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Abstract

The location of a body’s center of mass, and its moments and products of inertia about various axes are
important physical quantities needed for any type of dynamic simulation or physical based modeling. We
present an algorithm for automatically computing these quantities for a general class of rigid bodies: those
composed of uniform density polyhedra. The mass integrals may be converted into volume integrals under
these assumptions, and the bulk of the paper is devoted to the computation of these volume integrals. Our
algorithm is based on a three step reduction of the volume integrals to successively simpler integrals. The
algorithm is designed to minimize the numerical errors that can result from poorly conditioned alignment of
polyhedral faces. It is also designed for efficiency. All required volume integrals of a polyhedron are computed
together during a single walk over the boundary of the polyhedron; exploiting common subexpressions reduces
floating point operations. We present numerical results detailing the speed and accuracy of the algorithm,
and also give a complete low level pseudocode description.

1 Introduction

Dynamic simulation of rigid-body systems requires several parameters describing the mass distribution of
rigid bodies: the total mass (a scalar), the location of the center of mass (3 parameters), and the moments
and products of inertia about the center of mass (6 parameters). One can always find a body frame,
with origin at the body’s center of mass and axes aligned with its principle axes of inertia, in which the
entire mass distribution can be described with a reduced set of four parameters. Nevertheless, the larger
parameterization is still needed as a starting point.

This paper shows how to efficiently and accurately compute the needed data. The only restrictions
are that the body in question be a disjoint union of uniform density polyhedra, given by a boundary
representation. We assume one can enumerate over the faces of the polyhedra, and for each face, one can
enumerate over the vertices in counter-clockwise order. The algorithm is exact, and linear in the number
of vertices, edges, or faces of the polyhedra.

The problem of computing mass properties of solid objects has been studied previously. Lee and
Requicha give an excellent survey of the various families of algorithms in existence [5]. Our approach is
closest to that of Lien and Kajiya, who give an algorithm for computing integrals over arbitrary nonconvex
polyhedra, based on a B-rep [6]. It is O(n) in the polyhedron complexity, and fairly easy to code. In
contrast to Lien’s and Kajiya’s algorithm, our algorithm is optimized for computation of mass parameters:
it computes all needed mass quantities in parallel during a single traversal of the polyhedra, so that common
subexpressions are exploited; it is very fast. In addition, our algorithm adaptively changes the projection
direction, thereby reducing numerical errors over those in Lien’s and Kajiya’s and other algorithms.



2 Rigid body mass parameters

This section defines the rigid body mass parameters, and their relation to dynamic simulation; readers
familiar with these topics may jump to Section 3. More detailed treatments of this topic may be found in
any dynamics text, such as [4] or [7].

Key quantities in rigid body dynamics are a body’s linear momentum L and angular momentum H,
given by

L = mv (1)
H = Jw (2)

Here, v and w are the linear velocity of the center of mass (which we denote r) and the angular velocity of
the body, respectively. The scalar m is the mass of the body, and J is the 3 X 3 inertia tensor (also called
mass matrix) containing the moments and products of inertia:
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In order to formulate the equations of motion for the body, the quantities m, J, and r must be determined.

2.1 Computing mass parameters with volume integrals
The initial problem may be expressed as follows:

Problem 1 Given: A rigid body comprising N parts, By,...Bn, each a uniform density polyhedron.
There are no restrictions on the convexity or genus of the polyhedra, nor on the shape of the bounding
faces. For each polyhedron B;, either its density p; or mass m; is specified, and the geometries of all of
the polyhedra are specified relative to a single reference frame. Compute: The mass m, and the reference
frame coordinates of the center of mass r and inertia tensor J for the entire rigid body.

The mass m; and density p; of polyhedral part B; are related by m; = p;V;, where V; is the volume of
the polyhedron. Assuming one can compute

%:/B,‘ v, (4)

the masses and densities of each polyhedron can be found. The total massis m = Y., m;. The coordinates
of the center of mass r for the entire body are
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The moments and products of the inertia are given by
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2.2 Translating inertias to the center of mass

The inertia quantities in Equations (6-11) are primed because they are not exactly the values appearing
in the inertia tensor (3). The values in (6-11) are computed relative to the given reference frame, but the
values in the inertia tensor must be computed relative to a frame with origin at the center of mass. One
way to accomplish this is to first compute the location of the center of mass in the given frame, using (5),
and then to apply a translation to the body which brings the center of mass to the origin. After performing
this transformation, the values computed in (6-11) can be directly inserted into the inertia tensor (3).

A better solution is to use the transfer-of-azis relations for transferring a moment or product of inertia
about one axis to a corresponding one about a parallel axis. To transfer the values computed in (6-11) to
a frame at the center of mass, one uses (see [7]):

Ly = I, — m(ri + f‘?) (12) Iy = I;y — Mmryry (15
IZ/@/ = Igl/y - m(f‘g + razﬁ) (13) Iyz = Igl/z — MryT, (16
L. = I - m(rz, + ri) (14) L, = I,—mr.r,. (17

The unprimed quantities are inserted into the inertia tensor. If the transfer-of-axis relations are used, one
doesn’t have to explicitly transform the vertices of the polyhedron after computing the center of mass,
hence all of the integrals can be computed simultaneously.

Rigid body dynamics can be computed more efficiently with a reduced set of mass parameters, based on
a body frame. Computing the body frame amounts to diagonalizing the inertia tensor, a classical problem
of linear algebra. The Jacobi method [8] works quite well for this application since J is real, symmetric,
and of moderate size.

3 Overview of volume integration

Equations (4-11) show that all required mass properties can be found from ten integrals over volume, for
each of the individual polyhedral components. To simplify notation, we drop the polyhedron index and
consider only a single polyhedral body. We write the domain of integration as V as reminder that it is
a volume. The remainder of this paper describes an efficient, exact algorithm for calculating these ten
integrals:

T, = / 1 av (18)
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Note that each is an integral of a monomial in z,y, and z. The basic idea is to use the divergence
theorem to reduce each of the volume integrals (18-27) to a sum of surface integrals over the individual
faces of the polyhedron. Each of these surface integrals are evaluated in terms of integrals over a planar
projection of the surface. For polygons in the plane, Green’s theorem reduces the planar integration to a
sum of line integrals around the edges of the polygon. Finally, these line integrals are evaluated directly
from the coordinates of the projected vertices of the original polyhedron. Figure 1 illustrates the approach:
the volume integral is ultimately reduced to a collection of line integrals in the plane, and the values from
these integrations are propagated back into the value of the desired volume integration.
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Figure 1: Strategy for evaluating volume integrals. Complicated integrals are decomposed into successively
stmpler ones, and the values from evaluating the simplest integrals are combined and propagated back to
evaluate the original ones.

4 Reduction to surface integrals

The first reduction is from an integral over the three-dimensional polyhedral volume to a sum of integrals
over its two-dimensional planar faces. These is easily accomplished with the divergence theorem [9]:

Theorem 1 (Divergence) Let V be a region in space bounded by the surface dV. Let i denote the
exterior normal of V along its boundary 0V. Then

/V-FdV: F-f dA (28)
\% av

for any vector field F defined on V.

For a polyhedral volume, the right hand side of (28) can be broken up into a summation over faces of
constant normal, and so fi can be pulled outside the integral. The integrals to be computed, for example
Jy x dV, do not immediately appear to be of the form in the theorem. But one can find many vector fields
whose divergence is the function z; a particularly simple choice is F(z,y,z) = (%xQ, 0,0)”. This choice
has the added advantage that two of its components are identically zero, so that the dot product on the
right hand side of (28) becomes a scalar multiplication. By making similar choices for the other integrals
we wish to evaluate, and applying the divergence theorem, equations (18-27) become:
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5 Reduction to projection integrals

Green’s theorem reduces an integral over a planar region to an integral around its one-dimensional bound-
ary, however one must start with a region in the plane. Although the planar faces of the polyhedron are in
three-space, one can project them onto one of the coordinate planes. The next theorem relates integrations
over the original face to integrations over the projection.

Theorem 2 Let F be a polygonal region in a-3-vy space, with surface normal @1, and lying in the plane

oo+ gl + iy + w = 0. (39)
Let 11 be the projection of F into the a-3 plane. Then
[ rtes aa= g | st s b)) dads (10)
where .
h(e, B) = —a(ma + 7 + w). (41)

Proof:  The points (a, 8, h(a, 8)) lie in the plane of F, so F is the graph of h over II. From [1] [Section
17.5, Formula (6)],

/ff(oa,ﬁ,fy) dA:/Hf(a,ﬁ,h(a,g))%Jr (g_z)2+ <§_Z)2 da d5. (42)

For our h, the square root in the integrand reduces to |f,|™!; the theorem follows. O

This theorem provides the reduction of the integral of a polynomial in «, 3, and v over the face F to
the integral of a polynomial in @ and § over the projected region II. From (39), the constant w can be
computed: w = —fi - p, where p is any point on the face F.

Numerical inaccuracy or floating point errors can occur when the face normal f has little or no compo-
nent in the projection direction; in the extreme situation (7, = 0), the face projects to a line segment. To
reduce such errors, for a given face the a-3-v coordinates are always chosen as a right-handed! permuta-
tion of the of the z-y-z coordinates such that |7, | is maximized. This maximizes the area of the projected

shadow in the a-3 plane (see Figure 2). Note that a choice can always be found such that |7.,| > \/g_l.

Recall the integrals we need over the region F given in (29-38). Independent of the three possible
correspondences between z-y-z and a-f-y coordinates, they all can be found by computing the following
twelve integrals:

/f o dA (43) /f a® dA (46) /f a® dA (49) /f a*BdA  (52)
/f B dA (44) /f B?dA (47) /f B dA (50) /f By dA  (53)

/f v dA (45) /f 2 dA (48) /f v? dA (51) /f vadA  (54)

Using Theorem 2, these twelve face integrals can all be reduced to integrals over the projection region
II. For instance,

_1/ﬁ2ﬁa0‘+fiﬁﬂ+w dov dﬁ
I -
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F v
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II II II
= — ﬁﬁ _17%;1(7%0[770[52 + ﬁﬁﬂ'ﬁs + 11)7'1'52)7 (55)

'We require & x ﬁ =A.



Figure 2: The a-f-v azxes are a right-handed permutation of the x-y-z azes chosen to mazximize the size of
the face’s projected shadow in the a-G3 plane.

where
- / £ dA. (56)
I1

The complete set of face integrals, reduced to projection integrals with Theorem 2, is shown below:
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6 Reduction to line integrals

The final step is to reduce an integral over a polygonal projection region in the a-f plane to a sum of
line integrals over the edges bounding the region. We adopt the following notation (Figure 3).  The
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Figure 3: Notation for computing a projection integral as a sum of line integrals.

edges of Il are labeled & through £x. Edge &. is the directed line segment from (a., 5.) to (ceq1, Bet1),
Aoy = 01 — @, and AP, = fepq — Be [note that (ax 41, 8x+1) = (a1, 61)]. Finally, edge &, has length
L. and exterior unit normal m,.

Green’s theorem? [9] provides the final integration reduction:

Theorem 3 (Green’s) Let Il be a region in the plane bounded by the single curve 1. Let v denote the
exterior normal along the boundary. Then

/V-HdA: H- it ds (69)
II oIl

for any vector field H defined on 11, where the line integral traverses the boundary counter-clockwise.
This is a two dimensional version of the divergence theorem, and our special case again provides simplifi-
cation. Since II is polygonal, the right hand side of (69) may be broken into a summation over edges of

constant normal, and by always choosing H so that one component is identically zero, the dot product
becomes a scalar multiplication. From (56) and (57-68), all integrals of the form

Tarpe :/ Oépﬁq dA (70)
II

are needed for nonnegative integers p and ¢ with p+ ¢ < 3. Consider first the case ¢ = 0. By choosing

H-= (Zﬁap"'l, 0)7, and applying Green’s theorem to the polygonal region I, we have

1 K
of dA = —— me/oesp‘i'lds 71
h 1 e ), ) ()

2Sometimes more formally called Green’s theorem in the plane. Additionally, some texts call this Green’s Lemma, reserving
Green’s Theorem for a more general 3D result [10].



In the right hand integral, the integration variable s is arc length, and runs from 0 to L., the length of the
edge; a(s) is the a-coordinate of the point on the edge that is a distance s from the starting point. Letting
the variable A be s/L., one can change integration variables (ds = L.d\) to get

K

1
o dd = —— meL/ (LA)P A 79
/n p+1 Z ° (72)

Now 7., L. = +AS., where the plus or minus depends on whether the vertices Il are indexed in counter-
clockwise or clockwise order, respectively. By convention, we assume that the vertices of the original face
F are indexed in counter-clockwise order, thus the vertices of Il will be indexed in counter-clockwise order
exactly when the sign of 7, is positive (Figure 2 helps in visualizing this). Hence, 1., L. = (sgni.,)AQ,,
and

/ af dA = Sgn"” ZMe / (L AP d. (73)
11

The case with ¢ = 1 is similar, except one chooses H = aPtia, )T. Finally, one can derive

(547
p+1
analogous equations for the cases when p = 0 or p = 1. The results are:

/ 51 dA = ngi"; ZA% / B(LA)TH dA (74)
11

/Hozpﬁ dA = S;;j_n;ZAﬂe/ all /\)p+1ﬁ(L A) dA (75)
/ aBt dA = —ngi"; ZA% / (LA)B(LA)TH dA (76)
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7 Evaluation of integrals from vertex coordinates

We have successively reduced the original volume integrals to face integrals, projection integrals, and finally
line integrals. The latter can be directly evaluated in terms of vertex coordinates, with the help of the
following theorem.

Theorem 4 Let L. be the length of the directed line segment from (o, B.) to (eq1, Bet1). Let a(s) and
B(s) be the a- and (-coordinates of the point on this segment a distance s from the starting point. Then

for nonnegative integers p and ¢,
p q
p g ; j '
3
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Proof: Denoting the integral on the left hand side of (77) by [,

I = /01 [(1 = A)ae + Acvep1]P[(1 = X)Be + ABesr]® dA (78)
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(80)



where the B’s are Bernstein Polynomials:

Br()) = ( Z ) AF(1 = Ak, (81)
Two important properties of these polynomials are [3, 2]:
P q
i J
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it
1 A) dA 1
B = . 83
| By — (53)

Expanding the product in (79) and applying (82) gives

. .rl
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i=0 j=0 ( Pty ) 0

it+j
Evaluating the integrals using (83) proves the theorem. O

All of the line integrals appearing in (73-76) are special cases of Theorem 4, with either p or ¢ set to 0
or 1. Specifically,

1 ) 1 1—s
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=0
1 . 1 ot L
[ortan = 3l (56)
7=0
R L S Datat 4 k2 el s)
o = ———— Byt i+ Dag 10T 4 5. p+2—i)ag ol 87
0 (p + 2) (p + 3) i i=0 i=0
/1 ﬁQ-I—l d\ 1 qi:l( ) J ﬁq-l—l J qi:l( ) J ﬁq-l—l J ( )
« = — |, JHL)B BT e G+2—7)B 8 88
0 (+20+3) [ & “ o

Substituting (85-88) into (73-76), respectively give all of the needed projection integrals in terms of
the coordinates of the projection vertices:
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T2 = /H o dA = —I—nggw ;Aﬁe Coitaliae + aepial + o)) (92)

Taf = /Haﬁ dA = +Sggfw Z Ape {ﬁe+1(3045+1 + 2010 + ) + Be(@l ) + 20caeys + 3o )193)

T = /Hﬁ2 A = Sgn"” ZA% S BB + Bepr B+ B) (94)

T2 = /HaS dA = —I—Sg;(;% ZAﬁe ol ol o+ al 0 +aepial 4+ af) (95)
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8 Algorithm

Based on the derivation in Sections 4-7, we give a complete algorithm for computing the ten desired volume
integrals (18-27).
The algorithm comprises three routines:

1. CompVolumeIntegrals()V) (Figure 4) computes the required volume integrals for a polyhedron by
summing surface integrals over its faces, as detailed in Equations (29-38).

2. CompFaceIntegrals(F) (Figure 5) computes the required surface integrals over a polyhedral face
from the integrals over its projection, as detailed in Equations (57-68).

3. CompProjectionIntegrals(F) (Figure 6) computes the required integrals over a face projection
from the coordinates of the projections vertices, as detailed in Equations (89-98).

The algorithm contains a slight simplification over the presented derivation. When equations (89-98)
are substituted into (57-68), the computation of sgnf., and |7,| becomes unnecessary, since these terms
always appear together in a product, giving simply 7. Thus, no signs or absolute values are computed in
routines CompFaceIntegrals and CompProjectionIntegrals.

9 Test Results

We now analyze the speed and accuracy of the algorithm for various test cases. These test were run on
an SGI Indigo II with an R4400 CPU, and double precision floating point numbers were used for the
calculations.
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The set of polyhedral objects that have volume integrals which are commonly tabulated or easy to
compute by hand is rather limited. We ran our algorithm on two such objects: an axes-aligned cube, 20
units on a side, and centered at the origin; and a tetrahedron defined by the convex hull of the origin, and
the vectors 51, 43, and 3k. The theoretical values for these objects are shown in Table 1. For these two

object T T. T, T, T, T, T Ty Ty Ton
cube 8000 | O 0 0 |267x10° 2.67 x10° 2.67 x10° | 0 0 0
tetrahedron 10 12.5 10 7.5 25 16 9 10 6 7.5

Table 1: Theoretical values of volume integrals for simple test polyhedra.

examples, all values computed by the algorithm were correct to at least 15 significant figures. The total
time required to compute all ten volume integrals was 64 us for the tetrahedron, and 110 us for the cube.

For a more interesting test, the algorithm was applied to several polyhedral approximations of a unit
radius sphere, centered at the origin. In this case there are two sources of error: numerical errors from
the algorithm, and approximation errors inherent in the geometric model, which is not a true sphere.
These latter errors should not be attributed to the algorithm itself. For a perfect unit sphere, the integrals
Ty, Ty, T., Ty, Ty, and T, should vanish, while 77 = %ﬂ' and Tpo = Tp = T = 14—577. We applied
our algorithm to a series of successive approximations to the sphere, beginning with an icosahedron, and
obtaining each finer approximation by projecting the midpoint of each polyhedral edge onto the unit
sphere, and taking a convex hull. The computed values of a representative set of volume integrals for each
polyhedron are shown in Table 2.

Without numerical error, the integrals 7, and T}, would vanish for all six polyhedral approximations
of the sphere, due to symmetry. From Table 2, the absolute values of these computed values are all
less than 107!5. The theoretical values in the table correspond to the sphere which circumscribes the
polyhedra. For each polyhedron, we have also determined corresponding values for the inscribed sphere,
and verified that the computed values for T} and 7,2 for the polyhedron lie between the bounding values
for these two spheres. For approximation 6, the difference in values for the inscribed and circumsecribed
sphere is 2.8 x1072 for 7} and 9.5 x10~* for T,.. These are upper bounds on the numerical errors of
the algorithm. Note that the deviations between theoretical and computed values for Ty and T, are
reduced as the complexity of the polyhedron increases, while numerical error from the algorithm should
increase with complexity. In light of the very small errors incurred in the computation of 7, and 7)., the
deviations between the computed and theoretical values of T} and T2 are almost certainly due mainly to
the polyhedral approximation rather than to numerical errors.

‘ approx. ‘ verts edges faces ‘ T T, T, Ty ‘ time ‘
1 12 30 20 | 2536 —2.8 x107'7 0.3670 —3.1 x10~'7 | 500 us
2 42 120 80 |3.659 +41.4 x10~' 0.6692 +1.5 x10~'7 | 1.2 ms
3 162 480 320 | 4.047 —3.2 x107'% 0.7911 —6.1 x107'® | 4.9 ms
4 642 1920 1280 | 4.153 +3.0 x10~' 0.8258 +7.8 x107!¥ | 21 ms
5 2562 7680 5120 | 4.180 —3.8 x10~'7 0.8347 +42.1 x107'7 | 82 ms
6 10242 30720 20480 | 4.187 +5.6 x10~'® 0.8370 +6.4 x10~'® | 350 ms
theoretical values for sphere 4.189 0.0 0.8378 0.0 -

Table 2: Data for successive approximations of a unit sphere.

The execution times shown in Table 2 are the total times for computing all ten volume integrals for
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each polyhedron. The O(n) nature of the algorithm is evident: from approximation 2 on, the time ratios
between successive refinements very closely follow the 4:1 ratio in the number of faces. The algorithm is
also very fast: all ten integrals are computed for a polyhedron with over 20,000 faces in only 350 ms.

10 Available Code

ANSI C source code for the algorithm described in this paper, and detailed in Figures 4-6, is publicly
available from
http://www.acm.org/jgt

Also included is an interface to build up polyhedra (using a simple data structure) from ASCII specifica-
tions; examples are provided. The code is public domain, and may be used as is or in modified form.

Acknowledgements. We thank Aristides Requicha for a valuable literature survey on this topic, and
David Baraff for useful comments on the initial draft of this paper. We especially thank John Hughes for
his detailed review and many suggestions for improving the paper.

CompVolumeIntegrals())

T17 Tm Ty7 T27 Tx27 Ty27 Tz27Txy7 Ty27 sz «0

for each face F on the boundary of V
choose a-f-v as a right-handed permutation of z-y-z that maximizes |i|
compFacelntegrals(F)
if (a=2a) T1 — T1 —|—7A”LOZFOZ
else if (B==x) T < T+ nglp
else T + Th + 0y F,

Ty Ty + 0,1,

Tﬁ — Tﬁ + ﬁﬁFﬁ2
Ty« T+ iy Fpe

T, T2+ n,F,
Tﬁ2 — Tﬁ2 + ﬁﬁFﬁs
TW2 — TW2 + 7A7/,7F,73
Taﬁ — Taﬁ + ﬁaFoﬁﬁ
Ty < Ty + gk,
Lo < Tyo + iy Fpy,

(Tx7Ty7Tz) — (T1’7Ty7Tz) / 2
(le, Ty2 ) TZ2) — (le ) Ty27 TZ2) / 3
(Tl’y7TyZ7 zx) — (Txvayzv zx) / 2

Figure 4: CompVolumeIntegrals()). Compute the required volume integrals for a polyhedron. See
Equations (29-38).

12



CompFaceIntegrals(F)

computeProjectionIntegrals(F)
w4+ —ih-p for some point p on F
kl F?A”LW_ s kz%kl*kl; kg%kz*kl; k4%k3*k1
Fa — klﬂ'a

Fﬁ — klﬂ'ﬁ

F, « —ko(omy + figmg + wry)

Fa2 — klﬂ'a2
Fﬁ2 — k1ﬂ'52
Fp ks(REm,e + 20afpmas + ﬁ%ﬂ'ﬁ2 + 2R wTy + 20 pwr s + WAy )

Fas — klﬂ'as
FﬁS — klﬂ-ﬁ?’
FWS — —k4(ﬁgﬂ'a3 + 3ﬁ3ﬁﬁﬂa2ﬁ + 37%0(7%%71'0[52 + ﬁ%ﬂ'ﬁs—l—
Sﬁiwﬂ'az + 67, gwTag + 3ﬁ%wﬂ'ﬁ2 + 3n,win, + 3ﬁ5w2ﬂ'5 + w3ﬂ'1)

Fa2ﬁ — klﬂ'a2ﬁ
F52W — —kg(flaﬂ'aﬁ2 + ﬁﬁﬂ'ﬁs + wﬂ'ﬁ2)
sza — kg(fliﬂ'as + Qﬁaﬁﬁﬂ'azﬁ + ﬁ%ﬂ'aﬁz + 20 wT 2 + 20w T3 + w2ﬂ'a)

Figure 5: CompFaceIntegrals(F). Compute the required surface integrals over a polyhedral face. See
Equations (57-68).
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CompProjectionIntegrals(F)

T1y T Ty K2y Tafy T2y Tady 28y Tap2s Tgs <= 0

for each edge & in CCW order around F
o + o—coordinate of start point of &
o 4 P-coordinate of start point of &
o1 < a—coordinate of end point of &
(31 4 P-coordinate of end point of &
Ao +— a1 — o
AB + B1— o
ad i agrag 3 @ —adxag ; af i ap*ag
85« Box Bo 5 B« B3 xBo 5 P B+ Bo
af—aprap ;oo —afxoy

ﬁ%kﬁl*@ 5 ﬁfkﬁ%*@

Ch 4 a1+ g

Cy+—o1Cy+ 04(2) 3 Coe — 0qCy + 048 3 Coa — oCz + 0461

Co Bi+B1bo+ B3 5 Coe < 51Cs+ 5 5 Cae  p1Cx + 55

Cop ¢ 303 + 2a1a0 + af 5 Kap < af +2ar00 + 30

Cozp + apCop + 4ai Ko2p ¢ a1 Ko+ 4o

Clope < 4087 + 36160+ 26165 + B3 5 Kope + 57 + 28160 + 36185 + 453

T — T+ AﬁCl

To — Ta+ABC, 5 T2 T2+ ABC 2 3 73— T + ABC s
T3 4 T8 —I-AOéCﬁ ; M2 < Tg2 —I—AOéCﬁ2 ; Mge ¢ Tgs + AO&Cﬁs
Taf $ Tap + Aﬁ(ﬁlcaﬁ + ﬁOI(ozﬁ)

Ta2g & T2 + Aﬁ(ﬁ10a2ﬁ + ﬁo[(ogﬁ)

Tz & Tome + Aa(a1Cype + ao K, p2)

771%771/2

T 6 o /6 5 To2 ¢ T2 /12 5 T 702 /20

Tp = —Tp/6 5 W = —Wp2/12 5 W = —7pa /20
7'1'0[5%770[5/24

To2p = Ta25/60

T2 %—770[52/60

Figure 6: CompProjectionIntegrals(F). Compute the required integrals over a face projection. See
equations (89-98).
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