
Using Distance Fields for Object Representation and
Rendering

Mark W. Jones and Richard Satherley
Department of Computer Science, University of Wales Swansea

United Kingdom SA2 8PP

March 12, 2001

Abstract

Distance fields are a two- or three-dimensional array of
values, where each value is the minimum distance to
the encoded object. Usually distance fields are signed,
such that negative values signify the point is inside the
object, and positive are outside. Distance fields are be-
coming a popular research area as more applications are
discovered, and many of these application areas are dis-
cussed in this report. More importantly, algorithms for
computing distance fields quickly are also examined.
Both existing algorithms, and those developed by our-
selves at Swansea are discussed.

1 INTRODUCTION

The work presented in this paper is closely related to
the field of Volume Graphics [1]. Volume Graphics is
an emerging area of Computer Graphics which is con-
cerned with the input, storage, construction, modelling,
analysis, manipulation, display and animation of spatial
objects in a true three-dimensional form. When com-
paring Volume Graphics to traditional surface graph-
ics, the relationship has been likened to the relation-
ship of that between two-dimensional images and vec-
tor graphics [2]. The employment of volume graphics
techniques offers the benefits ofscalable renderingal-
gorithms for extremely large scenes,visual effectssuch
as fire, fur and roughness (Section 4.3) andconsistency
of rendering(the ability to render objects of different
source types under the same conditions).

In this paper we shall introduce distance fields in Sec-
tion 2 and examine various methods for calculating dis-
tance fields in Section 3. We will discuss a naive al-
gorithm using binary segmentation in Section 3.1, and
improve this using sub-voxel accuracy (Section 3.2) and
octrees (Section 3.3). Approximate methods are intro-
duced in Section 3.4, and improved in Section 3.5. A
new approximate method is presented in Section 3.6,
and an analysis of all of these methods is presented
in Section 3.7. Section 4 presents three of our appli-
cations of distance fields, namely contour connection
(Section 4.1), the morphological closing operator (Sec-
tion 4.2) and hypertexture (Section 4.3). Further work

and conclusions are given in Section 5.

2 BACKGROUND

A distance fielddata setD representing a surfaceS is
defined as:D : R3 ! R and forp 2 R3 ,

D(p) = sgn(p) �min fjp� qj : q 2 Sg

sgn(p) =

�
�1 if p inside
+1 if p outside

wherejj is the Euclidean norm

(1)

For each voxel in the three-dimensional grid, the dis-
tance to the closest point on the surface is stored. Ad-
ditionally, all voxels inside the object are set to be neg-
ative, and all voxels outside are set to positive. This
distance field has effectively voxelised the object as the
original surface can be displayed by rendering the iso-
surface of level 0 fromD – i.e. S = fq : D(q) = 0g

whereq 2 R
3 . Non-integer grid points can be calcu-

lated from surrounding integer grid points using trilin-
ear interpolation or any other appropriate scheme of in-
terpolation. Surface normals can be calculated from the
grey-level data [3], and due to the choice of the sign
function point away from the object centre, aswell as
being perpendicular to the surface due to the distance
field. Figure 1 demonstrates several different forms of
surface representation.

Figure 1: Binary segmented, original and distance field
slices from the CThead dataset.

Distance fields have been used for applications
within Computer Graphics for morphing [4], virtual en-
doscopy or skeletal representation [5, 6] and accelerat-
ing ray tracing [7] (amongst other applications). In each

case a chamfer distance transform has been used (Sec-
tion 3.4). This paper demonstrates more accurate meth-
ods than the basic CDT. A great body of work describes
distance transforms in detail, in particular the interested
reader is directed to Cuisenaire and Macq’s review [8].
This paper improves the current best vector distance
transform (in Section 3.6) and proposes a distance shell
(Section 3.5) rather than the widely used binary seg-
mentation (Section 3.1) for computation. It also de-
scribes a practical, efficient algorithm for the computa-
tion of an exact solution. Frisken et al. [9] have given a
heirarchical computation for distance fields. This gives
a compact storage, but trades off accuracy. In this pa-
per we are concerned with accuracy. We are also inter-
ested in giving practical algorithms for calculation, and
demonstrating new effects (for general objects) such as
hypertexture (Section 4.3) and true distance morpho-
logical algorithms (Section 4.2). The next section pro-
gresses through each algorithm, from simplest to most
complex, highlighting our contributions on the way.

3 Distance Field Calculation

3.1 Naive Calculation

A relatively straightforward method of calculation is to
first apply a segmentation functionf as:

f(v) =

�
1 if v is inside the surface
0 otherwise

wherev 2 Z3

(2)

Then for each voxelv, we set the distance field at
voxel v to 1 (D(v) = 1). For each voxelw, we set
D(v) = min(D(v); jv�wj) wheref(w) = 1, andjj is
the Euclidean distance between two voxels’ positions.
Each voxel will be taken in turn, and its distance will
be calculated to all voxels which comprise the object.
Themin operator ensures that the minimum distance is
stored.

This algorithm produces an accurate distance field in
the sense that each integer grid point in the field has
an accurate distance to the surface encoded by the seg-
mentation function. Unfortunately as a discretised seg-
mentation function is used, this has the effect that the
distance field represents a discretised surface. Another
negative aspect of this algorithm is that the complexity
of O(n2) results in long computational times. If we take
the CThead dataset for example (256� 256� 113) we
must make around 50 trillion calculations. Even reject-
ing voxels immediately where their x, y or z position
is further away than the current minimum distance does
not bring the rendering time down to a useable level.
Figure 2 shows the discretised surface that arises when
sampling a sphere using a binary grid. Even when over-
sampling is used, the fact that no information is avail-
able away from the vicinity of the surface, means that
normals have a restricted orientation.

Figure 2: Rendering of spheres using jittered (left col-
umn) and regular sampling (right column). Samples per
voxel (from top) 1, 8, 27, 125, 9261.

3.2 Sub-Voxel Accuracy

The quality of the distance field representation can be
improved by measuring the distances to a sub-voxel ac-
curacy. Instead of employing a binary segmentation
function, the distances to the actual surface are calcu-
lated. In the case of the chess piece we can calculate
the distance to the closest point on each triangle. This
effectivelyvoxelisesthe chess piece. Voxelisation is the
process of converting an object of one source type into
voxel (volume) data. (In fact the binary segmentation
function mentioned in the previous section is often used
for voxelisation). We have studied the methods for vox-
elising triangular mesh objects in a previous paper [10],
and discovered that it is often quicker to voxelise and
employ a volume renderer than to ray trace the original
triangular mesh. This is mainly because volume ren-
dering scales so well. The time to render is based upon
the size of the volume data rather than the complexity
of the object. Another benefit of voxelisation is the fact
that once all scene objects are encoded by a common
data type, it is possible to apply rendering effects uni-
formly across all objects. Also rendering effects such as
texture mapping or bump mapping which are tradition-
ally carried out in the rendering phase can be carried out

during the voxelisation phase, and therefore view inde-
pendent images can be rendered consistently from the
voxelised objects, thus removing the need to perform
the texture and bump mapping for each new view.

The distance to a triangle is a non-trivial problem,
and is treated in detail in a separate report [11]. De-
pending upon the position of the voxel, the closest dis-
tance to the triangle may be a vertex, an edge between
vertices, or the plane of the triangle. We therefore pre-
sented an efficient algorithm for projecting a point onto
the triangles plane, performing tests to determine which
area the point is in, and then calculating the distance ap-
propriately.

In the case of triangular mesh objects the complexity
becomes O(nm), where n is the number of voxels and m
is the number of triangular facets. For example Figure 3
shows volume rendered chess pieces, each voxelised to
a grid of60�60�60and originally comprising of about
1500 triangles. In that case 324 million calculations are
required for each piece taking 287 seconds on a 1GHz
Athlon (for the pawn).

Figure 3: Distance field encoded chess pieces rendered
with VLib [12].

One of our other contributions to this area is to con-
vert CT data (such as the UNC CThead data set) into a
sub-voxel accurate distance field. A similar algorithm
to the naive algorithm can be used, but instead off

encoding a binary segmentation,f encodes those cells
which are transverse. A cell is a cuboid made up of 8
neighbouring voxels. It is transverse when at least one
voxel is inside the surface, and at least one is outside
the surface. This cell will have a piece of the surface
passing through it. We triangulate that part of the sur-
face using the tiling tetrahedra algorithm [13] as this
removes the ambiguities of marching cubes. The dis-
tance is then calculated to the triangles using the same
method as for voxelisation. There are alternative meth-
ods for constructing a surface from the field, although
these are more complex to compute and as we shall see
this is already a computationally intense process.

Using this method an accurate Euclidean distance
field can be created for the UNC CThead. Using the
naive algorithm this would take about 60 days on a
1GHz Athlon. We actually implemented it using coarse
grain parallelisation, and executed it on 8 processors (1
1GHz Athlon, 5 800MHz Athlons and 2 866MHz Pen-

tium IIIs) in just over 8 days. We needed this dataset to
compare the accuracy with the faster methods reported
in the next sections.

3.3 Employing an Octree

We can improve the calculation of distance to O(nlogn)
using an octree (in our case a Branch on Need Oc-
tree [14] (BONO) as the data size is not a power of 2).
We can reject those parts of the octree which are known
not to contain any transverse voxels. Primarily it is used
to reject portions of the octree (and thus large numbers
of voxels) which are further away than our current min-
imum distance (D(x,y,z)). This can be improved fur-
ther by using a neighbouring voxel’s closet point as a
good starting point for the current voxel, thus removing
large parts of the octree immediately. These two meth-
ods improve performance considerably, particularly in
the regions close to the surface. An identical Euclidean
distance field to that of the previous section can be com-
puted in 126 minutes on a single 1GHz Athlon.

3.4 Approximation Methods – Chamfer
Distance Transforms

The sheer computational expense of the naive imple-
mentation has led to the application ofdistance tran-
forms. These have been implemented as multiple di-
lations from a binary segmented surface, and more effi-
ciently as a 2 pass process. First we begin with an initial
distance field,D (equation 3). Local distance propaga-
tion (equation 4) is achieved with a number of passes of
a distance matrix, dM . Each pass loops through each
voxel in a certain order and direction according to the
needs of the matrix.

D(p) =

�
0 if f(p) = 1; 9 q 2 p26; f(q) = 0

1 otherwise

wherep 2 Z3; andp26 is the set of voxels
which are the 26 neighbours ofp

(3)

D(i; j; k) = min
�
D(x+ i; y + j; z + k) + dM (i; j; k)

�
8 i; j; k 2 dM wherei; j; k 2 Z

(4)
Chamfer distance transforms propagate local dis-

tance by addition of known neighbourhood values ob-
tained from the distance matrix,dM , (an example of
which is in Figure 4). Each value in the matrix repre-
sents the local distance value. This matrix is applied in
two passes.

/* Forward Pass */
FOR(z = 0; z < fz; z++)

FOR(y = 0; y < fy; y++)
FOR(x = 0; x < fx; x++)
D(x,y,z) = Eq.4

/* Backward Pass */
FOR(z = fz-1; z � 0; z--)

FOR(y = fy-1; y � 0; y--)
FOR(x = fx-1; x � 0; x--)
D(x,y,z) = Eq.4

3

225

5 5

5

2

22

2

6

6

6

6 6

6

6

65

5 5

5

3 3

33

6

6

65

5

5

5

6

6 5 6

5

656

5 1

3 3

3 3

3

6 5 6

6326

5 2 2 5

63236

6 5 6

5 5

5225

1

1

3 3

1

3 3

3 3

3 3

33

3 3

0

1

1

3

3

3 3

3

3

3

Figure 4: Quasi-Euclidean5 � 5 � 5 chamfer distance
matrix.

The forward pass (using the matrix above and to the
left of the bold line, shown initalic font) calculates the
distances moving away from the surface towards the
bottom of the dataset, with the backward pass (using
the matrix below and to the right of the bold line) cal-
culating the remaining distances. This method is com-
putationally inexpensive since each voxel is only con-
sidered twice, and its calculation depends upon the ad-
dition of elements of the matrix to its neighbours. It is
also very inaccurate, and hence all of the applications
that rely on the method are using inaccurate (although
in many cases acceptable) data. We desired distance
fields to produce hypertextured objects, and we found
that the best distance transforms did not produce accu-
rate enough data for the hypertexture to operate con-
vincingly. This led us to investigate vector propagation
methods (Section 3.6).

3.5 Distance Shells

Usually these chamfer (Section 3.4) and vector (Sec-
tion 3.6) distance transforms are carried out upon binary
segmented data. Alternatively adistance shellcan be
calculated, and use those values as a basis upon which
we can propogate the surface throughout the volume.
This indeed increases the accuracy of these type of dis-
tance transforms (both those of the previous and next
sections). To completely encode the surface of an ob-
ject, we need to calculate a shell of voxels which are
either side of the surface interface. All those voxels
which are inside the object and have a neighbour out-
side the object should be part of the computed shell,
as should all those voxels which are outside the object
and have a neighbour inside the object. In fact a quick
voxelisation algorithm is tosegmentthose voxels, and
calculate the distance for them. The surface can be re-
constructed accurately from this shell, but the normals
calculated using the central difference operation sample
voxel values outside of this shell, and therefore as they
are of a uniform background value, it can lead to quan-
tization effects (the normals have a restricited number
of unique directions). We can solve this by also includ-
ing all those voxels that are used within the grey-level
normal calculation function.

The whole procedure is to use the segmentation func-
tion f (equation 2). Then for each voxel,v, we addv
andv26 (the 26 neighbours ofv) to Sv, whenf(v) =

1 and9p such thatf(p) = 0 wherep 2 v26. To include
all of the additional voxels required for central distance
calculation of the normals, we create the shellSn where
for eachv 2 Sv we addv andv26 to Sn. Sn now con-
tains all voxels which are used to display the surface
(including valuesused just in normal calculation). We
have called the voxelsSn thedistance shellof the en-
coded object. The distance shell adequately represents
the object, and is a valid method for voxelising objects
where only the surface needs to be encoded. As a shell
voxelisation it benefits from the advantage of requir-
ing less memory to store (if run length encoding is em-
ployed). The chess piece takes 11.4 seconds to encode
using this method, and the UNC CThead takes 124 sec-
onds to convert into this form. Such datasets can then
be used as the basis in the distance transform process
(and therefore give a much more accurate result).

3.6 Vector Distance Transforms

Vector methods [15] store a vector to the closest surface
point at each voxel. These vectors are propagated to
neighbouring voxels in a prescribed way similar to the
propagation of distances via the distance matrix. VDTs
generally require more passes of the distance matrix.
During each pass the vector components are added to
the necessary vector position, the distance calculated, a
decision made as to whether any of the new distances
are minimal, and finally the minimal vector is stored.

To allow vector propagation Equations 3 and 4 are
modified as shown in Equations 5 and 6 respectively.

~V (p) =

8><
>:
(0; 0; 0)

if p 2 S and

9 q 2 p26; q =2 S

(1;1;1) otherwise

(5)

D(p)=min
��~V (x+i;y+j;z+k)+dM(i;j;k)

��
8i; j; k 2 dM , wheredM = (~Mx; ~My; ~Mz)

(6)

The previous best algorithm is Mullikin’s EVDT [16]
operating on binary segmented data.

Figure 5 shows the matrix passes employed by our
Vector City VDT.

3.7 Comparison

We have compared each of the methods in the previ-
ous sections to the correct distance field in terms of the
execution time, the average voxel error, and the most
negative and positive errors. Table 1 presents these re-
sults in detail, and Figure 6 present images for each of
these methods. If perfect Euclidean distance fields are
required, we have shown that it is possible to compute
them in a reasonable time, by using the octree based
algorithm running in parallel. It would be possible to

(0,-1,0)

(1,0,0)

(0,1,0)(0,1,0)

y

x

y

x

y

x

z

z

z

B1B2

B4

(0,0,0)

y

x

z

B3

Forward Pass Backward Pass

F4

y

z

x

y

z

x

F2

y

z

x

F3

y

z

x

F1

(-1,0,0)

(0,0,-1) (0,-1,0)

(1,0,0)

(0,-1,0)

(0,0,1)

(0,1,0)

(1,0,0)

(0,1,0)

(1,0,0)(-1,0,0)

(0,-1,0)

(-1,0,0)

(-1,0,0)

Figure 5: Eight pass vector-city vector distance trans-
form.

Figure 6: 5x5x5 DT on binary, efficient vector DT on
binary, vector-city VDT on sub-voxel accurate data.

calculate each voxel individually from all other vox-
els, although in reality we calculate each slice individ-
ually. Therefore, the best run-time would arise when
we have as many processors as slices. For our exper-
iments we usually employed 8 processors giving us a
time of about 15 minutes for the UNC CThead. We have
also shown that where possible, it is better to reject the
binary segmentation in favour of a sub-voxel accurate
segmentation. We have also demonstrated a procedure
for generating a distance shell, which can then be fed
to a distance transform (either vector or chamfer). The
use of this shell rather than a binary segmentation in-
creases accuracy, and further we have shown that our
new VCVDT produces results which are 50% more ac-
curate than the previous best algorithm (in a compara-
ble time). It is hoped that researchers are able to digest
these results and decide to what accuracy they need dis-
tance fields, and use the appropriate method.

4 Applications

4.1 Contour Connection

We originally proposed distance fields as an interme-
diate step to create triangular meshes from contour
data [17]. Essentially the algorithm involved calculat-
ing the distance from each voxel within the domain, to
the closest point on the set of contours representing the
object of interest. One possible surface that is described
by those contours can be obtained by triangulating the
isosurface for the distance of zero. It was found that
the use of the distance field helped avoid costly and dif-
ficult point correspondence problems – particularly in

1 to many and many to many branching cases. Fig-
ure 7 demonstrate some particularly difficult situations
(for other methods), and the surfaces produced for those
cases.

Figure 7: Some cases of contour connection.

4.2 True 3D Closing Operator

One particularly interesting area for the use of distance
fields is that of morphological operations. A closing op-
eration can be carried out by usingn dilation operations
followed byn erosion operations. This has the effect of
closing holes in the dataset, smoothing out sharp spikes
and filling cavities. It is particularly useful for shape
and object recognition (although we have a further use
described in Section 5). The operation ofn dilations in-
dicates those voxels which aren voxels away from the
surface, and if displayed will show a shape that has ap-
peared to have grown. When followed byn dilations,
it will return the original surface, although some of
the artifacts mentioned above will have been removed.
The method is carried out on binary segmented data.
Höhne [18] has reported the use of three-dimensional
erosions and dilations as a useful application for the
extraction of homogenous regions in body scans. An
alternative to erosions and dilations upon binary seg-
mented data, is to increase or decrease the grey-level
voxel values themselves. For example, if the template
is a3�3�3 matrix where each value in the matrix is 1,
for a dilation from a binary segmentationf , each voxel
v wheref(v) = 1 will be included in the new surface
along with all of its 26 neighbours. Using the original
voxel values, a grey-level dilation will set a voxel to the
value of its maximum neighbour (plus 1).

Intuitively a dilation of degreen should give us the
exact surface where each point on the surface isn vox-
els away from the original surface. An erosion of de-
green should give us the exact surface where each point
on the surface isn voxels inside the original surface.
We therefore propose that a true 3D closing operation
should be based on the accurate sub-voxel distance field
and used in the following manner.

First we calculate the distance fieldD for our surface
as in equation 1. The surface,S, representing a dila-
tion of degreen is equivalent toS = fq : D(q) = ng

whereq 2 R
3 . To calculate the erosion of degreen

for this surfaceS, we then calculate a new distance

Table 1: Comparison of Distance Algorithms

Method Time Error Range Average Error

True (octree) 126 minuts 0 0
City (binary) 1.280s -2.000000! 76.229546 12.519548
City (shell) 1.290s + 124s -2.376824! 73.186974 10.775360
EVDT (binary) 6.890s -1.732051! 3.081223 0.261987
EVDT (shell) 7.100s + 124s -1.873284! 1.392951 0.015674
VCVDT (shell) 7.640s + 124s -1.873284! 1.392951 0.010767

field, D0 based upon distances from surfaceS using
the techniques described earlier (measuring to the tri-
angulation of the isosurface). The surfaceSCn which
has been closed byn units through a dilation of de-
green followed by an erosion of degreen is given by
SCn = fq : D0(q) = �ng. Figure 8 demonstrates clos-
ing operations of 20, 10 and 5.

Figure 8: True 3D distance closure of 20, 10 and 5 vox-
els.

4.3 Hypertexture

A distance field defines the object’s surface, and also
the distance from and direction to the surface. This
is similar to the requirements for Perlin and Hoffert’s
hypertexture [19] effects. We are either inside or on
the surface (D(p) � 0), in thesoft region (D(p) � 0

andD(p) � Æ) or outside of the object completely
(D(p) > Æ) (p 2 R

3). In the soft region, noise func-
tions are used to distort, colour or project inwards to
obtain the various effects. Distance fields, as computed
in this paper, conform to the data requirements for hy-
pertexture, and can be rendered using an extension to
the volume rendering algorithm. Figure 9 demonstrates
the application of hypertexture to distance fields of tri-
angular mesh objects and the UNC CThead.

4.4 Other Applications

Other applications includeskeletonization(based upon
other morphological operations), morphing by using a
distance field representation, general distance opera-
tions (such as Voronoi calculation – rather than calcu-
lating the distance to a point we can calculate the ac-
tual closest point (as demonstrated by our vector shell
code required by the VCVDT algorithm)), shape-based

Figure 9: Hypertexture applied to the distance fields for
a chess piece, a dodecahedron and the UNC CThead
dataset.

interpolation schemes, and for accelerating ray-tracing
by using the distance fields as proximity clouds.

5 Conclusions and Future Work

In this paper we have shown that various methods are
readily available for the calculation of distance fields.
We have demonstrated that a choice can be made be-
tween accuracy and speed of computation. Perhaps
our more significant results are the fact that true Eu-
clidean distance fields can be computed using an ef-
ficient O(nlogn) algorithm, and to a far greater de-
gree of accuracy by using a sub-voxel distance algo-
rithm, rather than a binary segmentation. We have also
introduced a new vector distance transform function
(VCVDT), which has been shown to perform 50% more
accurately, than the previous best function (EVDT). The
EVDT algorithm was originally proposed for use with
binary segmented data, and to be fair we have com-
pared it when applied to sub-voxel accurate data aswell.
We have demonstrated how to calculate the initial shell
which is used for propogation. We have also demon-
strated some applications, in particular the new sug-
gestion of using the accurate Euclidean distance field
for true 3D Closing operations, as demonstrated in Fig-
ure 4.2.

Our future work will concentrate on improving ac-
curacy – we believe that a hybrid method directed by
the distance transform field will be able to give an ex-
act distance field. We also intend using the closed skull
datasets as a basis upon which to create a facial recon-
struction of a discovered skull, which will have appli-
cation to the field of forensic science.

Acknowledgements

This work has been undertaken with funding from EP-
SRC, UK, under grants GR/L88238 and GR/R11186.

References

[1] M. Chen, A. Kaufman, and R. Yagel, editors.Vol-
ume Graphics. Springer-Verlag, 2000.

[2] A. E. Kaufman. State-of-the-art in volume graph-
ics. In Volume Graphics, pages 3–28. Springer,
2000.

[3] U. Tiede, K. H. Höhne, M. Bomans, A. Pom-
mert, M. Riemer, and G. Wiebecke. Investiga-
tion of medical 3D-rendering algorithms.IEEE
Computer Graphics and Applications, 10(2):41–
53, March 1990.

[4] D. Cohen-Or, D. Levin, and A. Solomovici.
Three-dimensional distance field metamorphosis.
ACM Transactions on Graphics, 17(2):116–141,
April 1998.

[5] Y. Zhou, A. Kaufman, and A. W. Toga. Three-
dimensional skeleton and ceterline generation

based on an approximate minimum distance field.
The Visual Computer, 14:303–314, 1998.

[6] Y. Zhou and A. W. Toga. Efficient skeletonization
of volumetric objects.IEEE Transactions on Visu-
alization and Computer Graphics, 5(3):196–209,
1999.

[7] D. Cohen and Z. Sheffer. Proximity clouds - an
acceleration technique for 3D grid traversal.The
Visual Computer, 11:27–38, 1994.

[8] O. Cuisenaire and B. Macq. Fast euclidean dis-
tance transformation by propagation using multi-
ple neighborhoods.Computer Vision and Image
Understanding, 76(2):163–172, 1999.

[9] S. Frisken, R. N. Perry, A. P. Rockwood, and T. R.
Jones. Adaptively sampled distance fields: A gen-
eral representation of shape for computer graph-
ics. In SIGGRAPH Proceedings on Computer
Graphics, pages 249–254, July 2000.

[10] M. W. Jones. Voxelisation of polygonal meshes.
In Proceedings of 13th Annual Conference of Eu-
rographics (UK Chapter) (Loughborough, March
28-30, 1995), pages 160–171, March 1995.

[11] M. W. Jones. 3D distance from a point to a trian-
gle. Technical Report CSR-5-95, Department of
Computer Science, University of Wales, Swansea,
February 1995.

[12] Andrew S. Winter and Min Chen. vlib: A vol-
ume graphics library. 2001. Submitted to Volume
Graphics 2001.

[13] B. A. Payne and A. W. Toga. Distance field manip-
ulation of surface models.IEEE Computer Graph-
ics and Applications, 12(1):65–71, 1992.

[14] J. Wilhelms and A. Van Gelder. Octrees for
faster isosurface generation.ACM Transactions
on Graphics, 11(3):201–227, July 1992.

[15] P-E. Danielsson. Euclidean distance map-
ping. Computer Graphics and Image Processing,
14:227–248, 1980.

[16] J. C. Mullikin. The vector distance transform
in two and three dimensions.CVGIP: Graph-
ical Models and Image Processing, 54(6):526–
535, 1992.

[17] M. W. Jones and M. Chen. A new approach to
the construction of surfaces from contour data.
Computer Graphics Forum, 13(3):C–75–C–84,
September 1994.

[18] K. H. Höhne and W. A. Hanson. Interactive 3D
segmentation of MRI and CT volumes using mor-
phological operations.Journal of Computer As-
sisted Tomography, 16(2):285–294, 1992.

[19] K. Perlin and E. M. Hoffert. Hypetexture. InProc.
SIGGRAPH ’89 (Boston, Mass., July 31-August 4,
1989), volume 23(3), pages 253–262. ACM SIG-
GRAPH, New York, July 1989.

