
Fast and Accurate Computation of Polyhedral Mass PropertiesBrian MirtichUniversity of California at BerkeleyAbstractThe location of a body's center of mass, and its moments and products of inertia about various axes areimportant physical quantities needed for any type of dynamic simulation or physical based modeling. Wepresent an algorithm for automatically computing these quantities for a general class of rigid bodies: thosecomposed of uniform density polyhedra. The mass integrals may be converted into volume integrals underthese assumptions, and the bulk of the paper is devoted to the computation of these volume integrals. Ouralgorithm is based on a three step reduction of the volume integrals to successively simpler integrals. Thealgorithm is designed to minimize the numerical errors that can result from poorly conditioned alignment ofpolyhedral faces. It is also designed for e�ciency. All required volume integrals of a polyhedron are computedtogether during a single walk over the boundary of the polyhedron; exploiting common subexpressions reduces
oating point operations. We present numerical results detailing the speed and accuracy of the algorithm,and also give a complete low level pseudocode description.1 IntroductionDynamic simulation of rigid-body systems requires several parameters describing the mass distribution ofrigid bodies: the total mass (a scalar), the location of the center of mass (3 parameters), and the momentsand products of inertia about the center of mass (6 parameters). One can always �nd a body frame,with origin at the body's center of mass and axes aligned with its principle axes of inertia, in which theentire mass distribution can be described with a reduced set of four parameters. Nevertheless, the largerparameterization is still needed as a starting point.This paper shows how to e�ciently and accurately compute the needed data. The only restrictionsare that the body in question be a disjoint union of uniform density polyhedra, given by a boundaryrepresentation. We assume one can enumerate over the faces of the polyhedra, and for each face, one canenumerate over the vertices in counter-clockwise order. The algorithm is exact, and linear in the numberof vertices, edges, or faces of the polyhedra.The problem of computing mass properties of solid objects has been studied previously. Lee andRequicha give an excellent survey of the various families of algorithms in existence [5]. Our approach isclosest to that of Lien and Kajiya, who give an algorithm for computing integrals over arbitrary nonconvexpolyhedra, based on a B-rep [6]. It is O(n) in the polyhedron complexity, and fairly easy to code. Incontrast to Lien's and Kajiya's algorithm, our algorithm is optimized for computation of mass parameters:it computes all needed mass quantities in parallel during a single traversal of the polyhedra, so that commonsubexpressions are exploited; it is very fast. In addition, our algorithm adaptively changes the projectiondirection, thereby reducing numerical errors over those in Lien's and Kajiya's and other algorithms.1



2 Rigid body mass parametersThis section de�nes the rigid body mass parameters, and their relation to dynamic simulation; readersfamiliar with these topics may jump to Section 3. More detailed treatments of this topic may be found inany dynamics text, such as [4] or [7].Key quantities in rigid body dynamics are a body's linear momentum L and angular momentum H,given by L = mv (1)H = J! (2)Here, v and ! are the linear velocity of the center of mass (which we denote r) and the angular velocity ofthe body, respectively. The scalar m is the mass of the body, and J is the 3� 3 inertia tensor (also calledmass matrix) containing the moments and products of inertia:J = 264 Ixx �Ixy �Ixz�Iyx Iyy �Iyz�Izx �Izy Izz 375 : (3)In order to formulate the equations of motion for the body, the quantities m, J, and r must be determined.2.1 Computing mass parameters with volume integralsThe initial problem may be expressed as follows:Problem 1 Given: A rigid body comprising N parts, B1; : : :BN , each a uniform density polyhedron.There are no restrictions on the convexity or genus of the polyhedra, nor on the shape of the boundingfaces. For each polyhedron Bi, either its density �i or mass mi is speci�ed, and the geometries of all ofthe polyhedra are speci�ed relative to a single reference frame. Compute: The mass m, and the referenceframe coordinates of the center of mass r and inertia tensor J for the entire rigid body.The mass mi and density �i of polyhedral part Bi are related by mi = �iVi, where Vi is the volume ofthe polyhedron. Assuming one can compute Vi = ZBi dV; (4)the masses and densities of each polyhedron can be found. The total mass ism =PNi=1mi. The coordinatesof the center of mass r for the entire body arer = 1m NXi=1 �i �ZBi x dV; ZBi y dV; ZBi z dV�T : (5)The moments and products of the inertia are given byI 0xx = NXi=1 �i ZBi(y2 + z2) dV (6)I 0yy = NXi=1 �i ZBi(z2 + x2) dV (7)I 0zz = NXi=1 �i ZBi(x2 + y2) dV (8) I 0xy = I 0yx = NXi=1 �i ZBi xy dV (9)I 0yz = I 0zy = NXi=1 �i ZBi yz dV (10)I 0zx = I 0xz = NXi=1 �i ZBi zx dV (11)2



2.2 Translating inertias to the center of massThe inertia quantities in Equations (6-11) are primed because they are not exactly the values appearingin the inertia tensor (3). The values in (6-11) are computed relative to the given reference frame, but thevalues in the inertia tensor must be computed relative to a frame with origin at the center of mass. Oneway to accomplish this is to �rst compute the location of the center of mass in the given frame, using (5),and then to apply a translation to the body which brings the center of mass to the origin. After performingthis transformation, the values computed in (6-11) can be directly inserted into the inertia tensor (3).A better solution is to use the transfer-of-axis relations for transferring a moment or product of inertiaabout one axis to a corresponding one about a parallel axis. To transfer the values computed in (6-11) toa frame at the center of mass, one uses (see [7]):Ixx = I 0xx �m(r2y + r2z) (12)Iyy = I 0yy �m(r2z + r2x) (13)Izz = I 0zz �m(r2x + r2y) (14) Ixy = I 0xy �mrxry (15)Iyz = I 0yz �mryrz (16)Izx = I 0zx �mrzrx: (17)The unprimed quantities are inserted into the inertia tensor. If the transfer-of-axis relations are used, onedoesn't have to explicitly transform the vertices of the polyhedron after computing the center of mass,hence all of the integrals can be computed simultaneously.Rigid body dynamics can be computed more e�ciently with a reduced set of mass parameters, based ona body frame. Computing the body frame amounts to diagonalizing the inertia tensor, a classical problemof linear algebra. The Jacobi method [8] works quite well for this application since J is real, symmetric,and of moderate size.3 Overview of volume integrationEquations (4{11) show that all required mass properties can be found from ten integrals over volume, foreach of the individual polyhedral components. To simplify notation, we drop the polyhedron index andconsider only a single polyhedral body. We write the domain of integration as V as reminder that it isa volume. The remainder of this paper describes an e�cient, exact algorithm for calculating these tenintegrals: T1 = ZV 1 dV (18)Tx = ZV x dV (19)Ty = ZV y dV (20)Tz = ZV z dV (21) Tx2 = ZV x2 dV (22)Ty2 = ZV y2 dV (23)Tz2 = ZV z2 dV (24) Txy = ZV xy dV (25)Tyz = ZV yz dV (26)Tzx = ZV zx dV (27)Note that each is an integral of a monomial in x; y, and z. The basic idea is to use the divergencetheorem to reduce each of the volume integrals (18{27) to a sum of surface integrals over the individualfaces of the polyhedron. Each of these surface integrals are evaluated in terms of integrals over a planarprojection of the surface. For polygons in the plane, Green's theorem reduces the planar integration to asum of line integrals around the edges of the polygon. Finally, these line integrals are evaluated directlyfrom the coordinates of the projected vertices of the original polyhedron. Figure 1 illustrates the approach:the volume integral is ultimately reduced to a collection of line integrals in the plane, and the values fromthese integrations are propagated back into the value of the desired volume integration.3
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value propagationFigure 1: Strategy for evaluating volume integrals. Complicated integrals are decomposed into successivelysimpler ones, and the values from evaluating the simplest integrals are combined and propagated back toevaluate the original ones.4 Reduction to surface integralsThe �rst reduction is from an integral over the three-dimensional polyhedral volume to a sum of integralsover its two-dimensional planar faces. These is easily accomplished with the divergence theorem [9]:Theorem 1 (Divergence) Let V be a region in space bounded by the surface @V. Let n̂ denote theexterior normal of V along its boundary @V. ThenZVr �F dV = Z@V F � n̂ dA (28)for any vector �eld F de�ned on V.For a polyhedral volume, the right hand side of (28) can be broken up into a summation over faces ofconstant normal, and so n̂ can be pulled outside the integral. The integrals to be computed, for exampleRV x dV , do not immediately appear to be of the form in the theorem. But one can �nd many vector �eldswhose divergence is the function x; a particularly simple choice is F(x; y; z) = (12x2; 0; 0)T . This choicehas the added advantage that two of its components are identically zero, so that the dot product on theright hand side of (28) becomes a scalar multiplication. By making similar choices for the other integralswe wish to evaluate, and applying the divergence theorem, equations (18{27) become:T1 = XF2@V n̂x ZF x dA (29)Tx = 12 XF2@V n̂x ZF x2 dA (30)Ty = 12 XF2@V n̂y ZF y2 dA (31)Tz = 12 XF2@V n̂z ZF z2 dA (32)
Tx2 = 13 XF2@V n̂x ZF x3 dA (33)Ty2 = 13 XF2@V n̂y ZF y3 dA (34)Tz2 = 13 XF2@V n̂z ZF z3 dA (35)Txy = 12 XF2@V n̂x ZF x2y dA (36)Tyz = 12 XF2@V n̂y ZF y2z dA (37)Tzx = 12 XF2@V n̂z ZF z2x dA (38)4



5 Reduction to projection integralsGreen's theorem reduces an integral over a planar region to an integral around its one-dimensional bound-ary, however one must start with a region in the plane. Although the planar faces of the polyhedron are inthree-space, one can project them onto one of the coordinate planes. The next theorem relates integrationsover the original face to integrations over the projection.Theorem 2 Let F be a polygonal region in �-�-
 space, with surface normal n̂, and lying in the planen̂��+ n̂�� + n̂

 + w = 0: (39)Let � be the projection of F into the �-� plane. ThenZF f(�; �; 
) dA = 1jn̂
 j Z� f(�; �; h(�; �)) d� d�; (40)where h(�; �) = � 1̂n
 (n̂�� + n̂�� + w): (41)Proof: The points (�; �; h(�; �)) lie in the plane of F , so F is the graph of h over �. From [1] [Section17.5, Formula (6)],ZF f(�; �; 
) dA = Z� f(�; �; h(�; �))s1 + �@h@��2 + �@h@��2 d� d�: (42)For our h, the square root in the integrand reduces to jn̂
 j�1; the theorem follows. 2This theorem provides the reduction of the integral of a polynomial in �; �, and 
 over the face F tothe integral of a polynomial in � and � over the projected region �. From (39), the constant w can becomputed: w = �n̂ � p, where p is any point on the face F .Numerical inaccuracy or 
oating point errors can occur when the face normal n̂ has little or no compo-nent in the projection direction; in the extreme situation (n̂
 = 0), the face projects to a line segment. Toreduce such errors, for a given face the �-�-
 coordinates are always chosen as a right-handed1 permuta-tion of the of the x-y-z coordinates such that jn̂
 j is maximized. This maximizes the area of the projectedshadow in the �-� plane (see Figure 2). Note that a choice can always be found such that jn̂
 j � p3�1.Recall the integrals we need over the region F given in (29{38). Independent of the three possiblecorrespondences between x-y-z and �-�-
 coordinates, they all can be found by computing the followingtwelve integrals:ZF � dA (43)ZF � dA (44)ZF 
 dA (45) ZF �2 dA (46)ZF �2 dA (47)ZF 
2 dA (48) ZF �3 dA (49)ZF �3 dA (50)ZF 
3 dA (51) ZF �2� dA (52)ZF �2
 dA (53)ZF 
2� dA (54)Using Theorem 2, these twelve face integrals can all be reduced to integrals over the projection region�. For instance,ZF �2
 dA = jn̂
 j�1 Z� �2 n̂��+ n̂�� + w�n̂
 d� d�= �jn̂
 j�1n̂�1
 �n̂� Z� ��2 d� d� + n̂� Z� �3 d� d� + w Z� �2 d� d��= �jn̂
 j�1n̂�1
 (n̂����2 + n̂���3 + w��2); (55)1We require �̂� �̂ = 
̂. 5
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 axes are a right-handed permutation of the x-y-z axes chosen to maximize the size ofthe face's projected shadow in the �-� plane.where �f = Z� f dA: (56)The complete set of face integrals, reduced to projection integrals with Theorem 2, is shown below:ZF � dA = jn̂
 j�1�� (57)ZF � dA = jn̂
 j�1�� (58)ZF 
 dA = �jn̂
 j�1n̂�1
 (n̂��� + n̂��� + w�1) (59)ZF �2 dA = jn̂
 j�1��2 (60)ZF �2 dA = jn̂
 j�1��2 (61)ZF 
2 dA = jn̂
 j�1n̂�2
 (n̂2���2 + 2n̂�n̂���� + n̂2���2 + 2n̂�w�� + 2n̂�w�� + w2�1) (62)ZF �3 dA = jn̂
 j�1��3 (63)ZF �3 dA = jn̂
 j�1��3 (64)ZF 
3 dA = �jn̂
 j�1n̂�3
 (n̂3���3 + 3n̂2�n̂���2� + 3n̂�n̂2����2 + n̂3���3 +3n̂2�w��2 + 6n̂�n̂�w��� + 3n̂2�w��2 + 3n̂�w2�� + 3n̂�w2�� + w3�1) (65)ZF �2� dA = jn̂
 j�1��2� (66)ZF �2
 dA = �jn̂
 j�1n̂�1
 (n̂����2 + n̂���3 + w��2) (67)6



ZF 
2� dA = jn̂
 j�1n̂�2
 (n̂2���3 + 2n̂�n̂���2� + n̂2����2 + 2n̂�w��2 + 2n̂�w��� + w2��) (68)6 Reduction to line integralsThe �nal step is to reduce an integral over a polygonal projection region in the �-� plane to a sum ofline integrals over the edges bounding the region. We adopt the following notation (Figure 3). The
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Figure 3: Notation for computing a projection integral as a sum of line integrals.edges of � are labeled E1 through EK . Edge Ee is the directed line segment from (�e; �e) to (�e+1; �e+1),��e = �e+1 � �e, and ��e = �e+1 � �e [note that (�K+1; �K+1) = (�1; �1)]. Finally, edge Ee has lengthLe and exterior unit normal m̂e.Green's theorem2 [9] provides the �nal integration reduction:Theorem 3 (Green's) Let � be a region in the plane bounded by the single curve @�. Let m̂ denote theexterior normal along the boundary. ThenZ�r �H dA = I@�H � m̂ ds (69)for any vector �eld H de�ned on �, where the line integral traverses the boundary counter-clockwise.This is a two dimensional version of the divergence theorem, and our special case again provides simpli�-cation. Since � is polygonal, the right hand side of (69) may be broken into a summation over edges ofconstant normal, and by always choosing H so that one component is identically zero, the dot productbecomes a scalar multiplication. From (56) and (57{68), all integrals of the form��p�q = Z� �p�q dA (70)are needed for nonnegative integers p and q with p + q � 3. Consider �rst the case q = 0. By choosingH = ( 1p+1�p+1; 0)T , and applying Green's theorem to the polygonal region �, we haveZ� �p dA = 1p+ 1 KXe=1 m̂e� ZEe �(s)p+1 ds (71)2Sometimes more formally called Green's theorem in the plane. Additionally, some texts call this Green's Lemma, reservingGreen's Theorem for a more general 3D result [10]. 7



In the right hand integral, the integration variable s is arc length, and runs from 0 to Le, the length of theedge; �(s) is the �-coordinate of the point on the edge that is a distance s from the starting point. Lettingthe variable � be s=Le, one can change integration variables (ds = Led�) to getZ� �p dA = 1p+ 1 KXe=1 m̂e�Le Z 10 �(Le�)p+1 d�: (72)Now m̂e�Le = ���e, where the plus or minus depends on whether the vertices � are indexed in counter-clockwise or clockwise order, respectively. By convention, we assume that the vertices of the original faceF are indexed in counter-clockwise order, thus the vertices of � will be indexed in counter-clockwise orderexactly when the sign of n̂
 is positive (Figure 2 helps in visualizing this). Hence, m̂e�Le = (sgnn̂
)��e,and Z� �p dA = sgnn̂
p+ 1 KXe=1��e Z 10 �(Le�)p+1 d�: (73)The case with q = 1 is similar, except one chooses H = ( 1p+1�p+1�; 0)T . Finally, one can deriveanalogous equations for the cases when p = 0 or p = 1. The results are:Z� �q dA = �sgnn̂
q + 1 KXe=1��e Z 10 �(Le�)q+1 d� (74)Z� �p� dA = sgnn̂
p+ 1 KXe=1��e Z 10 �(Le�)p+1�(Le�) d� (75)Z� ��q dA = �sgnn̂
q + 1 KXe=1��e Z 10 �(Le�)�(Le�)q+1 d� (76)7 Evaluation of integrals from vertex coordinatesWe have successively reduced the original volume integrals to face integrals, projection integrals, and �nallyline integrals. The latter can be directly evaluated in terms of vertex coordinates, with the help of thefollowing theorem.Theorem 4 Let Le be the length of the directed line segment from (�e; �e) to (�e+1; �e+1). Let �(s) and�(s) be the �- and �-coordinates of the point on this segment a distance s from the starting point. Thenfor nonnegative integers p and q,Z 10 �(Le�)p�(Le�)q d� = 1p+ q + 1 pXi=0 qXj=0  pi ! qj ! p+ qi+ j ! �ie+1�p�ie �je+1�q�je : (77)Proof: Denoting the integral on the left hand side of (77) by I ,I = Z 10 [(1� �)�e + ��e+1]p [(1� �)�e + ��e+1]q d� (78)= Z 10 " pXi=0Bpi (�)�ie+1�p�ie #24 qXj=0Bqj (�)�je+1�q�je 35 d�; (79)(80)8



where the B's are Bernstein Polynomials:Bnk (�) =  nk !�k(1� �)n�k: (81)Two important properties of these polynomials are [3, 2]:Bpi (�)Bqj (�) =  pi ! qj ! p+ qi+ j ! Bp+qi+j (�); (82)Z 10 Bnk (�) d� = 1n + 1 : (83)Expanding the product in (79) and applying (82) givesI = pXi=0 qXj=0  pi ! qj ! p+ qi+ j ! �ie+1�p�ie �je+1�q�je Z 10 Bp+qi+j (�) d�: (84)Evaluating the integrals using (83) proves the theorem. 2All of the line integrals appearing in (73{76) are special cases of Theorem 4, with either p or q set to 0or 1. Speci�cally,Z 10 �p+1 d� = 1p+ 2 p+1Xi=0 �ie+1�p+1�ie (85)Z 10 �q+1 d� = 1q + 2 q+1Xj=0 �je+1�q+1�je (86)Z 10 �p+1� d� = 1(p+ 2)(p+ 3) 24�e+1 p+1Xi=0(i+ 1)�ie+1�p+1�ie + �e p+1Xi=0(p+ 2� i)�ie+1�p+1�ie 35 (87)Z 10 ��q+1 d� = 1(q + 2)(q + 3) 24�e+1 q+1Xj=0(j + 1)�je+1�q+1�je + �e q+1Xj=0(q + 2� j)�je+1�q+1�je 35 (88)Substituting (85{88) into (73{76), respectively give all of the needed projection integrals in terms ofthe coordinates of the projection vertices:�1 = Z� 1 dA = +sgnn̂
2 KXe=1��e(�e+1 + �e) (89)�� = Z� � dA = +sgnn̂
6 KXe=1��e(�2e+1 + �e+1�e + �2e) (90)�� = Z� � dA = �sgnn̂
6 KXe=1��e(�2e+1 + �e+1�e + �2e ) (91)9



��2 = Z� �2 dA = +sgnn̂
12 KXe=1��e(�3e+1 + �2e+1ae + �e+1�2e + �3e) (92)��� = Z� �� dA = +sgnn̂
24 KXe=1��e h�e+1(3�2e+1 + 2�e+1�e + �2e) + �e(�2e+1 + 2�e�e+1 + 3�2e)i(93)��2 = Z� �2 dA = �sgnn̂
12 KXe=1��e(�3e+1 + �2e+1�e + �e+1�2e + �3e) (94)��3 = Z� �3 dA = +sgnn̂
20 KXe=1��e(�4e+1 + �3e+1�e + �2e+1�2e + �e+1�3e + �4e) (95)��2� = Z� �2� dA = +sgnn̂
60 KXe=1��e h�e+1(4�3e+1 + 3�2e+1�e + 2�e+1�2e + �3e)+�e(�3e+1 + 2�2e+1�e + 3�e+1�2e + 4�3e)i (96)���2 = Z� ��2 dA = �sgnn̂
60 KXe=1��e h�e+1(4�3e+1 + 3�2e+1�e + 2�e+1�2e + �3e)+�e(�3e+1 + 2�2e+1�e + 3�e+1�2e + 4�3e)i (97)��3 = Z� �3 dA = �sgnn̂
20 KXe=1��e(�4e+1 + �3e+1�e + �2e+1�2e + �e+1�3e + �4e ) (98)8 AlgorithmBased on the derivation in Sections 4{7, we give a complete algorithm for computing the ten desired volumeintegrals (18{27).The algorithm comprises three routines:1. CompVolumeIntegrals(V) (Figure 4) computes the required volume integrals for a polyhedron bysumming surface integrals over its faces, as detailed in Equations (29{38).2. CompFaceIntegrals(F) (Figure 5) computes the required surface integrals over a polyhedral facefrom the integrals over its projection, as detailed in Equations (57{68).3. CompProjectionIntegrals(F) (Figure 6) computes the required integrals over a face projectionfrom the coordinates of the projections vertices, as detailed in Equations (89{98).The algorithm contains a slight simpli�cation over the presented derivation. When equations (89{98)are substituted into (57{68), the computation of sgnn̂
 and jn̂
 j becomes unnecessary, since these termsalways appear together in a product, giving simply n̂
 . Thus, no signs or absolute values are computed inroutines CompFaceIntegrals and CompProjectionIntegrals.9 Test ResultsWe now analyze the speed and accuracy of the algorithm for various test cases. These test were run onan SGI Indigo II with an R4400 CPU, and double precision 
oating point numbers were used for thecalculations. 10



The set of polyhedral objects that have volume integrals which are commonly tabulated or easy tocompute by hand is rather limited. We ran our algorithm on two such objects: an axes-aligned cube, 20units on a side, and centered at the origin; and a tetrahedron de�ned by the convex hull of the origin, andthe vectors 5̂i, 4̂j, and 3k̂. The theoretical values for these objects are shown in Table 1. For these twoobject T1 Tx Ty Tz Tx2 Ty2 Tz2 Txy Tyz Tzxcube 8000 0 0 0 2.67 �105 2.67 �105 2.67 �105 0 0 0tetrahedron 10 12.5 10 7.5 25 16 9 10 6 7.5Table 1: Theoretical values of volume integrals for simple test polyhedra.examples, all values computed by the algorithm were correct to at least 15 signi�cant �gures. The totaltime required to compute all ten volume integrals was 64 �s for the tetrahedron, and 110 �s for the cube.For a more interesting test, the algorithm was applied to several polyhedral approximations of a unitradius sphere, centered at the origin. In this case there are two sources of error: numerical errors fromthe algorithm, and approximation errors inherent in the geometric model, which is not a true sphere.These latter errors should not be attributed to the algorithm itself. For a perfect unit sphere, the integralsTx; Ty; Tz; Txy; Tyz; and Tzx should vanish, while T1 = 43� and Tx2 = Ty2 = Tz2 = 415�. We appliedour algorithm to a series of successive approximations to the sphere, beginning with an icosahedron, andobtaining each �ner approximation by projecting the midpoint of each polyhedral edge onto the unitsphere, and taking a convex hull. The computed values of a representative set of volume integrals for eachpolyhedron are shown in Table 2.Without numerical error, the integrals Tx and Tyz would vanish for all six polyhedral approximationsof the sphere, due to symmetry. From Table 2, the absolute values of these computed values are allless than 10�15. The theoretical values in the table correspond to the sphere which circumscribes thepolyhedra. For each polyhedron, we have also determined corresponding values for the inscribed sphere,and veri�ed that the computed values for T1 and Tx2 for the polyhedron lie between the bounding valuesfor these two spheres. For approximation 6, the di�erence in values for the inscribed and circumscribedsphere is 2.8 �10�3 for T1 and 9.5 �10�4 for Tx2. These are upper bounds on the numerical errors ofthe algorithm. Note that the deviations between theoretical and computed values for T1 and Tx2 arereduced as the complexity of the polyhedron increases, while numerical error from the algorithm shouldincrease with complexity. In light of the very small errors incurred in the computation of Tx and Tyz , thedeviations between the computed and theoretical values of T1 and Tx2 are almost certainly due mainly tothe polyhedral approximation rather than to numerical errors.approx. verts edges faces T1 Tx Tx2 Tyz time1 12 30 20 2.536 �2.8 �10�17 0.3670 �3.1 �10�17 500 �s2 42 120 80 3.659 +1.4 �10�16 0.6692 +1.5 �10�17 1.2 ms3 162 480 320 4.047 �3.2 �10�16 0.7911 �6.1 �10�18 4.9 ms4 642 1920 1280 4.153 +3.0 �10�16 0.8258 +7.8 �10�18 21 ms5 2562 7680 5120 4.180 �3.8 �10�17 0.8347 +2.1 �10�17 82 ms6 10242 30720 20480 4.187 +5.6 �10�16 0.8370 +6.4 �10�18 350 mstheoretical values for sphere 4.189 0.0 0.8378 0.0 {Table 2: Data for successive approximations of a unit sphere.The execution times shown in Table 2 are the total times for computing all ten volume integrals for11



each polyhedron. The O(n) nature of the algorithm is evident: from approximation 2 on, the time ratiosbetween successive re�nements very closely follow the 4:1 ratio in the number of faces. The algorithm isalso very fast: all ten integrals are computed for a polyhedron with over 20,000 faces in only 350 ms.10 Available CodeANSI C source code for the algorithm described in this paper, and detailed in Figures 4{6, is publiclyavailable from http://www.acm.org/jgtAlso included is an interface to build up polyhedra (using a simple data structure) from ASCII speci�ca-tions; examples are provided. The code is public domain, and may be used as is or in modi�ed form.Acknowledgements. We thank Aristides Requicha for a valuable literature survey on this topic, andDavid Bara� for useful comments on the initial draft of this paper. We especially thank John Hughes forhis detailed review and many suggestions for improving the paper.CompVolumeIntegrals(V)T1; Tx; Ty; Tz; Tx2; Ty2; Tz2 ; Txy; Tyz; Tzx  0for each face F on the boundary of Vchoose �-�-
 as a right-handed permutation of x-y-z that maximizes jn̂
 jcompFaceIntegrals(F)if (� = x) T1  T1 + n̂�F�else if (� = x) T1  T1 + n̂�F�else T1  T1 + n̂
F
T�  T� + n̂�F�2T�  T� + n̂�F�2T
  T
 + n̂
F
2T�2  T�2 + n̂�F�3T�2  T�2 + n̂�F�3T
2  T
2 + n̂
F
3T��  T�� + n̂�F�2�T�
  T�
 + n̂�F�2
T
�  T
� + n̂
F
2�(Tx; Ty; Tz) (Tx; Ty; Tz) = 2(Tx2; Ty2 ; Tz2) (Tx2 ; Ty2; Tz2) = 3(Txy; Tyz ; Tzx) (Txy; Tyz ; Tzx) = 2Figure 4: CompVolumeIntegrals(V). Compute the required volume integrals for a polyhedron. SeeEquations (29{38). 12



CompFaceIntegrals(F)computeProjectionIntegrals(F)w �n̂ � p for some point p on Fk1  n̂�1
 ; k2  k1 � k1; k3  k2 � k1; k4  k3 � k1F�  k1��F�  k1��F
  �k2(n̂��� + n̂��� + w�1)F�2  k1��2F�2  k1��2F
2  k3(n̂2���2 + 2n̂�n̂���� + n̂2���2 + 2n̂�w�� + 2n̂�w�� + w2�1)F�3  k1��3F�3  k1��3F
3  �k4(n̂3���3 + 3n̂2�n̂���2� + 3n̂�n̂2����2 + n̂3���3+3n̂2�w��2 + 6n̂�n̂�w��� + 3n̂2�w��2 + 3n̂�w2�� + 3n̂�w2�� + w3�1)F�2�  k1��2�F�2
  �k2(n̂����2 + n̂���3 + w��2)F
2�  k3(n̂2���3 + 2n̂�n̂���2� + n̂2����2 + 2n̂�w��2 + 2n̂�w��� + w2��)Figure 5: CompFaceIntegrals(F). Compute the required surface integrals over a polyhedral face. SeeEquations (57{68).
13



CompProjectionIntegrals(F)�1; ��; �b; ��2; ���; ��2; ��3; ��2� ; ���2; ��3  0for each edge E in CCW order around F�0  �-coordinate of start point of E�0  �-coordinate of start point of E�1  �-coordinate of end point of E�1  �-coordinate of end point of E�� �1 � �0��  �1 � �0�20  �0 � �0 ; �30  �20 � �0 ; �40  �30 � �0�20  �0 � �0 ; �30  �20 � �0 ; �40  �30 � �0�21  �1 � �1 ; �31  �21 � �1�21  �1 � �1 ; �31  �21 � �1C1  �1 + �0C�  �1C1 + �20 ; C�2  �1C� + �30 ; C�3  �1C�2 + �40C�  �21 + �1�0 + �20 ; C�2  �1C� + �30 ; C�3  �1C�2 + �40C��  3�21 + 2a1a0 + a20 ; K��  �21 + 2�1�0 + 3�20C�2�  �0C�� + 4�31 ; K�2�  �1K�� + 4�30C��2  4�31 + 3�21�0 + 2�1�20 + �30 ; K��2  �31 + 2�21�0 + 3�1�20 + 4�30�1  �1 + ��C1��  �� + ��C� ; ��2  ��2 + ��C�2 ; ��3  ��3 + ��C�3��  �� +��C� ; ��2  ��2 +��C�2 ; ��3  ��3 + ��C�3���  ��� + ��(�1C�� + �0K��)��2�  ��2� +��(�1C�2� + �0K�2�)���2  ���2 +��(�1C��2 + �0K��2)�1  �1=2��  ��=6 ; ��2  ��2=12 ; ��3  ��3=20��  ���=6 ; ��2  ���2=12 ; ��3  ���3=20���  ���=24��2�  ��2�=60���2  ����2=60Figure 6: CompProjectionIntegrals(F). Compute the required integrals over a face projection. Seeequations (89{98). 14
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