds in this type of results
usually depend polynomially on the usual PAC parameters—accuracy ¢ and confidence §—
as well as other parameters depending on the target f: the size of the alphabet X, the number

@ Springer

Mach Learn

of states n of a minimal WFA realizing f, the size of the basis B, and the smallest singular
values of H and other related matrices.

These results come in different flavors, depending on what assumptions are made on the
automaton computing f and what criteria is used to measure how close fis to f. When
f can be realized by a Hidden Markov Model (HMM), Hsu et al. (2009) proved a PAC-
learning result under the L; distance restricted to strings in X’ for some ¢ > 0—their bound
depends polynomially in 7. A similar result was obtained in Siddiqi et al. (2010) for Reduced
Rank HMM. For targets f computed by a general stochastic WFA, Bailly et al. (2009) gave
a similar results under the milder L., distance. When f can be computed by a Quadratic
WFA one can obtain L; bounds over all X*; see Bailly (2011). The case where the function
can be computed by a Probabilistic WFA was analyzed in Balle (2013), where L; bounds
over strings in X'=' are given. It is important to note that, with the exception of Bailly
(2011), none of these methods is guaranteed to return a stochastic WFA. That is, though
the hypothesis f is close to a probability distribution in L; distance, it does not necessarily
assign a non-negative number to each strings, much less adds up to one when summed over
all strings—though both properties are satisfied in the limit. In practice this is a problem
when trying to evaluate these methods using perplexity-like accuracy measures. We do not
face this difficulty in our experiments because we use WER-like accuracy measures. See the
discussion in Sect. 8 for pointers to some attempts to solve this problem.

Despite their formal differences, all these PAC-learning results rely on similar proof tech-
niques. Roughly speaking, the following three principles lay at the bottom of these results:

1. Convergence of empirical estimates H and H, to their true values at a rate of O (m /%)
in terms of Frobenius norms; here m is the sample size.

2. Stability of linear algebra operations—SVD, pseudoinverse and matrix multiplication—
under small perturbations. This implies that when the errors in empirical Hankel matrices
are small, we get operators &, &, and Aa which are close to their true values, modulo
a change of basis.

3. Mild aggregation of errors when computing »_ | f(x) — f (x)| over large sets of strings.

‘We note here that the first of these points, which we already mentioned in Sect. 3, is enough
to show the statistical consistency of spectral learning. The other two points are rather tech-
nical and lie at the core of finite-sample analyses of spectral learning of stochastic WFA.

4.2.2 Choosing the parameters

When run with approximate data H,, H, foro € X, lﬂl)hs, and fl'p, 1, the algorithm also
receives as input the number of states n of the target WFA. That is because the rank of H,
may be different from the rank of H, due to the noise, and in this case the algorithm may
need to ignore some of the smallest singular values of H;, which just correspond to zeros in
the original matrix that have been corrupted by noise. This is done by just computing a trun-
cated SVD of H, up to dimension n—we note that the cost of this computation is the same
as the computation of a compact SVD on a matrix of rank n. It was shown in Bailly (2011)
that when empirical Hankel matrices are sufficiently accurate, inspection of the singular val-
ues of H can yield accurate estimates of the number of states n in the target. In practice one
usually chooses the number of states via some sort of cross-validation procedure. We will
get back to this issue in Sect. 5.

The other important parameter to choose when using the spectral algorithm is the ba-
sis. It is easy to show that for functions of rank n there always exist complete basis with

@ Springer

Mach Learn

|P| = |S| = n. In general there exist infinitely many complete basis and it is safe to as-
sume in theoretical results that at least one is given to the algorithm. However, choosing a
basis in practice turns out to be a complex task. A common choice are basis of the form
P =8 = X=F for some k > 0 (Hsu et al. 2009; Siddigi et al. 2010). Another approach, is
to choose a basis that contains the most frequent elements observed in the sample, which
depending on the particular target model can be either strings, prefixes, suffixes, or sub-
strings. This approach is motivated by the theoretical results from Balle et al. (2012). It is
shown there that a random sampling strategy will succeed with high probability in finding
a complete basis when given a large enough sample. This suggests that including frequent
prefixes and suffixes might be a good heuristic. This approach is much faster than the greedy
heuristic presented in Wiewiora (2005), which for each prefix added to the basis makes a
computation taking exponential time in the number of states n. Other authors suggest using
the largest Hankel matrix that can be estimated using the given sample; that is, build a basis
that includes every prefix and suffix seen in the sample (Bailly et al. 2009). While the statis-
tical properties of such estimation remain unclear, this approach becomes computationally
unfeasible for large samples because in this case the size of the basis does grow with the
number of examples m. All in all, designing an efficient algorithm for obtaining an optimal
sample-dependent basis is an open problem. In our experiments we decided to adopt the
simplest sample-dependent strategy: choosing the most frequent prefixes and suffixes in the
sample. See Sects. 5 and 7 for details.

4.3 The forward-backward interpretation

We say that a WFA A = (a1, €0, {As}) With n states is probabilistic if the following are
satisfied:

1. All parameters are non-negative. That is, for all 0 € X and all i, j € [n]: A, (i, j) >0,
o1(i) >0, and o, (i) > 0.

2. Initial weights add up to one: » ;&1 (i) = 1.

3. Transition and final weights from each state add up to one. That is, for all i € [n]: ao0 (i) +

Zaez Zje[n] Ay, j)=1.

This model is also called in the literature probabilistic finite automata (PFA) or probabilistic
non-deterministic finite automata (PNFA). It is obvious that probabilistic WFA are also
stochastic, since f4(x) is the probability of generating x using the given automaton.

It turns out that when a probabilistic WFA A = (a1, &, {As}) is considered, the factor-
ization induced on H has a nice probabilistic interpretation. Analyzing the spectral algorithm
from this perspective yields additional insights which are useful to keep in mind.

Let Hy = PS be the factorization induced by a probabilistic WFA with n states on the
Hankel matrix of f4(x) = f(x) = P[x]. Then, for any prefix u € X*, the uth row of P is
given by the following n-dimensional vector:

P, (i) =Plu, su41 =il i€[n].

That is, the probability that the probabilistic transition system given by A generates the
prefix # and ends up in state i. The coordinates of these vectors are usually called forward
probabilities. Similarly, the column of S given by suffix v € X is the n-dimensional vector
given by:

S,(@)=Plv|s=i] iel[n]

@ Springer

Mach Learn

NNP , VBN IN NNP NNP , VBZ CC VBZ 1 s NN CcC NN NNS
Noun . Verb Adp Noun Noun . Verb Conj Verb Adj . Noun Conj Noun Noun
Bell , based in Los Angeles , makes and distributes electronic , computer and building products .

Fig. 2 An example sentence from the training set. The bottom row is are the words, which we do not model.
The top row are the part-of-speech tags using the original tagset of 45 tags. The middle row are the simplified
part-of-speech tags, using a tagset of 12 symbols

This is the probability of generating a suffix s when A is started from state i. These are
usually called backward probabilities.

The same interpretation applies to the factorization induced on a sub-block Hsz = P5Sj.
Therefore, assuming there exists a minimal WFA for f(x) = P[x] which is probabilistic,2
Lemma 2 says that a WFA for f can be learned from information about the forward and
backward probabilities over a small set of prefixes and suffixes. Teaming this basic ob-
servation with the spectral method and invariance under change of basis one can show an
interesting fact: forward and backward (empirical) probabilities for a probabilistic WFA can
be recovered (modulo a change of basis) by computing an SVD on (empirical) string proba-
bilities. In other words, though state probabilities are non-observable, they can be recovered
(modulo a linear transformation) from observable quantities.

5 Experiments on learning PNFA

In this section we present some experiments that illustrate the behavior of the spectral learn-
ing algorithm at learning weighted automata under different configurations. We also present
a comparison to alternative methods for learning WFA, namely to baseline unigram and bi-
gram methods, and to an Expectation Maximization algorithm for learning PNFA (Dempster
etal. 1977).

The data we use are sequences of part-of-speech tags of English sentences, hence the
weighted automata we learn will model this type of sequential data. In Natural Language
Processing, such sequential models are a central building block in methods for part-of-
speech tagging. The data we used is from the Penn Treebank (Marcus et al. 1993), where the
part-of-speech tagset consists of 45 symbols. To test the learning algorithms under different
conditions, we also did experiments with a simplified tagset of 12 tags, using the mapping
by Petrov et al. (2012). We used the standard partitions for training (Sects. 2 to 21, with
39,832 sequences with an average length of 23.9) and validation (Sect. 24, with 1,700 se-
quences with an average length of 23.6); we did not use the standard test set. Figure 2 shows
an example sequence from the training set.

As a measure of error, we compute the word error rate (WER) on the validation set.
WER computes the error at predicting the symbol that most likely follows a given prefix
sequence, or predicting a special STOP symbol if the given prefix is most likely to be a
complete sequence. If w is a validation sequence of length ¢, we evaluate ¢ 4+ 1 events, one
per each symbol w; given the prefix w;;_; and one for the stopping event; note that each
event is independent of the others, and that we always use the correct prefix to condition on.
WER is the percentage of errors averaged over all events in the validation set.

We would like to remind the reader that a WFA learned by the spectral method is only
guaranteed to realize a probabilistic distribution on X* when we use an exact complete
sub-block of the Hankel of a stochastic function. In experiments, we only have access to a

2This is not always the case, see Denis and Esposito (2008) for details.

@ Springer

Mach Learn

finite sample, and even though the SVD is robust to noise, we in fact observe that the WFA
we obtain do not define distributions. Hence, standard evaluation metrics for probabilistic
language models such as perplexity are not well defined here, and we prefer to use an error
metric such as WER that does not require normalized predictions. We also avoid saying that
these WFA compute probabilities over strings, and we will just say they compute scores.

5.1 Methods compared

We now describe the weighted automata we compare, and give some details about how they
were estimated and used to make predictions.

Unigram model A WFA with a single state, that emits symbols according to their fre-
quency in training data. When evaluating WER, this method will always predict the most
likely symbol (in our data NN, which stands for singular noun).

Bigram model A deterministic WFA with | ¥'| 4 1 states, namely one special start state A
and one state per symbol o, and the following operators:

—a(A)=1land e (0c)=0foro € ¥

- A (i, j)=0ifo #j

— For each state i, A, (i, o) for all ¢ and & (i) is a distribution estimated from training
counts, without smoothing.

EM model A non-deterministic WFA with n states trained with Expectation Maximization
(EM), where n is a parameter of the method. The learning algorithm initializes the WFA ran-
domly, and then it proceeds iteratively by computing expected counts of state transitions on
training sequences, and re-setting the parameters of the WFA by maximum likelihood given
the expected counts. On validation data, we use a special operator &, = 1 to compute prefix
probabilities, and we use the &, resulting from EM to compute probabilities of complete
sequences.

Spectral model A non-deterministic WFA with n states trained with the spectral method,
where the parameters of the method are a basis (P, S) of prefixes and suffixes, and the
number of states n. We experiment with two ways of setting the basis:

X Basis: We consider one prefix/suffix for each symbol in the alphabet, thatis P =S = X.
This is the setting analyzed by Hsu et al. (2009) in their theoretical work. In this case,
the statistics gathered at training to estimate the automaton will correspond to unigram,
bigram and trigram statistics.

Top-k Basis: In this setting we set the prefixes and suffixes to be frequent subsequences of
the training set. In particular, we consider all subsequences of symbols up to length 4,
and sort them by frequency in the training set. We then set P and S to be the most
frequent k subsequences, where k is a parameter of the model.

Since the training sequences are quite long, relative to the size of the sequences in the basis,
we choose to estimate from the training sample a Hankel sub-block for the function f(x) =
E[|w|,]. Hence, the spectral method will return Ay = (@, &, {A,}) as defined in Lemma 1.
We use Lemma 1 to transform A into A and then into Ag. To calculate WER on validation
data, we use A to compute scores of prefix sequences, and A to compute scores of complete
sequences.

@ Springer

Mach Learn

12 tags 45 tags
74 Spectral, X basis —e— 73 Spectral, X basis —e— ||
Spectral, basis k=25 «® Spectral, basis k=25 «®
Spectral, basis k=50 - Spectral, basis k=45 -
72 Spectral, basis k=100 ===-v--=- 72 Spectral, basis k=100 ===-v--=-
—_ Spectral, basis k=300 -+ —_ Spectral, basis k=300 -4+
2 Spectral, baswj k=500 —=— X Spectral, baswsBk=500 —a
70 nigram —— o 71 igram
% A | Bigram H %
T 68 \ ’ T
8 \e | 5 70 o e
,_,-; 66 S/ . u-; .
5 ‘ 5 6
= 64 =
62 S8 S o %
60 67
0 10 20 30 40 50 0 10 20 30 40 50
Number of States Number of States

Fig. 3 Performance of the spectral method in terms of WER relative to the number of states, compared to the
baseline performance of an unigram and a bigram model. The left plot corresponds to the simplified tagset
of 12 symbols, while the right plot corresponds to the tagset of 45 symbols. For the spectral method, we
show a curve corresponding to the X' basis, and curves for the extended that use the £ most frequent training
subsequences

As a final detail, when computing next-symbol predictions with WFA we kept normaliz-
ing the state vector. That is, if we are given a prefix sequence w;; we compute o' | Ay @0
as the score for symbol o and &’ Tets, as the score for stopping, where &' is a normalized
. This

normalization should not change the predictions, but it helps avoiding numerical precision
problems when validation sequences are relatively long.

oL . . . 1 i+1 o TAmI-
state vector at position i. It is recursively computed as " = o¢; and o' "' = ————
ol TAwl-OL(X;

5.2 Results

We trained all types of models for the two sets of tags, namely the simplified set of 12 tags
and the original tagset of 45 tags. For the simplified set, the unigram model obtained a WER
of 69.4 % on validation data and the bigram improved to 66.6 %. For the original tagset, the
unigram and bigram WER were of 87.2 % and 69.4 %.

We then evaluated spectral models trained with the X' basis. Figure 3 plots the WER
of this method as a function of the number of states, for the simplified tagset (left) and
the original one (right). We can see that the spectral method improves the bigram baseline
when the number of states is 68 for the simplified tagset and 811 for the original tagset.
While the improvements are not huge, one interpretation of this result is that the spectral
method is able compress a bigram-based deterministic WFA with | X| + 1 states into a non-
deterministic WFA with less states. The same plot also shows curves of performance for the
spectral method, where the basis corresponds to the most frequent k subsequences in train-
ing, for several k. We clearly can see that as k grows the performance improves significantly.
We also can see that the choice of the number of states is less critical than with the X' basis.

We now comment on the performance of EM, which is presented in Fig. 4. The top
plots present the WER as a function of the number of states, for both tagsets. Clearly, the
performance significantly improves with the number of states, even for large number of
states up to 150. The bottom plots show convergence curves of WER in terms of the number
of EM iterations, for some selected number of states. The performance of EM improves the
bigram baseline after 20 iterations, and gets somewhat stable (in terms of WER) at about
60 iterations. Note that the cost of one EM iteration requires to compute expectations on all
training sequences, a computation that takes quadratic time with the number of states.

@ Springer

Mach Learn

12 tags 45 tags
70
| [EM —— [TEM ——
T Unigram --------- 80 Bigram J
68 \ Bigram 78
& gl 2 76 !
5 66 b l
£ .lh £
64
5 X\ 5 721 |
Y62 o0y
é o \\0\ § 68 L\V\A
]
58 64
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Number of States Number of States
85 EMn=5 —e—
EMn=10 -
EMn=25 -
EM n=50
—_ — EM n=100 -
&2 * 80 Eﬁ n=150 -
Py Py nigram -
g g \\ Bigram
§ § 75
]] . oo
el o —
S e S
= = 70
¥ 8. .
B et .
Uni e T g -
D 65 | iR ;
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Iteration Iteration

Fig. 4 Top plots: performance of EM with respect to the number of states, where each model was run for 100
iterations. Bottom: convergence of EM in terms of WER at validation. Left plots correspond to the simplified
tagset of 12 tags, while right plots correspond to the original tagset of 45 symbols

12 tags 45 tags
70 =7 T 72 [
ool | 1, 7
= o A fl
< Ly / < 70
s 66 Nt P [N
= 3 69 W/
= 64 o Vs — e ——
s A\ S -
5 N L5 68
T 62 ~ © \
5 — T 1 S«
= 60 | Spectral, * basls —e— _“'__\ = _ \/
Spectral, basis k=500 —&— Spectral, T basis —e— \
EM —— 66 | Spectral, basis k=500 —s—
58 H Ulgﬁlr':m J— 65 Bigram ——
0 10 20 30 40 50 0 10 20 30 40 50
Number of States Number of States

Fig. 5 Comparison of different methods in terms of WER on validation data with respect to number of states.
The left plot corresponds to the simplified tagset of 12 symbols, while the right plot corresponds to the tagset
of 45 symbols

Figure 5 summarizes the best curves of all methods, for the two tagsets. For machines up
to 20 states in the simplified tagset, and 10 states in the original tagset, the performance of
the spectral method with extended basis is comparable of that of EM. Yet, the EM algorithm
is able to improve the results when increasing the number of states. We should note that in
our implementation, the runtime of a single EM iteration is at least twice of the total runtime
of learning a model with spectral method.

@ Springer

Mach Learn

*
NNP , VBN IN NNP NNP , VBZ CC VBZ 1 R NN CC NN NNS
Bell , based in Los Angeles , makes and distributes electronic , computer and building products
1 2 3 4 5 6 7 8 9 10 11 12 13
Head Dir. Modifiers Head Dir. Modifiers
* LEFT A CCoy LEFT A
* RIGHT VBZg CCy RIGHT A
NNP; LEFT A VBZjo LEFT A
NNP; RIGHT ,2 VBN3 ;7 VBZjg RIGHT A
0 LEFT A AT LEFT A
2 RIGHT A AART] RIGHT ,12 NN13 CCq4 NNy5
VBN3 LEFT A 12 LEFT A
VBN3 RIGHT INy .12 RIGHT A
INy LEFT A NNi3 LEFT A
INy RIGHT NNPg¢ NNi3 RIGHT A
NNP5 LEFT A CCyy4 LEFT A
NNP5 RIGHT A CCyq RIGHT A
NNPg LEFT NNPs5 NNi5 LEFT A
NNPg RIGHT A NNi5 RIGHT A
7 LEFT A NNS16 LEFT AT
7 RIGHT A NNSi6 RIGHT A
VBZg LEFT NNP; 17 LEFT A
VBZg RIGHT CCg9 VBZ1y NNSi¢ .17 17 RIGHT A

Fig. 6 An example of a dependency tree. Each arc in the dependency tree represents a syntactic relation
between a head token (the origin of each arc) and one of its modifier tokens (the arc destination). The special
root token is represented by x. For each token, we print the part-of-speech, the word itself and its position,
though our head-automata grammars only model sequences of part of speech tags. The table below the tree
prints all head-modifier sequences of the tree. The subscript number next to each tag is the position of the
corresponding token. Note that for a sentence of n tokens there are always 2(n + 1) sequences, even though
most of them are empty

6 Non-deterministic split head-automata grammars

In this section we develop an application of the spectral method for WFA to the problem
of learning split head-automata grammars (SHAG) (Eisner and Satta 1999; Eisner 2000), a
context-free grammatical formalism whose derivations are dependency trees. A dependency
tree is a type of syntactic structure where the basic element is a dependency, a syntactic
relation between two words of a sentence represented as a directed arc in the tree. Figure 6
shows a dependency tree for an English sentence. In our application, we will assume that
the training set will be in the form of sentences (i.e. input sequences) paired with their
dependency tree. From this type of data, we will learn probabilistic SHAG models using the
spectral method that will be then used to predict the most likely dependency tree for test
sentences. In the rest of this section we first define SHAG formally. We then describe how
the spectral method can be used to learn a SHAG, and finally we describe how we parse
sentences with our SHAG models. Then, in Sect. 7 of this article we present experiments.

@ Springer

Mach Learn

6.1 SHAG

We will use x;.; = x;x;41 - - x; to denote a sequence of symbols x; withi <t < j. A SHAG
generates sentences So.y, where symbols s, € ¥ with 1 <t < N are regular words and
so = ¢ ¥ is a special root symbol. Let ¥ = ¥ U {x}. A derivation y, i.e. a dependency
tree, is a collection of head-modifier sequences (h,d, x;.7), where h € ¥ is a word, d €
{LEFT, RIGHT} is a direction, and x;.r is a sequence of 7 words, where each x, € X' is
a modifier of h in direction d. We say that & is the head of each x,. Modifier sequences
x.7 are ordered head-outwards, i.e. among x;.7, x; is the word closest to 4 in the derived
sentence, and x7 is the furthest. A derivation y of a sentence s(.y consists of a LEFT and a
RIGHT head-modifier sequence for each s,, i.e. there are always two sequences per symbol
in the sentence. As special cases, the LEFT sequence of the root symbol is always empty,
while the RIGHT one consists of a single word corresponding to the head of the sentence. We
denote by) the set of all valid derivations. See Fig. 6 to see the head-modifier sequences
associated with an example dependency tree.

Assume a derivation y contains (%, LEFT, xi.7) and (h, RIGHT, x{.;,). Let L(y,) be the
derived sentence headed by h, which can be expressed as

L(y,x7) Ly, x) h L(y, x1) - L(y, x7).
The language generated by a SHAG are the strings £(y, *) for any y € V.3
6.1.1 Probabilistic SHAG

In this article we use probabilistic versions of SHAG where probabilities of head-modifier
sequences in a derivation are independent of each other:

Poyy=] Peurlh.d. e

(h.d.xy.T)€Y
In the literature, standard arc-factored models further assume that

T+1

Pxirlh, d) = [[Pk, d, o),

t=1

where x7; is always a special STOP word, and o; is the state of a deterministic automa-
ton generating x;.74;. For example, setting o; = FIRST and o,~; = REST corresponds to
first-order models, while setting oy = NULL and o,.; = x,_; corresponds to sibling models
(Eisner 2000; McDonald et al. 2005; McDonald and Pereira 2006).

We will define a SHAG using a collection of weighted automata to compute proba-
bilities. Assume that for each possible head 4 in the vocabulary ¥ and each direction
d € {LEFT, RIGHT} we have a weighted automaton that computes probabilities of modifier

sequences as follows:
oo

P(ryrlh,d) = (af) Al Albdglid

Then, this collection of weighted automata defines an non-deterministic SHAG that assigns
a probability to each y €) according to (1).

3Throughout the paper we assume we can distinguish the words in a derivation, irrespective of whether two
words at different positions correspond to the same symbol.

@ Springer

Mach Learn

6.2 Learning SHAG

A property of our non-deterministic SHAG models is that the probability of a derivation fac-
tors into the probability of each head-modifier sequence. In other words, the state processes
only model horizontal structure of the tree, and different WFA do not interact in a derivation.
In addition, in this article we make the assumption that training sequences come paired with
dependency trees, i.e. we assume a supervised setting. Hence, we do not deal with the hard
problem of inducing grammars from sequences.

These two facts make the application of the spectral method for WFA almost trivial.
From the training set, we can decompose each dependency tree into sequences of modifiers,
and create a training set for each head of direction containing the corresponding sequences
of modifiers. Then, for each head and direction, we can learn WFA by direct application of
the spectral method.

6.3 Parsing with non-deterministic SHAG

Given a sentence sp.y we would like to find its most likely derivation,

y = argmax P(y).

YEY(s0:N)

This problem, known as MAP inference, is known to be intractable for hidden-state struc-
ture prediction models, as it involves finding the most likely tree structure while summing
out over hidden states. We use a common approximation to MAP based on first comput-
ing posterior marginals of tree edges (i.e. dependencies) and then maximizing over the tree
structure (see Park and Darwiche (2004) for complexity of general MAP inference and ap-
proximations). For parsing, this strategy is sometimes known as MBR decoding; previous
work has shown that empirically it gives good performance (Goodman 1996; Clark and
Curran 2004; Titov and Henderson 2006; Petrov and Klein 2007). In our case, we use the
non-deterministic SHAG to compute posterior marginals of dependencies. We first explain
the general strategy of MBR decoding, and then present an algorithm to compute marginals.

Let (s;, s;) denote a dependency between head word i and modifier word j. The posterior
or marginal probability of a dependency (s;, s;) given a sentence so.y is defined as

/vLi,j:P((Si,Sj) |SO:N): Z P(y)

YEV(s0:N) © (Si,8;)€Y

To compute marginals, the sum over derivations can be decomposed into a product of inside
and outside quantities (Baker 1979). In Appendix A we describe an inside-outside algorithm
for non-deterministic SHAG. Given a sentence 5.y and marginal scores (; j, we compute
the parse tree for so.y as

y = argmax Z log ?2)

YeY(so:N) (5i,5)€y
using the standard projective parsing algorithm for arc-factored models (Eisner 2000). Over-

all we use a two-pass parsing process, first to compute marginals and then to compute the
best tree.

@ Springer

Mach Learn

6.4 Related work

There have been a number of works that apply spectral learning methods to tree structures.
Dhillon et al. (2012) present a latent-variable model for dependency parsing, where the state
process models vertical interactions between heads and modifiers, such that hidden states
pass information from the root of the tree to each leaf. In their model, given the state of a
head, the modifiers are independent of each other. In contrast, in our case the hidden states
model interactions between the children of a head, but hidden states do not pass information
vertically. In our case the application of the spectral method is straightforward, while the
vertical case requires taking into account that at each node the sequence from the root to the
node branches out into multiple children.

There have been extensions by Bailly et al. (2010) and Cohen et al. (2012) of the spectral
method for probabilistic context-free grammars (PCFG), a formalism that includes SHAG.
In this case the state process can model horizontal and vertical interactions simultaneously,
by making use of tensor operators associated to the rules of the grammar. Recently, Cohen
et al. (2013) have presented experiments to learn phrase-structure models using the a spectral
method.

The works mentioned so far model a joint distribution over trees of different sizes, which
is the suitable setting for models like natural language parsing. In contrast, Parikh et al.
(2011) presented a spectral method to learn distributions over labelings of a fixed (though
arbitrary) tree topology.

In all these cases, the learning setting is supervised, in the sense that training sequences
are paired with their tree structure, and the spectral algorithm is used to induce the hidden
state process. A more ambitious problem is that of grammatical inference, where the goal
is to induce the model only from sequences. Regarding spectral methods, Mossel and Roch
(2005) study the induction of the topology of a phylogenetic tree-shaped model, and Hsu
et al. (2012) discuss spectral techniques to induce PCFG, with dependency grammars as a
special case.

7 Experiments on learning SHAG

In this section we present experiments with SHAG. We learn non-deterministic SHAG using
different versions of the spectral algorithm, and compare them to non-deterministic SHAG
learned with EM and to some baseline deterministic SHAG.

Our experiments involve fully unlexicalized models, i.e. parsing part-of-speech tag se-
quences. While this setting falls behind the state-of-the-art, it is nonetheless valid to analyze
empirically the effect of incorporating hidden states via weighted automata, which results in
large improvements. At the end, we present some analysis of the automaton learned by the
spectral algorithm to see the information that is captured in the hidden state space.

All the experiments were done with the dependency version of the English WSJ Penn
Treebank, using the standard partitions for training and validation (see Sect. 5). The models
were trained using the modifier sequences extracted from the training dependency trees, and
they were evaluated parsing the validation set and computing the Unlabeled Attachment
Score (UAS). UAS is an accuracy measure that accounts for the percentage of tokens that
were assigned the correct head word (note that in a dependency tree, each word modifies
exactly one head).

@ Springer

Mach Learn

Fig. 7 Unlexicalized DFAs DT JI, ...
illustrating the features encoded DT, JJ,...

in the deterministic baselines. For DTJJ, ...
clarity, on each automata we

added a separate final state, and a STop
special ending symbol STOP. N
(a) DET. (b) DET+F

()

7.1 Methods compared

As a SHAG is a collection of automata, each one has its own alphabet ¥ hd defined as the
set of symbols occurring in the training modifier sequences for that head 4 and direction d.
We compare the following models:

Baseline models Deterministic SHAG with a fixed global DFA structure. The PDFA tran-
sition probabilities for each head and direction are estimated using the training modifier
sequences. We define two concrete baselines depending on the DFA structure:

DET: A single state DFA as in Fig. 7(a).

DET+F: Two states, one emitting the first modifier of a sequence, and another emitting
the rest, as shown in Fig. 7(b) (see Eisner and Smith (2010) for a similar deterministic
baseline).

EM model A non-deterministic SHAG with n states trained with Expectation Maximiza-
tion (EM) as in Sect. 5.

Spectral models Non-deterministic SHAG where the WFA are trained with the spectral
algorithm. As in Sect. 5, we use substring expectation estimations and then we use Lemma 1
to obtain WFA that approximate full sequence distributions. The number of states for each
WFA is min(| X"4|, n), where n is a parameter of the model. We do experiments with two
variants of the spectral method:

X’ basis: The basis for each WFA is P"¢ = S"4 = (x"4) = x4 J {A}. For this model,
we use an additional parameter m, a minimal mass used to discard states. In each WFA,
we discard the states with proportional singular value < m.

Extended basis: f is a parameter of the model, namely a cut factor that defines the size of
the basis as follows. For each WFA, we use as basis P"? and S" the set of | X"9| f
most frequent training subsequences of symbols (up to length 4). Hence, f is a relative
size of the basis for a WFA, proportional to the size of its alphabet. We always include
the empty sequence A in the basis.

7.2 Results

The results for the deterministic baselines were a UAS of 68.52 % for DET and a UAS of
74.80 % for DET+F.

In the first set of experiments with the spectral method, we evaluated the models trained
with the X basis. Figure 8(a) shows the resulting UAS scores in terms of the parameter n
(the number of states). We plot curves for the basic spectral model with no state discarding

@ Springer

Mach Learn

@
o

o)
o

~
©

]
o

Det+F

Spectral, m =0 ---e-e
Spectral, m = 0.0001 - P
Spectral, m = 0.0005 —e—

Sgeetra\ m=0.001 e Spectral f=10 —=—
2 4 6 8 10 12 14 16 18 20 0 10 20 30 40 50
Number of States Number of States

(@ (b)

Fig. 8 Accuracy of the different spectral methods (UAS in function of the number of states). (a) Curves for
the X’ basis: basic spectral method (m = 0) and state discarding with minimum mass m > 0. (b) Curves for
the extended basis with different cut factors f

o

NN
N
O
Q)

Unlabeled Attachment Score (%)
N
~—_
»
Unlabeled Attachment Score (%)
~ ~
o o
———

(o2}
@

[)]
o a1
——

(m = 0) and with state discarding for different values of minimal mass (m > 0). The basic
model improves over the baselines, reaching a peak UAS of 79.75 % with 9 states, but then
the accuracy starts to drop and with 20 states it performs worse than DET+F. The curves
for the models with the singular-value based state discarding strategy also have a peak at 9
states, but then they converge to a stable performance, always above the baselines. The best
result is a UAS of 79.81 % for m = 0.0001, but the best overall curve is for m = 0.0005,
with a peak of 79.79 % and converging then to 79.64 %. Although very simple, our state
discarding strategy seems to be effective to obtain models with stable performance.

In the second set of experiments with the spectral method, we evaluated models estimated
with extended basis. Figure 8(b) shows curves for different cut factors f, plotting UAS
scores in terms of the number of states.* Here, we clearly see that the performance largely
improves and is more stable with bigger values for f.> The best results are clearly better
than the ones of the basic model (UAS 80.90 % vs. 79.81 %) and, more interestingly, the
curves reach stability without the need of a state discarding strategy.

The results for the experiments with EM are shown in Fig. 9. The left figure plots accu-
racy with respect to the number of states, where we see that EM obtains improvements as the
number of states increases (though for n > 100 the improvements are small). The right plot
shows the convergence of EM in terms of accuracy relative to the number of iterations. As
in the experiments with WA, EM needs about 50 iterations to obtain a stable performance.

To summarize, in Fig. 10(a) we compare the best runs of each method. In terms of ac-
curacy, the spectral method with extended basis obtains accuracies comparable to EM. We
would like to note that, as in the experiments with WFA, in terms of training time the spec-
tral algorithm is much faster than EM (each EM iteration takes at least twice the time of
running the spectral method).

41t must be clear that f =1 is not equivalent to a X’ basis. While both have the same basis size, the X’
basis only has sequences of length < 1, while the extended model may include longer sequences and discard
unfrequent symbols.

SFor f > 10 we did not see significant improvements in the performance.

@ Springer

Mach Learn

82 82

9 S

= 81 — < 80

[()

s | :

® 80 @ 78

[[

2 |/ s |/

5§79 I 5 76 [

s 8 H

% 78 I % 74 J

e °© i EMn=5 ——

< | EMn=10 - |}

% 7Tk % 72 EM2=20 @

S =} EMN=50 --e---
2 M ——1 70 EMn=100 —&—

20 40 60 80 100 120 140 20 40 60 80 100 120 140

Number of States Iteration

Fig. 9 Accuracy for EM. (a) UAS with respect to number of states. (b) UAS with respect to number of
training iterations. Curves for different numbers of states n

Fig. 10 Comparison of different 82
methods in terms of UAS with g —
respect to the number of states _. 80 A
& ?
(]
j53
[}
€ 76
2 Il
S [l
8 74
i
B 72
LN
S C——
s 70 Det+F]
Spectral (m=0.0005) —e—
68 | Spectral (f=10) —=— | |
I EM ——

0 10 20 30 40 50
Number of States

7.3 Result analysis

Our purpose in this section is to see what information is encoded in the models learned by the
spectral algorithm. However, hidden state spaces are hard to interpret, and this is even harder
if they are projected into a non-probabilistic space through a basis change, as in our case.
To do the analysis, we build DFA that approximate the behaviour of the non-deterministic
models when they generate highly probable sequences. The DFA approximations allows us
to observe in a simple way some linguistically relevant phenomena encoded in the states,
and to compare them with manually encoded features of well-known models. In this section
we describe the DFA approximation construction method, and then we use it to analyze
the most relevant unlexicalized automaton in terms of number of dependencies, namely, the
automaton for 7 = NN and d = LEFT.

7.3.1 DFA approximation for stochastic WFA
When generating a sequence, a DFA is in a single state at each step of the generation.
However, in a PNFA, what we have at each step is a vector with the probabilities of being at

each state. More generally, in a WFA, at each step we have an arbitrary vector in R", called

@ Springer

Mach Learn

(a) (b)
co = {a(\),a(JJ 11 DT STOP) }

DT JJ JJ NN c1 ={a(l]),a(J111)}

a big red apple ez = {a(JTTIDT)}
(©) (d)

'y
1
_a(>\) 17

alh -
S spa (T TN _> @

«(J1 JJ DT STOP)

a(JTJIDT)

Fig. 11 Example of construction of a 3 state DFA approximation. (a) Concrete example for the modifier
sequence “JJ JJ DT STOP”. (b) Forward vectors « for the prefixes of the sequence. (¢) Cosine similarity
clustering. (d) Resulting DFA after adding the transitions

the forward-state vector. For a WFA and a given sequence x = x; ...Xx;, the forward-state
vector after generating x is defined as

o(x) = (oclTAX1 .- 'Ax,)T.

While generating a sequence x, a WFA traverses the R" space with a path a(x), a(x1x3),
..., 0(xy...x;), resembling a deterministic process in an infinite-state space.

To build a DFA approximation, we first compute a set of forward vectors corresponding
to the most frequent prefixes of training sequences. Then, we cluster these vectors using
a Group Average Agglomerative algorithm using the cosine similarity measure (Manning
et al. 2008). Each cluster i defines a state in the DFA, and we say that a sequence m . is in
state i if its corresponding forward vector at time ¢ is in cluster i. The transitions in the DFA
are defined using a procedure that looks at how sequences traverse the states. If a sequence
my, is at state i at time ¢+ — 1, and goes to state j at time ¢, then we define a transition
from state i to state j with label m,. This procedure may require merging states to give a
consistent DFA, because different sequences may define different transitions for the same
states and modifiers. After doing a merge, new merges may be required, so the procedure
must be repeated until a DFA is obtained.

Figure 11 illustrates the DFA construction process showing fictitious forward vectors in
a 3 dimensional space. The forward vectors correspond to the prefixes of the sequence “JJ
JJ DT STOP”, a frequent left-modifier sequence for nouns. In this example, we construct
a 3 state automaton by clustering the vectors into three different sets and then defining the
transitions as described in the previous paragraphs.

7.3.2 Experiments on unlexicalized WFA

A DFA approximation for the automaton (NN,LEFT) is shown in Fig. 12. The vectors were
originally divided into ten clusters, but the DFA construction required two state mergings,

@ Springer

Mach Learn

Fig. 12 DFA approximation for
the generation of NN left
modifier sequences

prp$ nn pos
jj dtnnp

prp$ rb pos
ji dtnnp

leading to a eight state automaton. The state named I is the initial state. Clearly, we can see
that there are special states for punctuation (state 9) and coordination (states 1 and 5). States
0 and 2 are harder to interpret. To understand them better, we computed an estimation of
the probabilities of the transitions, by counting the number of times each of them is used.
We found that our estimation of generating STOP from state 0 is 0.67, and from state 2
it is 0.15. Interestingly, state 2 can transition to state O generating PRP$, POS or DT, that
are usual endings of modifier sequences for nouns (recall that modifiers are generated head-
outwards, so for a left automaton the final modifier is the left-most modifier in the sentence).

8 Conclusion

The central objective of this paper was to offer a broad view of the main results in spectral
learning in the context of grammatical inference, and more precisely in the context of learn-
ing weighted automata. With this goal in mind, we presented the recent advances in the field
in a way that makes the main underlying principles of spectral learning accessible to a wide
audience.

We believe this to be useful since spectral methods are becoming an interesting alter-
native to the classical EM algorithms widely used for grammatical inference. One of the
attractiveness of the spectral approach resides in its computational efficiency (at least in the
context of automata learning). This efficiency might open the door to large-scale applica-
tions of automata learning, where models can be inferred from big data collections.

Apart from scalability, some important questions about the different properties of EM
versus spectral learning remain unanswered. That been said, in broad terms we can make
two main distinctions between spectral learning and EM:

@ Springer

Mach Learn

e EM attempts to minimize the KL divergence between the model distribution and the ob-
served distribution. In contrast, the spectral method attempts to minimize an £, distance
between model and observed distribution.

e EM searches for stable points of the likelihood function. Instead, the spectral method finds
an approximate minimizer of a global loss function.

Most empirical studies, including ours, suggest that the statistical performance of spectral
methods is similar to that of EM (e.g. see Cohen et al. 2013 for experiments learning latent-
variable probabilistic context free grammars). However, our empirical understanding is still
quite limited and more research needs to be done to understand the relative performance of
each algorithm with respect to the complexity of the target model (i.e., size of the alphabet
and number of states). Nonetheless, spectral methods offer a very competitive computational
performance when compared to iterative methods like EM.

A key difference between the spectral method and other approaches to induce weighted
automata is at the conceptual level, particularly in the way in which the learning problem
is framed. This conceptual difference is precisely what we tried to emphasize in our pre-
sentation of the subject. In a snapshot, the central idea of the spectral approach to learning
functions over X* is to directly exploit recurrence relations satisfied by families of functions.
This is done by providing algebraic formulations of these recurrence relations.

Because spectral learning for grammatical inference is still a young field, many prob-
lems remain open. At a technical level, we have already mentioned the two most important:
how to choose a sample-dependent basis for the Hankel matrices fed to the method, and
how to guarantee that the output WFA is stochastic or probabilistic. The former problem
has been discussed at large in Sect. 4.2.2, where we gave heuristics for choosing the in-
put parameters given to the algorithm. The latter problem has received less attention in the
present paper, mainly because our experimental framework is not affected by it. However,
ensuring the output of the spectral method is a proper probability distribution is important
in many applications. Different solutions have been proposed to address this issue: Bailly
(2011) gave a spectral method for Quadratic WFA which by definition always define a non-
negative function; heuristics to modify the output of a spectral algorithm in order to enforce
non-negativity were discussed in Cohen et al. (2013) in the context of PCFG, though they
also apply to WFA; for HMM one can use methods based on spectral decompositions of
tensors to overcome this problem (Anandkumar et al. 2012b); one can obtain probabilistic
WFA by imposing some convex constraints on the search space of the optimization-based
spectral method presented in Balle et al. (2012). All these methods rely on variations of the
SVD-based method presented in this paper. An interesting exercise would be to compare
their behavior in practical applications.

Besides these technical questions, several conceptual questions regarding spectral learn-
ing and its relations to EM remain open. In particular, we would like to have a deeper un-
derstanding of the relations between EM, spectral learning and split-merge algorithms, both
from a theoretical perspective and from a practical point of view. On the other hand, the prin-
ciples that underlie spectral learning can be applied to any computational or probabilistic
model with some notion of locality, in the sense that the model admits some strong Markov-
like conditional independence assumptions. Several extensions along these lines can already
be found in the literature, but the limits of these techniques remain largely unknown. From
the perspective of grammatical inference, learning beyond stochastic rational languages is
the most promising line of work.

Acknowledgements We are grateful to the anonymous reviewers for providing us with helpful comments.
This work was supported by a Google Research Award, and by projects XLike (FP7-288342), BASMATI

@ Springer

Mach Learn

(TIN2011-27479-C04-03), SGR-LARCA (SGR2009-1428), and by the EU PASCAL2 Network of Excel-
lence (FP7-ICT-216886). Borja Balle was supported by an FPU fellowship (AP2008-02064) from the Span-
ish Ministry of Education. Xavier Carreras was supported by the Ramén y Cajal program of the Spanish
Government (RYC-2008-02223). Franco M. Luque was supported by the National University of Cérdoba
and by a Postdoctoral fellowship of CONICET, Argentinian Ministry of Science, Technology and Productive
Innovation. Ariadna Quattoni was supported by a Juan de la Cierva contract from the Spanish Government
(JCI-2009-04240).

Appendix A: An inside-outside algorithm for non-deterministic SHAG

In this section we sketch an algorithm to compute marginal probabilities of dependencies.
Our algorithm is an adaptation of the parsing algorithm for SHAG by Eisner and Satta
(1999) to the case of non-deterministic head-automata, and has a runtime cost of O (n>N?),
where n is the number of states of the model, and N is the length of the input sentence.
Hence the algorithm maintains the standard cubic cost on the sentence length, while the
quadratic cost on 7 is inherent to the computations defined by our model in Eq. (2). The
main insight behind our extension is that, because the computations of our model involve
state-distribution vectors, we need to extend the standard inside/outside quantities to be in
the form of such state-distribution quantities.®

Throughout this section we assume a fixed sentence s.y . Let Y (x;.;) be the set of deriva-
tions that yield a subsequence x;.;. For a derivation y, we use root(y) to indicate the root
word of it, and use (x;,x;) € y to refer a dependency in y from head x; to modifier x;.
Following Eisner and Satta (1999), we use decoding structures related to complete half-
constituents (or “triangles”, denoted C) and incomplete half-constituents (or “trapezoids”,
denoted 1), each decorated with a direction (denoted L and R). We assume familiarity with
their algorithm.

We define Oi’jR € R" as the inside score-vector of a right trapezoid dominated by depen-
dency (s;, s;),

LR si,R
oi,j = Z P()’,)‘YT' (X1:1).
YEV(si:j) + (si8j)€Y
y={{si . Roxp)l Uy, xe=s;

The term IP(y’) is the probability of head-modifier sequences in the range s;.; that do not
involve s;. The term "R (x,,) is a Sforward state-distribution vector —the gth coordinate
of the vector is the probability that s; generates right modifiers x;., and remains at state g.
Similarly, we define ¢},’jR € R" as the outside score-vector of a right trapezoid, as

ILR si,R
¢, = Z P(y')B* " (Xr41:7)s
VEV(s0:8jm) * TOOU¥)=50,
y={ls1.Roxr)} Uy, xe=s;

where % 'R(x,+1;T) € R" is a backward state-distribution vector—the gth coordinate is the
probability of being at state g of the right automaton of s; and generating x,,.7. Analogous

6Technically, when working with the projected operators the state-distribution vectors will not be distributions
in the formal sense. However, they correspond to a projection of a state distribution, for some projection that
we do not recover from data (namely a change of basis as discussed in Sect. 2.2). This projection has no effect
on the computations because it cancels out.

@ Springer

Mach Learn

Fig. 13 Graphical depiction of (a)
the inside scores computations

for the right half-constituents. 0% =
Computations for left - -
half-constituents are

symmetrical. (a) Empty right (b)
half-constituent (“triangle”).

(b) Non-empty complete right
half-constituent (“triangle”).

(¢) Incomplete right 075 - ey
half-constituent (“trapezoid”) i j k j
(©)
=) +
Ok Bt J
i j i k k+1 j

inside-outside expressions can be defined for the rest of structures (left/right triangles and
trapezoids). With these quantities, we can compute marginals as

(0)T¢ Z7v ifi < j,
Mij =

(0[;1.)" ¢,.;j z-bifj <i,

C,R * R
where Z = Z),Ey(mw) P(y) =0,y)T ok
Finally, we sketch the equations for computing inside and outside scores in O (N?) time.
The inside computations are, for 0 <i < j < N:

o = ot 3)
0 = ((00F) e RyeR)
k=i+1
J
s L s ,
0% =Y ((0551) el) (ASR) ToE)
k=i

Figure 13 illustrates these equations. Figure 13(a) corresponds to the basic case of Eq. 3,
and Figs. 13(b) and 13(c) correspond respectively to Eqgs. (4) and (5) for a fixed k.
The outside computations are:

don =t ©)

+Z S ArLehb ek %)

@ Springer

Mach Learn

Fig. 14 Graphical depiction of (a)

the outside scores computations .

for the right half-constituents. ¢8J§\} e = 50 SN
Computations for left ’ . -
half-constituents are 0 N 0 N
symmetrical. The dotted shapes (b)
correspond to outsides and the

solid shapes correspond to

insides
CR =
bij -
7 7 j
© N
ST en T
i j i j+1 k
7 J 7 j+1 k
(e)
LR = C,R .
i Pk
i j i j k
- R
LR C,R\T s;.Ry .C,R
¢ =) ((0507) e)ey ®)

k=j

Figure 14 illustrates these equations. Figure 14(a) corresponds to the basic case of Eq. 6.
Figures 14(b), (c) and (d) correspond to the three members of Eq. 7. Figure 14(e) corre-
sponds to Eq. 8.

References

Anandkumar, A., Foster, D. P., Hsu, D., Kakade, S., & Liu, Y. K. (2012a). A spectral algorithm for latent
Dirichlet allocation. In P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger
(Eds.), NIPS (pp. 926-934).

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., & Telgarsky, M. (2012b). Tensor decompositions for
learning latent variable models. arXiv:1210.7559.

Anandkumar, A., Hsu, D., & Kakade, S. M. (2012¢). A method of moments for mixture models and hidden
Markov models. Journal of Machine Learning Research—Proceedings Track, 23, 33.1-33.34.

Bailly, R. (2011). Quadratic weighted automata: spectral algorithm and likelihood maximization. Journal of
Machine Learning Research—Proceedings Track, 20, 147-163.

Bailly, R., Denis, F., & Ralaivola, L. (2009). Grammatical inference as a principal component analysis prob-
lem. In L. Bottou & M. Littman (Eds.), Proceedings of the 26th international conference on machine
learning (pp. 33—40). Montreal: Omnipress.

@ Springer

http://arxiv.org/abs/arXiv:1210.7559

Mach Learn

Bailly, R., Habrard, A., & Denis, F. (2010). A spectral approach for probabilistic grammatical inference on
trees. In M. Hutter, F. Stephan, V. Vovk, & T. Zeugmann (Eds.), Lecture notes in computer science
(Vol. 6331, pp. 74-88). Berlin: Springer.

Baker, J. K. (1979). Trainable grammars for speech recognition. In D. H. Klatt & J. J. Wolf (Eds.), Speech
communication papers for the 97th meeting of the Acoustical Society of America (pp. 547-550).

Balle, B. (2013). Learning finite-state machines: algorithmic and statistical aspects. PhD thesis, Universitat
Politecnica de Catalunya.

Balle, B., & Mohri, M. (2012). Spectral learning of general weighted automata via constrained matrix com-
pletion. In Advances in neural information processing systems (Vol. 25, pp. 2168-2176).

Balle, B., Quattoni, A., & Carreras, X. (2011). A spectral learning algorithm for finite state transducers. In
D. Gunopulos, T. Hofmann, D. Malerba, & M. Vazirgiannis (Eds.), Lecture notes in computer science:
Vol. 6911. ECML/PKDD (1) (pp. 156-171). Berlin: Springer.

Balle, B., Quattoni, A., & Carreras, X. (2012). Local loss optimization in operator models: a new insight into
spectral learning. In J. Langford & J. Pineau (Eds.), Proceedings of the 29th international conference
on machine learning (ICML-2012), ICML’12 (pp. 1879-1886). New York: Omnipress.

Balle, B., Castro, J., & Gavalda, R. (2013). Learning probabilistic automata: a study in state distinguishability.
Theoretical Computer Science, 473, 46-60.

Beimel, A., Bergadano, F., Bshouty, N., Kushilevitz, E., & Varricchio, S. (2000). Learning functions repre-
sented as multiplicity automata. Journal of the ACM, 47, 506-530.

Berstel, J., & Reutenauer, C. (1988). Rational series and their languages. Berlin: Springer.

Boots, B., Siddiqi, S., & Gordon, G. (2011). Closing the learning planning loop with predictive state repre-
sentations. The International Journal of Robotics Research, 30(7), 954-966.

Carlyle, J. W., & Paz, A. (1971). Realizations by stochastic finite automata. Journal of Computer and System
Sciences, 5(1), 26-40.

Castro, J., & Gavalda, R. (2008). Towards feasible PAC-learning of probabilistic deterministic finite automata.
In Proceedings of the 9th international colloquium on grammatical inference (ICGI) (pp. 163—174).

Clark, A., & Thollard, F. (2004). PAC-learnability of probabilistic deterministic finite state automata. Journal
of Machine Learning Research, 5, 473-497.

Clark, S., & Curran, J. R. (2004). Parsing the WSJ using CCG and log-linear models. In Proceedings of the
42nd meeting of the association for computational linguistics (ACL’04), main volume, Barcelona, Spain
(pp- 103-110).

Cohen, S. B., Stratos, K., Collins, M., Foster, D. P., & Ungar, L. (2012). Spectral learning of latent-variable
PCFGS. In Proceedings of the 50th annual meeting of the association for computational linguistics
(Volume 1: Long papers) (pp. 223-231). Jeju Island: Association for Computational Linguistics.

Cohen, S. B., Stratos, K., Collins, M., Foster, D. P., & Ungar, L. (2013). Experiments with spectral learn-
ing of latent-variable pcfgs. In Proceedings of the 2013 conference of the North American chapter of
the Association for Computational Linguistics: human language technologies (pp. 148—157). Atlanta:
Association for Computational Linguistics.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, 39(1), 1-38.

Denis, F., & Esposito, Y. (2008). On rational stochastic languages. Fundamenta Informaticae, 86(1-2), 41—
77.

Dhillon, P., Rodu, J., Collins, M., Foster, D., & Ungar, L. (2012). Spectral dependency parsing with la-
tent variables. In Proceedings of the 2012 joint conference on empirical methods in natural language
processing and computational natural language learning (pp. 205-213). Jeju Island: Association for
Computational Linguistics.

Eisner, J. (2000). Bilexical grammars and their cubic-time parsing algorithms. In H. Bunt & A. Nijholt (Eds.),
Advances in probabilistic and other parsing technologies (pp. 29—-62). Norwell: Kluwer Academic.
Eisner, J., & Satta, G. (1999). Efficient parsing for bilexical context-free grammars and head-automaton
grammars. In Proceedings of the 37th annual meeting of the Association for Computational Linguistics

(ACL), University of Maryland (pp. 457-464).

Eisner, J., & Smith, N. A. (2010). Favor short dependencies: parsing with soft and hard constraints on de-
pendency length. In H. Bunt, P. Merlo, & J. Nivre (Eds.), Trends in parsing technology: dependency
parsing, domain adaptation, and deep parsing (Vol. 8, pp. 121-150). Berlin: Springer.

Fliess, M. (1974). Matrices de Hankel. Journal de Mathématiques Pures et Appliquées, 53, 197-222.

Goodman, J. (1996). Parsing algorithms and metrics. In Proceedings of the 34th annual meeting of the Asso-
ciation for Computational Linguistics (pp. 177-183). Santa Cruz: Association for Computational Lin-
guistics.

Hsu, D., Kakade, S. M., & Zhang, T. (2009). A spectral algorithm for learning hidden Markov models. In
Proceedings of the annual conference on computational learning theory (COLT).

@ Springer

Mach Learn

Hsu, D., Kakade, S. M., & Liang, P. (2012). Identifiability and unmixing of latent parse trees. Advances in
neural information processing systems (NIPS).

Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R. E., & Sellie, L. (1994). On the learnability of
discrete distributions. STOC ’94. In Proceedings of the twenty-sixth annual ACM symposium on theory
of computing (pp. 273-282). New York: ACM.

Luque, F. M., Quattoni, A., Balle, B., & Carreras, X. (2012). Spectral learning for non-deterministic depen-
dency parsing. In Proceedings of the 13th conference of the European chapter of the Association for
Computational Linguistics (pp. 409-419). Avignon: Association for Computational Linguistics.

Manning, C. D., Raghavan, P., & Schiitze, H. (2008). Introduction to information retrieval (1st ed.). Cam-
bridge: Cambridge University Press.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated corpus of English:
the Penn Treebank. Computational Linguistics, 19, 313-330.

McDonald, R., & Pereira, F. (2006). Online learning of approximate dependency parsing algorithms. In Pro-
ceedings of the 11th conference of the European chapter of the Association for Computational Linguis-
tics (pp. 81-88).

McDonald, R., Pereira, F., Ribarov, K., & Hajic, J. (2005). Non-projective dependency parsing using spanning
tree algorithms. In Proceedings of human language technology conference and conference on empiri-
cal methods in natural language processing (pp. 523-530). Vancouver: Association for Computational
Linguistics.

Mohri, M. (2009). Weighted automata algorithms. In M. Droste, W. Kuich, & H. Vogler (Eds.), Monographs
in theoretical computer science. An EATCS series. Handbook of weighted automata (pp. 213-254).
Berlin: Springer.

Mossel, E., & Roch, S. (2005). Learning nonsingular phylogenies and hidden Markov models. In Proceedings
of the 37th annual ACM symposium on theory of computing (STOC) (pp. 366-375).

Palmer, N., & Goldberg, P. W. (2007). PAC-learnability of probabilistic deterministic finite state automata in
terms of variation distance. Theoretical Computer Science, 387(1), 18-31.

Parikh, A., Song, L., & Xing, E. (2011). A spectral algorithm for latent tree graphical models. In Proceedings
of the 28th international conference on machine learning, ICML 2011 (ICML) (pp. 1065-1072).

Park, J. D., & Darwiche, A. (2004). Complexity results and approximation strategies for map explanations.
Journal of Artificial Intelligence Research, 21, 101-133.

Petrov, S., & Klein, D. (2007). Improved inference for unlexicalized parsing. Proceedings of the main con-
ference, Association for Computational Linguistics. In Human language technologies 2007: the confer-
ence of the North American chapter of the Association for Computational Linguistics (pp. 404—411).
Rochester: Association for Computational Linguistics.

Petrov, S., Das, D., & McDonald, R. (2012). A universal part-of-speech tagset. In Proceedings of LREC.

Ron, D, Singer, Y., & Tishby, N. (1998). On the learnability and usage of acyclic probabilistic finite automata.
Journal of Computing Systems Science, 56(2), 133—152.

Salomaa, A., & Soittola, M. (1978). Automata-theoretic aspects of formal power series. New York: Springer.

Schiitzenberger, M. (1961). On the definition of a family of automata. Information and Control, 4, 245-270.

Siddiqi, S. M., Boots, B., & Gordon, G. J. (2010). Reduced-rank hidden Markov models. In Proceedings of
the thirteenth international conference on artificial intelligence and statistics (AISTATS) (pp. 741-748).

Song, L., Siddiqi, S. M., Gordon, G., & Smola, A. (2010). Hilbert space embeddings of hidden Markov
models. In J. Fiirnkranz & T. Joachims (Eds.), Proceedings of the 27th international conference on
machine learning (ICML-10) (pp. 991-998). Haifa: Omnipress.

Titov, 1., & Henderson, J. (2006). Loss minimization in parse reranking. In Proceedings of the 2006 con-
ference on empirical methods in natural language processing (pp. 560-567). Sydney: Association for
Computational Linguistics.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134-1142.

Wiewiora, E. (2005). Learning predictive representations from a history. In Proceedings of the 22nd interna-
tional conference on machine learning (pp. 964-971). New York: ACM.

@ Springer

	Spectral learning of weighted automata
	Abstract
	Introduction
	Related work

	Weighted automata and Hankel matrices
	Functions on strings and their Hankel matrices
	Weighted ﬁnite automata
	Example

	Observables in stochastic weighted automata
	Duality, spectral learning, and forward-backward decompositions
	Duality and minimal weighted automata
	A spectral learning algorithm
	Sample complexity of spectral learning
	Choosing the parameters

	The forward-backward interpretation

	Experiments on learning PNFA
	Methods compared
	Unigram model
	Bigram model
	EM model
	Spectral model

	Results

	Non-deterministic split head-automata grammars
	SHAG
	Probabilistic SHAG

	Learning SHAG
	Parsing with non-deterministic SHAG
	Related work

	Experiments on learning SHAG
	Methods compared
	Baseline models
	EM model
	Spectral models

	Results
	Result analysis
	DFA approximation for stochastic WFA
	Experiments on unlexicalized WFA

	Conclusion
	Acknowledgements
	Appendix A: An inside-outside algorithm for non-deterministic SHAG
	References

