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Abstract

We use the term temporal qualification to refer to the way a logic is used to express
that temporal propositions are true or false at different times. Various methods of tem-
poral qualification have been proposed in the AT community. Beginning with the simplest
approach of adding time as an extra argument to all temporal predicates, these methods
move to different levels of representational sophistication. In this paper we describe and
analyze a number of approaches by looking at the syntactical, semantical and ontological
decisions they make. From the ontological point of view, there are two issues: (i) whether
time gets full ontological status or not and (ii) what do the temporally qualified expres-
sions represent: temporal types or temporal tokens. Syntactically time can be explicit or
implicit in the language. Semantically a line is drawn between methods whose semantics
is based on standard first-order logic and those that move beyond it to either higher-order
semantics, possible-world semantics or an ad hoc non-standard temporal semantics.

1 Introduction

Temporal reasoning in artificial intelligence deals with relationships that hold at some times
and do not hold at other times (called fluents), events that occur at certain times, actions
undertaken by an actor at the right time to achieve a goal and states of the world that are
true or hold for a while and then change into a new state that is true at the following time.
Consider the following illustrative example that will be used throughout the paper:

“On 1/4/04, SmallCo sent an offer for selling goods ¢ to BigCo for price p with a
2 weeks expiration interval. BigCo received the offer three days later' and it has
been effective since then. A properly formalized offer becomes effective as of it is
received by the offered and continues to be so until it is accepted by the offered
or the offer expires (as indicated by its expiration interval). Anybody who makes
an offer is committed to the offer as long as the offer is effective. Anybody who
receives an offer is obliged to send a confirmation to the offerer within two days.”

This narrative contains instances of the temporal phenomena mentioned above:
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'"This trading example probably ought to be updated to an e-treading scenario where the messages are
received 2 or 3 seconds after being sent, however we believe that the essential representation issues and results
still would be the same.



fluents such as “z being effective from time ¢ to time #'”. In this case, the beginning
and the end and the duration are not fully determined but the beginning is. Naturally,
this fluent may also hold on a set of non-overlapping intervals of time.

e Actions such as “an agent z to send an object or message y to agent z at time ¢”.
Observe that this also may happen more than once for the same z, y and z, with ¢
being the only distinctive feature.

e Fwvents such as “x receives y on time t”. Both executed actions and events potentially
are causes of some change in the domain. In this case, the event causes the offer to be
effective as of the reception time.

e States such as the state before “1/Apr/04” and the state right after receiving the offer
where the offer is effective and various obligations hold.

Additionally, we observe other kinds of temporal aspects such as:

e Temporal features of an object or the object itself. For instance “the manager of Small-
Co” can be a different person at different times or even “SmallCo” could denote different
companies at different times depending on our timeframe.

e Temporal relations between events and fluents such as “The offer is effective as of it is
received by the offered and will be so until it is accepted by the offered or it expires”
or “sending an object causes the destiny to receive it between 1 and 4 days later.”

e Temporal relations between fluents such as “the offered is committed to the offer as long
as the offer is effective” or “an offer cannot be effective and expired at the same time”.

Notice that references to time objects may appear in a variety of styles: absolute (“1/Apr/04”),
relative (“two days later”), instantaneous (now), durative (“the month of march”), precise
(“exactly 2 days”), vague (“around 2 days”), etc.

This example illustrates the issues that must be addressed to design a formal language
for temporal reasoning?, namely the model of time i.e. the set or sets of time objects (points,
intervals, etc.) that time is made of with their structure, the temporal ontology i.e. the
classification of different temporal phenomena (fluents, events, actions, etc.), the temporal
constraints language, i.e. the language for expressing constraints between time objects, the
temporal qualification method and the reasoning system. Research done on these issues is
reviewed in the various chapters of this volume. Here we shall focus on Temporal Qualifi-
cation:

By a temporal qualification method we mean the way a logic (that we shall call the
underlying logic of our temporal framework) is used to express the above temporal
phenomena at specific times.

One may either adopt a well-known logic equiped with a well-defined model and proof theory

or define a language with a non-standard model theory and develop a proof theory for it.
Indeed, the temporal qualification method is a central issue in defining a temporal reason-

ing framework and it is closely related to the other issues mentioned above. The reader must

2The presentation is biased towards the standard definition of first-order logic (FOL), although nothing
prevents the situation of the elements described here in the context of a different logic, including non-standard
semantics for FOL, modal logics and higher-order logics.



be aware that most of these issues are discussed in other parts of this volume. We discuss
them here up to level needed to make to make our presentation self-contained and discuss the
advantages and shortcomings of each temporal qualification approach.

1.1 Temporal Reasoning Issues
1.1.1 The Model of Time

Modeling time as a mathematical structure requires deciding (i) the class or classes of basic
objects time is made of such as instants, intervals, etc. (i.e. the time ontology) and (ii)
deciding what are the properties these time sets: dense vs. discrete, bounded vs. unbounded,
partial/total/...order, etc. (i.e. the time topology).

This issue is discussed in chapter Theories of Time and Temporal Incidence in this hand-
book and we shall remain silent on what the best model of time is. When introducing a
temporal qualification method we shall merely assume we are given a time structure
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where each 7; is a non-empty set of time objects, Fyme is a set of functions defined over
them, and Py is a set of relations over them. For instance, when formalizing our example
we shall take a time structure with three sets: a set of time points 77 that is isomorphic to
the natural numbers (where the grain size is one day), the set of ordered pairs of natural
numbers 73 and 73 a set of durations or temporal spans that is isomorphic to the integers.
Fiime contains the functions begin,end : 73 — Ti,— : 71 X T1 — T3 and Riime contains
relations like <; and =; for 7; <3 and =3 for 73 and the known qualitative interval relations
like Meets,Qverlaps,...C T3 X 7Ts.

The decision made on the model of time is “fairly” independent of the temporal qualifi-
cation method but it has an impact on the formula we one can write and the formula we can
proof. On the one hand,

The reader must bear in mind that the temporal qualification method one selects will
determine how the model of time adopted will be embedded in the temporal reasoning system.
The completeness of a proof theory depends on the availability of a theory that captures the
properties of the model of time and allows the proof system to infer all statements valid in
the time structure. Such a theory, the theory of time, may have the form of a set of axioms
written in the temporal language that will include symbols denoting functions in F;pe and
relations in Ryjme. For example, the transitivity of ordering relationship (denoted by <;) over
71 can be captured by the axiom

Y t1,%t2,%3 [tl <yt ANty <4 t3) — 11 <1 t3]

Depending on the time structure and the expressive power of underlying logic it can be the
case that such complete set of axioms cannot be written in our language.

1.1.2 Temporal Constraints Language

The language of expressions denoting constraints between temporal objects. Formulas are
logical combinations of atoms built on time constants (possibly of different nature) e.g.
“1/Apr/04” or “2 days”, that denote time objects in 7y, ..., Ty,, function symbols that denote
functions in Fyjpme (we call them time functions), and predicates, we call them time predicates,
that denote relations in Ry;me Whose arguments are all time terms.



1.1.3 Temporal Ontology and the Theory of Temporal Incidence

As discussed in two previous chapters in this book (“Eventualities” by A. Galton and also
partly in Vila’s “Theories of Time and Temporal Incidence”), temporal statements can be
classified in various classes (asillustrated by the different temporal phenomena in our example)
each associated with a pattern of temporal incidence. Different temporal ontologies have been
proposed in different contexts such as natural language understanding and common-sense
reasoning. In most cases, the result of such ontological studies is a classification of temporal
relations into a number of classes (e.g. fluents, events, etc.). For our purpose here we shall
refer to these classes as
temporal entities= {&,..., &, }

and assume that each class is accompanied by a pattern of temporal incidence that sometimes
is characterized by one or more axioms written in our logical language through some sort of
temporal incidence meta-predicates. We call the set of these axioms the theory of temporal
incidence T;.

For instance, when formalizing our example we shall have the following temporal entities:
(i) events or accomplishments such as “send a legal object on time t”, that occur either at
a time point i.e. one day, or during a time span (several days) and (ii) fluents such as “the
offer is effective as of t” that hold homogeneously throughout a number of days. Whereas the
occurrence of an event over an interval is solid (if it holds on a interval it does not hold on
any interval that overlaps with it), the holding of a fluent over an interval is homogeneous (if
it holds during an interval it also holds over any subinterval). For example, if we would have
the meta-predicate HoLDs®, then for each fluent RF € E fluents

Y ti,to, 1, ..., ok [ HOLDS(¢1,£2, RF (21, ..., 21)) —

V ts,ta [(ts,t4) C (t3,ta) — HoLDS(t3,t4, R¥ (21, ..., 21))] ]

Although these issues are out of the scope of this study, we must bear in mind that the
temporal qualification method determines how are the temporal incidence axioms written and
the formula derived from them.

1.2 Temporal Qualification Issues

Having the previous issues out of the way, let’s point out the issues determined by a temporal
qualification method?:

e The distinction between temporal and atemporal individuals. As illustrated by the ex-
ample, a distinction ought to be made between atemporal individuals (i.e. individuals
that are independent of time such as color green, number 3, ...) and individuals whose
existence depends on time such as “contract c1-280-440” or “the SmallCo company”.

o The distinction is made between temporal and atemporal functions. The introduction of
time also leads to the need of making a semantic distinction between temporal functions
and classical functions possibly co-existing in the same logic. We define a temporal
function as a function whose value can be different at different times, for example “the
manager of” (SmallCo). We shall call F; the set temporal function symbols and Fu the
set of atemporal predicate symbols.

3 As a matter of fact, it can be argued that any method of temporal qualification method can be regarded
as the set of decisions made with respect to these issues.



o The distinction between temporal and atemporal relations. Similarly, a temporal logic
ought to have a semantic distinction between relations whose truth-value can be different
at different times, such as “agent a; sends an offer to ay of selling ¢” and those whose
truth-value is independent of time as in classical logics such as “a contract is a legal
document” (from the domain ontology) and “an offer is properly formalized”. Notice
that the time relations mentioned above are in fact atemporal relations.

o The distinction between temporal occurrences and temporal types of occurrences. By a
temporal occurrence (namely temporal token) we mean a particular temporal relation
when is true at a specific time (e.g. “on time t agent a; sends an offer to ay of selling
g”) as opposed to the term temporal type that means the set of all occurrences of a
temporal relation (e.g. the set of all specific sending events of type “agent @, sends an
offer to ay of selling g”).

e The specification of time and temporal incidence theories. As we explained, the time and
temporal incidence theories are do not condition the temporal qualification an represen-
tational issue for our temporal qualification method is the flexibility and expressiveness
provided to specify the axioms of these theories.

o The specification of “nested” temporal relations. A temporal relation that relates objects
or other relations that in turn are temporal. For example, “an agent is committed for
a period to send a confirmation of a certain offer”. The commitment, the send action
and the offer are all temporal relations.

o The specification of relations between temporal relations or their occurrences. The
paradigmatic example of this is the causal relation between a temporal relation whose
occurrence causes another relation to hold. Other examples are incompatibility between
temporal relations, correlation of temporal relations, or class-subclass links bounds be-
tween temporal relations.

As a matter of fact, temporal qualification is an issue in any formal temporal represen-
tation, no matter its context. In this section we quickly overview temporal qualification
in different areas, ending with temporal qualification in AI where we briefly introduce the
approaches that will be discussed in detail in the following sections.

1.3 Temporal Qualification in Logic

Classical Logics. Classical logics have proven useful for reasoning about domains that
are atemporal (such as mathematics) or in domains where time is not a relevant feature
and can be abstracted away (e.g. a diagnostic system in a domain where the times of the
relevant symptoms do not affect the result of the diagnosis). However, in many domains time
cannot, be disregarded if we want our logical system to be correct and complete. Logicians
have studied different theories to model time and designed various temporal logics. In such
logics, statements are no longer timelessly true or false but are true or false at a certain time.
Temporality may be inherent in any component of the formula, functions, predicates or logical
connectives, in particular, as soon as we have a time domain it is natural to quantify over
time individuals.

A simple approach to formulating a temporal logic is as a particular FOL with a time
theory. Temporal functions and predicates are supplemented with an additional argument



representing the time at which they are evaluated and time is characterized by a set of first-
order axioms. Standard FOL syntax and semantics are preserved and, therefore, standard
FOL proof theory is also valid however we must be careful with the time axioms. On the one
hand, as discussed above, the completeness of the theorem prover depends on the existence
of a complete first-order axiomatization for the intended time structures. On the other hand,
the time axioms may easily lead to an explosion of the search space to be explored by the
theorem prover.

It is convenient to move to a many-sorted logics [6, 24, 12, 5] since it naturally allows to
distinguish between time and non-time individuals. Many-sorted logics do not extend FOL’s
expressive power (it is well-known that a many-sorted first-order logic can be translated to
standard FOL) but it provides several advantages. Notation is more efficient as formulas
are more readable, more “elegant” and some — can be dropped yielding more compact
formulas. Semantics also can be regarded as a simple FOL extension, therefore many-sorted
logic preserves the most interesting logical properties of FOL while it provides some potential
for making reasoning more efficient. A formula parser can perform “sort checking” and some
of the reasoning involving the sortal axioms can be moved into the unification algorithm.
Although this leads to a more expensive unification step, this is typically more than off set
by the reduction in the search space that can be achieve through the elimination of the sortal
axioms from the theory.

Modal Logics. An alternative way to incorporate time is by complicating the model the-
ory, along the lines of modal logic. Using the common Kripke-style possible world semantics
for modal logics, each possible world represents a different time while the accessibility rela-
tionship becomes a temporal ordering relationship between possible worlds. Different modal
temporal logics are obtained by (i) imposing different properties on the accessibility rela-
tionship, and (ii) choosing different domain languages (e.g. propositional, first-order, ...).
In order to provide an efficient notation, modal varieties of temporal logic use a number of
temporal modal operators, operators that are applied to propositions in the domain logic and
change the time with respect to which the proposition is to be interpreted. Traditionally, four
primitive modal temporal operators are defined: F (at some future time), P (at some past
time), G (at any future time) and H (at any past time). Hence F¢ denote that the formula
¢ is true at some future time. Other common temporal modalities are p UNTIL ¢ (p is true
until ¢ is true), p SINCE ¢ (p has been true since ¢ has been true) or AT(t) p (p is true at
time ).

1.4 Temporal Qualification in Databases

From a purely logical point of view, classical database applications [1, 22, 4] have followed
the first approach outlined in the previous section. In addition to the original relations and
a data domain for the values of the attributes, the temporal database includes a temporal
domain. Typically, temporal databases use an instant-based approach to time. Some kind of
mathematical structure is imposed on instants: usually one that is isomorphic to the natural
numbers. A temporal database can be abstractly defined in a number of different ways[4].

The Model-theoretic View. A database is abstractly viewed as a two-sorted first-order
language. Each relation P of arity n gives rise to a predicate R with arity n + 1, where the



additional argument is a time argument. Its intended meaning is as follows:
(a1, ...,an,t) € R if and only if P(ay,...,a,) holds at time ¢

All a; are constant symbols denoting elements in a data domain. The set of constant symbols
is possibly extended with some symbols denoting elements in the temporal domain. The
theory may also add some time function and relation symbols, such as a function symbol £+ 1
to denote the time immediately following ¢ or the relation < to denote temporal ordering.

Some databases require multiple temporal dimensions. The usual case is that a single
temporal domain is assumed. The relational predicates are then given two temporal arguments
to indicate that the relation holds between two points in time (interval timestamps), or a
number of time arguments used to model multiple kinds of time. For example, in the so-
called bi-temporal databases, one set of temporal arguments refers to the valid time (the time
when the relation is true in the real world) and another to the transaction time (the time
when the relation was recorded in the database) [20]. The different interpretations of multiple
temporal attributes databases are captured by integrity constraints. For example, a constraint
may state that the beginning of an interval always precedes its end or that transaction time
is not before valid time.

The Timestamp View. Moving to concrete databases (database that are to be imple-
mented and therefore must allow for a finite representation), the most useful view is the
timestamp view. In this view, each tuple is supplemented with a timestamp formula possibly
representing an infinite set of times. A timestamp formula is a first-order formula with one
free variable in the language of the temporal domain, e.g. 0 < ¢t < 3V 10 < t. Different tempo-
ral databases result from different decisions about what subsets can be defined by timestamp
formulas. An interesting temporal domain is the Presburger arithmetic as it allows one to
describe periodic sets and therefore has obvious application in calendars and repeating events.

It is not clear whether timestamps could be defined in a language richer than the first-
order theory of the time domain [4]. However, there are some approaches that extend the
timestamp view by associating timestamps not to tuples but to attribute values [21]. Such
approaches increase data expressiveness and temporal flexibility but pay for this through
increased query complexity, and hence decreased efficiency.

Temporal Query Languages. While the temporal arguments approach has been predom-
inant in temporal databases a wide variety of languages have been explored for querying them.
These range from logic programs with a single instantaneous temporal argument to temporal
logics with modal operators such as SINCE , UNTIL , etc. Readers interested in temporal
query languages are referred to the the chapter on this subject in this volume.

1.4.1 Temporal Qualification in Computer Systems

Computer systems can be regarded as a sequence of states. Each state is characterized by
a set of propositions stating what is true at that time. Interesting reasoning tasks such as
system specification, verification and synthesis can be states in terms of logical properties
that must hold at some times/states in the future when the system starts at a certain initial
state.

In this context, it is appropriate to model time as an ordered, discrete sequence of time
points and the dominant temporal qualification approach is modal logics. The reasons are that



temporal modal operators allow one to easily express relative temporal references (e.g.,“the
value of variable a is 2 until this assignment statement is executed”). Modal operators also
provide a very efficient notation for various levels of nested temporal references (e.g. “p will
have been true until then”). Also the semantics fits the discrete time model very well. Since
modal temporal logic is discussed at length in other chapters in this volume we will not expand
on this discussion here and merely refer the reader to these other chapters.

1.5 Temporal Qualification in Al

It has been recognized that AI problems such as natural language understanding, common-
sense reasoning, planning, autonomous agents, etc. make greater demands on the expressive
power of temporal logics than many other areas in computer science. For example, the tempo-
ral reasoning that autonomous agents are required to undertake typically require both relative
and absolute temporal references. Autonomous agents also often require reasoning about dif-
ferent possible futures and, if they are to engage in abductive reasoning, they may have to
consider different possible pasts in order to determine which past is the best explanation for
the current state of affairs.

All techniques that have been employed in temporal databases and/or computer science
have also been applied in Al

o The method of temporal arguments has been an appealing method to many Al re-
searchers because of its simplicity, the availability of interesting results on FOL theorem
proving, and the fact that its expressiveness is not as limited as has commonly been
claimed[3] if we allow temporal arguments in functions as well as in predicates.

o Temporal Modal logics have been appealing to those interested in formalizing natural
language (the so-called tense logics) and formal knowledge representation.

However, it is a third family of techniques that attracted much of the attention from Al
researchers, specially during the 80s and 90s, namely the reified approach. In the reified
approach, one “reifies” temporal propositions and introduces names for them. One then uses
predicates such HOLDs or OCCURS to express that the named proposition is true at a certain
time, or over a certain interval. Classical examples of this approach are the situation calculus
[13, 17, 18], McDermott’s logic for plans[14], Allen’s interval logic [2], event calculus [11, 18],
the time map manager [8], Shoham’s logic for time and change [19] Reichgelt’s temporal
reified logic [16], Token reified logics [23], action languages [?], etc.

The attraction of the reified approach is to a large extent due to the fact that the inclusion
of names for such entities as actions, events, properties and states in the formalism allows
one to predicate and quantify over such entities, something that is not allowed in either
the method of temporal arguments or in temporal modal logic. This expressive power is
important in many Al applications. Even our seemingly simple example includes examples
of propositions that require quantification. The proposition “An offer remains valid until it
either expires or is withdraw” is most naturally regarded as involving a quantification over
expiration and withdrawal events. Other examples of propositions that are best regarded
as involving quantification over events and/or states include propositions such as “whenever
company X is in need of cleaning services, it issues a tender document”, or “State-funded
agencies can only issue contracts after an open and transparent tendering process”.

Although reified logics have proven very popular, they have come under attack from dif-
ferent angles. First, temporal reified systems have been presented without a precise formal



semantics. While temporal reified logics in general remain first-order, the introduction of
names for events and states, and some meta-predicates tot assert their temporal occurrence,
means that one cannot simplistically rely on the standard semantics for first-order logic to
provide a rich enough semantics for a temporal reified logic. In some cases, like Shoham’s
reified logic, the apparent increased expressive power is not superior to that of the standard,
easy-to-define method of temporal arguments [3] Second, in the cases in which the expres-
siveness advantage is clear, the price to pay is a logic that may end being far too complex.
Third, reified temporal logics also received criticisms from the ontological point view, Gal-
ton [9], for example, considers them “philosophically suspect and technically unnecessary”, as
they seem to advocate the introduction of temporal types in the ontology. One way to escape
from this criticism is to move to an ontology of temporal propositions based on temporal
tokens. A temporal token is not to be interpreted as a type of temporal propositions but as a
particular temporal instance of a temporal proposition. Such ontology has been used as the
basis for some alternative temporal qualification methods such as temporal token arguments
or temporal token reification.

1.6 Paper Outline

In the following sections we describe in detail the most relevant methods of temporal qualifi-
cation in AI that we briefly introduced in the previous subsection. We look at the syntactical,
semantical and ontological decisions they make. As we have seen, syntactically we distinguish
between those that represent times as additional arguments and those that introduce specific
temporal operators. Semantically, the main distinction is between those methods that stay
within standard first-order logics and those that move to some sort of non-standard semantics,
either defined from scratch or by adapting some known non-classical semantics such as modal
logics. Finally, from the ontological point of view, we distinguish between the methods that
only give full ontological status to time from the ones that, in addition, include in the ontology
denotations for temporal propositions: these can be either temporal types or temporal tokens
if they represent particular temporal occurrences of a temporal expression.

Each method is illustrated by formalizing our trading example. The reader should recall
that we assume we are given the following:

e The model of time. The time structure composed of the three time subdomains: a set
of time points 7; that is isomorphic to the natural numbers (where the grain size is one
day), the set of ordered pairs of natural numbers 73 and 73 a set of durations or temporal
spans that is isomorphic to the integers. F;me contains the functions begin, end: 7; —
Ti,—:T1 X Ti = T3 and Ry;me contains relations like <3 and =; for 77 <3 and =3 for
T3 and the known qualitative interval relations like Meets, Overlaps,...C Ty X 7s.

e Temporal Entities and Temporal Incidence Theory. We have two temporal
entities:

1. events or accomplishments that occur either at a time point i.e. one day, or during
a time span (several days) and the occurrence is solid: if it holds on a interval it
does not hold on any interval that overlaps with it.

2. fluents that hold homogeneously throughout a number of days: if it holds during
an interval it also holds over any subinterval.



We analyze the advantages and shortcomings of each method according to a set of rep-
resentational, computational and engineering criteria Among the representation criteria, we
shall first look at the expressiveness of the language. In particular, it is important for our
temporal qualification method to be able to represent the various types of propositions and
axioms indicated in previous sections. The comparison will be informal and illustrated by
our example. Second, we shall look at the notational efficiency. For a host of reasons, it is
important that one is able to formalize knowledge into formulas that are compact, readable
and elegant. Third, it is desirable to have an ontology that is clean and not unnecessarily
complex. One wants to make sure that one avoids undesirable entities in one’s ontology. For
example, an ontology that requires one to postulate the existence of both types and tokens is
suspect. On the other hand, one also wants to make sure that the entities that one postulates
in one’s ontology are rich enough to enable one to express whatever temporal knowledge one
wants to express. A second type of criteria are theorem proving criteria such as soundness
and completeness of the proof theory, efficiency of any theorem provers, as well as the pos-
sibility of using implementation technique to improve the efficiency of the theorem prover.
Finally, we also bear in mind what one might call “engineering criteria”, such as modularity
of the method. Often temporal reasoning is but one aspect of the reasoning that the system
is expected to undertake. For example, an autonomous agent needs to be able to reason not
only about time but also about the intentions of other agents that it is likely to have to deal
with. It would therefore be advantageous if the method of temporal qualification allows one
to extend the reasoning system to include reasoning about other modalities as well.

2 Temporal Modal Logic

One possible approach to temporal qualification in Al is the adoption of modal temporal logic
(MTL ). We already briefly discussed modal temporal logic in section 1.3. Moreover, there
is a chapter in this handbook devoted to modal varieties of temporal logic by H. Barringer
and D. Gabbay, and our discussion of this approach is therefore extremely condensed.

2.1 Definition

Temporal modal logics are a special case of modal logic. Starting with a normal first order
logic, one adds a number of modal operators, sentential operators which, in the case of
temporal modal logic, change the time at which the proposition in its scope is claimed to be
true. In other words, the problem of temporal qualification is dealt with by putting a modal
operator in front of a non-modal proposition. For example, one may introduce a modal
operator P (“was true in the Past”). When applied to a formula ¢, the modal operator would
change the claim that ¢ is true at this moment in time to one which states that ¢ was true
some time in the past. Thus, the statement “SmallCo sent offer ol to BigCo some time in
the past” would be represented as P Send(sco, o1, bco).

Modal temporal logic, as traditionally defined by philosophical logicians, is not particularly
expressive. In its simplest form, modal temporal logic only allows existential and universal
quantification over the past and the future. In other words, in its simplest form, modal
temporal logic contains only four modal operators, namely P (“was true in the past”), H
(“has always been true”), F (“will be true sometimes in the future”) and G (“is always
going to be true”). Clearly, this is insufficient for Artificial Intelligence, or indeed Computer
Science. For example, none of the propositions in our example could be expressed in such an

10



expressive poor formalism. It is for this reason that a number of authors (e.g., Fischer, 1991;
Reichgelt, 1989) have introduced a number of additional modal operators, such as UNTIL ,
SINCE and a model operator scheme AT, which takes a name for a temporal unit as argument
and returns a modal operator. Alternatively, one can, as Barringer and Gabbay do in an
earlier chapter in this handbook, introduce a unary predicate p() for each proposition p in
the original -propositional- language and stipulate that p(¢) holds if p is true at time point ¢.
Thus, p(t) is essentially a different notation for AT(#)p. One advantage of the AT operator
is that it is easier to see how it can be used in a full first-order logic.

Modal temporal logic inherits its model theory from generic modal logic. The standard
model theory for such logics relies on the notion of a possible world, as introduced in this
context by Kripke (1963). In Kripke semantics, primitive expressions, such as constants and
predicates, are evaluated with respect to a possible world. Non-modal propositions can then
be assigned truth value with respect to possible worlds as in standard models for first-order
logic. The semantics for modal propositions is defined with the help of an accessibility relation
between possible worlds. In modal temporal logic, an intuitive way of defining possible worlds
is as points in time, and the accessibility relation between possible worlds as an ordering
relation between possible worlds. We then say that for example the proposition Pp is true
in a possible world w if there is a possible world w’, which is temporally before w and in
which p is true. With this in mind, the definition of the semantics for other modal operators
is relatively natural.

The only complication to this picture is caused by an introduction of a possible AT op-
erator scheme. Since this operator requires a name for a temporal unit as an argument, the
language has to be complicated to include names for such temporal units, and the semantics
has to be modified to ensure that such temporal units receive their proper denotation. Ob-
viously, the most appropriate way to deal with this complication is to assign possible worlds
as the designation of names for temporal units, and to include an additional clause in the
semantics that states that the proposition AT(t)p is true if p is true in the possible world
denoted by t.

2.2 Analysis

We defined a number of representational desiderata on any temporal logic. One of the criteria
is the notational efficiency (conciseness, naturalness, readability, elegance, ...). Compared
to other temporal formalisms discussed in this paper, modal temporal logic scores well on this
criterion since the temporal operators produce concise and natural temporal expressions. An-
other issue is the modularity with respect to other knowledge modalities such as knowledge
and belief operators. It is straightforward to combine the syntax and semantics of a modal
temporal logic with a modal logic to represent, say, knowledge. Syntactically, such a change
merely involves adding a knowledge modal operator; semantically, it involves adding an ac-
cessibility relation for this new modality. The model theory now contains two accessibility
operators, one used for temporal modalities, the other for epistemic modalities.

As far as cleanness of the ontology is concerned, the main concern is the notion of a
possible world. There is a significant amount of philosophical literature on whether possible
worlds are ontologically acceptable or suspect. Without wanting to delve into this literature,
it seems to us that a possible world can simply be regarded as a model for a non-modal first
order language, and that this makes the notion ontologically unproblematic. There are of
course additional arguments about the identity of individuals across possible worlds, but it
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again seems to us that this problem can be solved relatively easily by insisting that the same
set of individuals be used for each possible world.

Where modal temporal logic is less successful is in its ability to represent the various
sentences and axioms in our example. Let’s consider few statements from our example. To
formalize the statement “An offer becomes effective when is received by the offered and
continues to be so until it is accepted by the offered or the offer expires” we introduce several
predicates. Let E(z) denote “the offer x is effective”, R(z) denote “the offer x is received”
A(z) denote “the offer x is accepted” and X (z) denote “the offer x expires”. The classic
since-until tense logic can be used to express the example as

V ma? ya7 mO
[ E(O(maa Ya, mo)) SINCE R(yaa O(xaa Yas xo))/\
E(O(mm Ya, mo)) UNTIL (A(ym mo(mm Ya, mo)) \ E(mo(mm Ya, ro)))]

The problem is that modal temporal logic does not allow one to quantify over occurrences
of a particular event. Thus, a proposition like "every time a company makes an offer, it is
committed to that offer until it either expires or has been accepted” would be impossible to
express.

Although the semantics for modal temporal logics is well understood, it has to be admitted
that the implementation of automated theorem provers for modal temporal logic is not
straightforward. One could of course try to adopt a theorem prover developed for general
modal logic. However, such theorem provers in general do not allow for particularly complex
accessibility relationships between possible worlds. Most merely allow accessibility relations
to be serial, transitive, reflexive or some combination of these. However, such properties are
clearly not enough if one were to introduce intervals as one’s temporal units. In other words,
using a general theorem prover as a reasoning mechanism for modal temporal logic is only
likely to be successful if one uses points as one’s temporal units. A more promising approach
would be to develop theorem provers specifically for temporal modal logic which is a topic
of ongoing research as discussed on other chapters in this volume.

3 Temporal Arguments

The oldest and probably most widely used approach to temporal qualification is the method of
temporal arguments (TA ) as introduced in section 1.3. The idea of the temporal arguments
approach is to start with a traditional logical theory but to add additional arguments to
predicates and function symbols to deal with time. In order to reflect the fact that the
domain now contains both “normal individuals” and times, the theory is often formulated as
an instance of a many-sorted first-order logic with equality.

3.1 Definition

As stated in section 1.1 we assume (i) a given time structure (7i, ..., Tn,, Frime; Riime) With
a FOL time axiomatization , and (ii) a classification of temporal entities {&i,..., & } each
clags accompanied by a temporal incidence axiomatization.

Given these, we define the temporal arguments method as a many-sorted logic with the
time sorts T4, ...,T),,, one for each time set, and a number of non-time sorts Uy, ..., U,.
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Syntax. The vocabulary is composed of the following symbols:
e a set of function symbols F = {f<D1*“'*D"'_’R>}. If n =0, f denotes a single individual
from sort R, otherwise f denotes a function Dy X ... X D, — R and depending of the

nature of the D;, we distinguish between:

— Time functions Fyme whose domain and range are time sorts.

— Temporal functions F; whose range is a non-time sort and whose domain include
both, time and non-time sorts.

— Atemporal functions F o, whose range is a domain sort and whose domain do not
include any time sort.

Time, temporal and atemporal terms are defined in the usual way.

e a set of predicates P = {P<D1"“’D">}. If n = 0, P denotes a propositional atom,
otherwise P denotes a relation defined over Dy, ..., D, and depending on whether D;
are time or a non-time sorts we distinguish between:

— Time predicates Py whose arguments are all time sorts.

— Temporal predicates P; whose arguments include both time and domain sorts.

— Atemporal predicates P o, whose arguments do not include any time sort.
e a set of variable symbols for each sort.

We have three classes of basic formula: atomic temporal formula, atomic atemporal formula
and temporal constraints.

Semantics. The semantics is the standard semantics of many-sorted logics. Notice that
time gets full ontological status as we have one or more time sorts, yet temporal entities and
temporal formulas receive no special treatment.

3.2 Formalizing the Example

Having assumed the models of time and temporal incidence indicated in 1, we define the
following sorts: T}y for time points, Tj,¢ for time intervals, and Tspan for time spans or
durations, A for agents, O for legal objects, G for trading goods, S for legal status and $ for
money. Our vocabulary includes the following symbols:

e a set of constants for each sort: day constants = {1/8/04,now, ...}, time interval con-
stants = {3/04,2004, ...}, time span constants = {3d, 2w, 1y, ...}, the constant now,
agent constants = {john, jane, beo, sco, ...}, legal object constants = {01, 09, ...}, etc.

e the following sets of function symbols:

F _ <Tpoint 7TSpanHTpoint ) <Tpoint ’Tpoint ~Tspan)
— L time — {+T y T o }

- F, = {manager@int’A'_*A)}

- Fo = {Sale<G’PHO>, 0ﬁer<A*A*O*TSPaH'_’O>}

e the following sets of predicates:
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T - T T - T
— Piime = {S< point?’ pomt)’:< point?’ pomt)7 . }

— Py = Peyent U Pfluent
Thoi AT ing 4,0
. AT . .0
Eacpzre< point’ >}
. T . - T . 0 T . T . o
* P fluent = {EﬁGCtW‘f( pomt“pomt >,1‘1ccepted< point“point >’
Expir,-ed<Tpoint 7Tpoint ,0) }

— Po, = {Correct_form'®?, S;RP) (

A,A,0) A,0)

(Thoint
, Accept' " pomnt ,

that denotes the < relation between prices) }

e and a set of variable symbols for each sort.
The statements in the example can be formalized as follows:

1. “On 1/4/04 SmallCo sent an offer to BigCo for selling goods ¢ for price p with a 2 weeks
expiration interval.”

Send(1/4/04, sco, beo, offer(sco, beo, sale(g, p), 2w))

2. “BigCo received the offer three days later and it has been effective since then.”
Receive(1/4/04 4 3d, beo, offer(sco, beo, sale(g, p), 2w)) A
Effective(1/4/04 4 3d, now, offer(sco, beo, sale(g, p), 2w))

3. “A properly formalized offer becomes effective when it is received by the offered ...”
Vi1 Tpoint) Tas Ya * A, To 1 O, 18 & Tspan,
[ Correct_form(offer(za, Ya, To,tS)) A Receive(ty, Ya, offer(za, Ya, To,tS) —
3ty : Tpoine [ Effective(ty, ty, offer(za, Ya, o, t5) A t1 < tg]

]

4. “...(an effective offer) continues to be so until it is accepted by the offered or the offer
expires (as indicated by its expiration interval).”
Vt1,te : Thointy Tas Ya * A, o 1 O, 15 Tgpan
[ Effective(ty, tz, offer(zq, Ya, T, t8)) Aty <ty —
3tz : Tpoing [Accept(ts, ya, offer(za, Ya, To, t5)) Aty < t3 <ty +1ts] V
(te = t1 + ts A\ Expire(t2, offer(za, Ya, To,tS)))

]

5. “Anybody who makes an offer is committed to the offer as long as the offer is effective.”
Vit ty: Tpointvma P A
[ Effective(ty, ta, offer(za, -, -, -)) = Committed(t1,t2, 24, offer(za, -, -, ) ]

6. “Anybody who receives an offer is obliged to send a confirmation to the offerer within
two days.”
Vit: Tpointamaaya : Aamo :0
[ Receive(t, Ya, Ta, o) — Obliged(t,t + 2d, yq, ?77) |

The “?777” in the last formula indicates that it is not clear how to express that g, is obliged
to “send a confirmation of z, to z,” since in standard FOL we cannot predicate or quantify
over propositions?. Besides this example, there are few additional general statements whose
formalization is interesting to consider:

*The reader might come up with the idea of turning temporal predicates into terms in order to be able to
take them as proper predicate arguments. This is the idea of temp. reified logics that we discuss below.
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1. Time axioms: “The ordering between instants is transitive”:

Vit to b3t Thoing [T <ta Aty <tz =t <t3]

2. Temporal Incidence axioms such as “Fluents hold homogeneously”:
v tl,tg,t37t4 : Tpoint,ml : Sl, B P Sn,
[ Pty t2, @1,y an) Aty Sty <ty <ty Aty Ftg = Plts,tg, 21,..0,20) |

This an “axiom schema” that is a shorthand for a potentially large set of axioms, one
for each fluent predicate P in the language.

The previous examples are instances of relations holding between temporal entities, which can
be important in some applications. In common-sense reasoning and planning, for instance, it
is important to specify the CAUsE relationship:

“Whenever an offer is effective it causes the agent who made the offer to be
committed to it as long as the offer is effective.”

Again, it is not clear how to express this piece of knowledge in the method of tempo-
ral arguments since it requires the predicate CAUSES to take as argument the proposition
Effective(ty, tq, offer(za, Ya, o, ts)) which is beyond standard many-sorted FOL. A similar
problem arises we attempt to formalize the following properties:

o “Whenever a cause occurs its effects hold.”

o “Causes precede their effects.”

3.3 Theorem Proving

Defining a temporal logic as a standard many-sorted logic has the advantage that we can use
the various deductive systems available for many-sorted logics [6, 24, 12, 5]. However, we must
bear in mind that, while many-sorted logics often allow one to delete sortal axioms, such as
“All offers are legal documents”, the inclusion of a number of time sorts and predicate symbols
with a specific meaning (as determined by the properties of the model of time adopted)
requires one to add a potentially large number of axioms that capture the nature of the
temporal incidence theory. Moreover, it may be impossible to define a set of axioms that
completely capture our time structure. For instance, we have taken the “set of integers” as
our duration subdomain. But it is well-known that there is no complete axiomatization of
the integers in first-order logic if the language includes addition. Therefore, it is important
to choose a temporal structure that can be characterized fully in first-order logic, such as
“unbounded linear orders”, “totally ordered fields” or some of the theories discussed in chapter
“Theories of Time and Temporal Incidence”.

Having a complete axiomatics and therefore a complete proof theory, though, is merely
the beginning of the story. Time axioms can be a heavy load for our theorem prover as they
often lead to a significant increase in the size of the search space. This problem may lead to
the unavoidable effort of developing an specialized temporal theorem prover.

3.4 Analysis

The method of temporal arguments has a number of advantages over other approaches to
temporal qualification. First, the ontology that one is committed to is relatively straightfor-
ward. In addition to “normal” objects, one merely has to add time objects to one’s ontology.
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Compared to the ontologies that underlie the other approaches to temporal quantification,
the ontology is both parsimonious and clean. Moreover, again in contrast with some of the
approaches discussed in this chapter, the system does not make any ontological commit-
ments itself, and one is therefore completely free to make the ontology as parsimonious as the
application allows.

Second, despite it seeming simplicity, the expressive power of languages embodying the
temporal arguments approach exceeds that of many other approaches to temporal quantifi-
cation. The inclusion of additional temporal arguments in predicate and function symbols
allows one both to express information about individuals and their properties at specific times
and to quantify over times. Moreover, it is straightforward to include purely temporal ax-
ioms explicitly in one’s theories. However, this is not to say that the method of temporal
arguments gives one all the desired expressive power. For example, as we indicated in the
previous section, since it stays within the expressive limitations of first-order logic, it is not
possible to express temporal incidence properties for all temporal entities in class (fluents,
events and so on) or any other property or relation about temporal entities such as “event e
at time t causes fluent f to be true at time t”.

Third, the notation is perhaps not as efficient as some of the alternatives, specifically
modal logic. Many of the modal temporal operators are a notational shortcut for existential
or universal quantification. For example, the modal operator F' provides an existential quan-
tification over future times. Since no such notational shortcuts exist in systems based on the
method of temporal arguments, the expression of sentences becomes more tedious in such sys-
tems. This is true in particular of sentences that require embedded temporal quantification,
such as “The contract will have been signed by then”.

Fourth, as we already indicated in the previous section, the fact that the method of
temporal arguments is based on a standard first-order logic means that one can use the tried
and tested theorem proving methods for such systems, which is not the case of methods
based on a temporal logic with a non-standard temporal semantics. Moreover, setting up
the system as an instance of a multi-sorted logic allows one to take advantage of the more
efficient theorem provers developed for such logic. However, it is important to mention that
the fact that one is forced to include explicit axioms describing temporal structures in one’s
theories has detrimental effects on the performance of the actual theorem provers. Many of
the additional axioms lead to an combinatorial explosion of the search space and therefore
significantly increase the time required to find a proof. For example, some axioms, such as
for every point in time, there is a later point in time, are recursive and, unless carefully
controlled, lead to an infinite search space. We discuss some approaches that can be used to
address some of these issues below.

Finally, since the arguments that are added to the predicate and function symbols denote
time, the method of temporal arguments does not easily lend itself to the modular inclusion
of other modalities, such as epistemic or deontic modalities.

The methods that we discuss below have been developed to overcome some of the short-
comings associated with the method of temporal arguments. One way of increasing the
expressive power of the formalism without moving to a higher-order logic is through the ad-
dition of some vocabulary and a complication in the ontology. The temporal token arguments
is one such approach.
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4 Temporal Token Arguments

The temporal token argument method (TTA ) was introduced in the early Al temporal
databases such as the Event Calculus [11] and Dean’s Time Map Manager [8] and later
presented in [9] in deeper detail. It is based on the simple idea, common in the database
community, of introducing a key to identify every tuple in a relation. Here, a tuple of a
temporal relation represents an instance of that relation holding at a particular time or time
span. Therefore, we introduce a key that identifies a temporal instance of the relation, namely
a temporal token, which shall receive full ontological status.

4.1 Definition

For a given time structure (71, ..., Tn,, Fr, R7) and a given set of temporal entities {&1, ..., En, },
we define a standard many-sorted first order language with the following sorts: one time sort
Ty,...,T,, for each set of time objects, a number of non-time sorts Uy, ..., U, and one token
sort Ey,..., E,, for each temporal entity.

Syntax. It is very similar to the temporal arguments method but instead of having extra
time arguments in our temporal predicates, the extra argument is a single temporal token
term. In turn token terms are taken as arguments by (i) time functions, and (ii) temporal
incidence predicates that we introduce below.

The vocabulary is extended accordingly:

e Function symbols: In addition to the function symbol sets in temporal arguments, we
have a set of time-token functions (not to be confused with time functions) that map
tokens to their relevant times, for example the function interval : Fi yen = Ting that
returns the time interval associated with a given token.

e Predicate symbols: Temporal predicates no longer have any time argument, but instead
have a single token argument from the sort of the temporal entity denoted by the
temporal predicate. Thus, Effective(tq,t2, offer(-)) becomes Effective(tty, offer(_)) where
tt; is a constant symbol of the new Fq,ent sort.

Time and Atemporal predicates remain the same. We incorporate one new Temporal
Incidence Predicate (TIP)® for each temporal entity & which takes as sole argument
a term of the temporal sort F;. Given our temporal ontology we shall have 2 TIPs:
Horps(fluent token) expresses that the fluent token holds throughout the time interval
associated to it that is denoted by the term interval(tty) and OcCCURS(event token)
for event occurrence.

Semantics. The standard many-sorted first-order semantics is preserved with both time
domains, non-time domains and temporal token domains with the usual interpretation of
function and predicate symbols. Time and temporal incidence theories are incorporated as a
set of first order axioms.

STIPs actually are atemporal if we look at the definition we have given to this term.
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4.2 Formalizing the Example

We illustrate the approach by formalizing the example. We make the same assumptions
as before and we will frequently refer to the formalization of this example in the temporal
arguments method.

In addition to the sorts defined in the TA example we introduce sorts for tokens of
each temporal entity: Feyent for event tokens and FEfqyen; for fluent tokens. In turn, our
vocabulary will include event token constants and fluent token constants. Besides the usual
functions, we have the following time-token functions: time(token) denotes the time of an
instantaneous temporal token, begin(token) denotes the initial instant of a temporal token,
end(token) denotes the ending instant and interval(token) the time interval of the token.

In addition to the time and atemporal predicates from the previous formalization, the
temporal predicates now are as follows:

o Events: SendPevent;A4:0) (where the last argument denotes the event token of this
particular send event), Receiﬂe<Eevent’A’A’o>, and Accept<Eevent’A’o>.

o Fluents: EffectivePfluent:©) (where the first argument denotes the fluent token of a
particular period where the legal object O is effective), Accepted<Eﬂuent’O> and
Eacpired<Eﬂuent 0

As in the TA method, we have four classes of basic formula: atomic atemporal formula,
atomic temporal formula, temporal constraints and temporal incidence formula.
The statements in the example can be formalized as follows:

1. “On 1/4/04, SmallCo sent an offer to BigCo for selling goods g for price p with a 2
weeks expiration interval.”
Send(s1, sco, beo, offer(sco, beo, sale(g, p), 2w)) A OCCURS(s1) A time(sy, 1/4/04)

2. “BigCo received the offer three days later and it has been effective since then.”
Receive(ry, beo, offer(sco, beo, sale(g, p), 2w)) A Occurs(ry) A
time(ry) = 1/4/044 3d A
Effective(ey, offer(sco, beo, sale(g, p), 2w)) A HoLDs(er) A
time(ry) = begin(e;) A end(ey) = now

3. “A properly formalized offer becomes effective when is received by the offered ...”
V tt1 : Eevent, ts : Tspana TayYa i A, To: 0
[ Correct_form(offer(za, Ya, o, t8)) A
Recewe(tty, Ya, Ta, offer(Ta, Ya, o, t8)) A OCCURS(tt;) —
3ty Eﬂuent
[ Effective(tty, offer(zq, Ya, zo,ts)) A HOLDS(tty) A tt; Meets tty |
]

4. “...(an effective offer) continues to be so until it is accepted by the offered or the offer
expires (as indicated by its expiration interval).”
V tt1 ¢ Efuents TasYa © A, 2o : 0, ts: Tipan
[ Effective(tty, offer(za, Ya, To, ts)) A HoLDS(tty) —
dtty : Eevent
[Accept(tty, Ya, offer(Tay Ya, To,t8)) A OCCURS(tHty) A
begin(tt;) < time(tty) < begin(tty) + ts]
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(end(tt;) = begin(tty) + ts A

dtty : Eevent
[Ezpire(tte, offer(za, Ya, To,t8)) A OCCURS(tt2) A
end(ft;) = time(tty)])

]

5. “Anybody who makes an offer is committed to the offer as long as the offer is effective.”
V tt1 ¢ Efyents TasYa : A, 2o 1 O, 5 : Topan
[ Effective(tty, offer(zq, Ya, €0, ts)) A HOLDS(tt1) —
3 ity : Efuent
[ Committed(tty, x4, offer(Ta, Ya, To, t5)) A HOLDS (tty) A
interval(tt;) = interval(tty) | |

6. “Anybody who receives an offer is obliged to send a confirmation to the offerer within
two days.”
V ity : Eevent, Ta,Ya 1 A, 26 : 0,15 : Tgpan
[ Receive(tty, Ya, offer(za, Ya, o, ts)) A OCCURS(tt)) —
Jdtty : Eevent
[Obliged(zq,tty) A Send(tta, Ya, Ta, conflz,)) A
time(tt;) < time(tty) < time(tty) +2d ] ]

Observe that we express that z, is obliged to a temporal proposition by using a temporal
token of that proposition. In general, the additional flexibility of temporal tokens allows us
(i) to talk about temporal occurrences that may or may not happen, and (ii) to express that
an agent is obliged to that event. This is not possible in the TA method.

Let’s see how the more general statements are formalized:

e Time axioms are expressed as usual:
Vit tots t Tpoine[ 1 Sta Aty <ty — 1 <ty ]

e Temporal Incidence axioms become more compact since we can quantify over all the
instances of a given entity (e.g. all fluents) independently of their particular meaning.
It is no longer necessary to have an “axiom schema”. For instance the “homogeneity of
fluent holding” is stated by:

V tt : Efquent, I : Ting [ Rolds(tt) AT C interval(tt) — HoOLDS,, (¢, I) ]

e “It is necessary for an offer to be properly written to be effective”.
V tt : Equent, To : O [Effective(tt, z,) A HoLps(tt) — Correct_form(z,)]

o “Whenever an offer is effective it causes the agent who made the offer to be committed
to it for as long as the offer is effective.”
Vit Efuent Tas Ya : A, Lot O, ts: Tspan
[ Effective(tty, offer(za, Ya, To,ts)) A HOLDS(tt1) —
dtty : Efyent
[ CAUSE(tty, tta) A Committed(tty, offer(zq, Ya, 2o, t8)) A interval(tty, tty) | ]

o “Whenever a cause occurs its effects hold.”
Vtt e Eevent, tt2 © Efuent
[Occurs(tt;) A CAUSE(tty, tty) — HOLDS(tty)]
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o “Causes precede their effects.”
4 ttl . Eevent, ttz . Eﬂuent
[ Causk(tty, tty) — (Occurs(tt;) — HoLups(tty) A time(tt;) < begin(tty) ]

4.2.1 Token Incidence Theory

The specific semantics of temporal tokens may yield some additional temporal incidence
axioms. An example is the so-called “maximality of fluent tokens”. For practical reasons, one
is interested in adopting the following convention:

“A fluent token denotes a maxzimal piece of time where that fluent is true.”

A consequence of this is the following property “Any two intervals associated with the same
fluent are either identical or disjoint.” Thus, in practice in can be interesting to define some
additional incidence predicates such as HoLDS,:2 and HOLDS,,,?> which are shorthands for

Houpsu: (fluent,t) = 3f : Equent (fluent(f) A HoLps(f) Ai € interval(f))
HoLDS,, (fluent, I) = 3f : Eguent (fluent(f) AHoLps(f) AT C interval(f))

respectively, where f is a variable of the fluent token sort Equent and fluent(f) denotes the
atomic proposition fluent with the extra temporal token argument f.

4.3 Analysis

The temporal token arguments method has several advantages. The extra objects (the tem-
poral tokens) introduced in the language gives the notation an increased flexibility that helps
overcome some of the expressiveness problems that we identified in the temporal arguments
method: First, as temporal tokens are used as argument of other predicates it is useful to ex-
press nested temporal references as shown by the example. Second, different levels of time are
supported by diversifying the time-token functions. For instance, we may have beginy (tt;)
to refer to valid time and beginy (tt1) to refer to transaction time. Third, at the implementa-
tion level, a different temporal constraint network instance is maintained for each time level.
Every temporal term will be mapped to a node in its corresponding constraint network.

However, the increased notation flexibility causes the notation to be more baroque and
sometimes awkward (compare the formalization of our example here with the formalizations
obtained by other methods). To improve notational conciseness we can define some syntactic
sugar that allows the omission of token symbols whenever they are not strictly necessary.

Another advantage of this approach is its modularity. A clear separation is made between
the temporal and other information as a atomic temporal formulas are linked to time through
time-token functions like begin and end. However, token symbols can also be used as the
link to other modalities as the deontic modalities of commitment and obligation illustrated
by the example.

5 Temporal Reification

Temporal reification (TR ) was motivated by the desire to extend the expressive power of
the temporal arguments approach while remaining within the limits of first order logic. It is
achieved by: (i) complicating the underlying ontology and (ii) representing temporal propo-
sitions as terms in order to be able to predicate and quantify over them.
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In essence, in reified temporal logic, both time objects and temporal entities receive full
ontological status and one introduces in the language terms referring to them. The Temporal
Incidence Predicates are used to associate a temporal entity with its time of occurrence and
allow a direct and natural axiomatization of the given temporal incidence properties, as
illustrated in the example below.

Syntax. Reified temporal logics are in fact relatively straightforward to construct from a
standard first order language. First, it is useful to move to a sorted logic in which we make
a distinction between temporal entities, normal individuals and temporal units. Second, for
each n-place function symbol in the first order language, one introduces a corresponding n-
place function symbol in the reified language. Its sortal signature is that it maps n normal
individuals into a normal individual. For each n-place predicate in the original language, one
also introduces a n-place function symbol in the language. However, its sortal signature is
different. It takes as input » normal individuals and maps them into a temporal entity.

Semantics. Interestingly, not many authors worried about providing a clear model-theoretic
semantics for their formalism, either because they were not interested in doing so, or because
they believed that reified temporal logic would simply inherit its semantics from first order
predicate calculus. It was not until [19] that the semantics of reified temporal logics became
an issue. Shoham observed that reified temporal logic are very similar to formalizations of
the model theory for modal temporal logic in a first order logic and proposed to formulate the
semantics for reified temporal logic in these terms. It is not clear that the actual framework
proposed by Shoham actually achieved this. For example, [23] argue that Shoham’s formalism
is more appropriately regarded as being a hybrid between a modal temporal logic and a system
in the tradition of the temporal arguments method. As a matter of fact, Shoham’s is subsumed
by the TA method[3]. Nevertheless, Shoham’s insight was the inspiration for Reichgelt [16]
who indeed formulated a reified temporal logic.

5.1 Formalizing the Example

Let’s see how this method is used to formalize our example. We make the same assumptions
and we shall be continuously referring to the formalization of this example made with the
temporal arguments method.

Besides the sorts T, for time instants, 77 for time intervals, A for agents, etc. we now
have additional sorts, one for each temporal entity: FEeyent for events and Ef, o for fluents.
Our vocabulary is composed of:

e For each sort, a set of constant symbols, including event constants and fluent constants.

e We have time, temporal and atemporal function symbols as in the temporal argu-
ments approach except that the set of temporal functions (where we have functions like
0ﬁer<A’A’O’T'_’O>) is extended with new temporal functions produced by temporal reifi-
cation, one for each temporal relation (which in the temporal arguments is represented
by a temporal predicate):

— Eevent = {Send<A’A’o'_’Eevent>, Receivdd O Fevent)  Acceptid O Fevent)
Empire(OHEeVent> }

- Eﬂuent = {Eﬁ'ECt’I:Ue(OHEﬂuent)7 . }
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o the following sets of predicates:

- Ptime :S<T7T>’ :<T’T>, .
<P7P> . .
— P =54 (that denotes the < relation between prices).
e and a set of variable symbols for each sort.

The statements in the example may be formalized as follows:

1. “On 1/4/04, SmallCo sent an offer to BigCo for selling goods g for price p with a 2
weeks expiration interval.”
Occurs(1/4/04, Send(sco, beo, offer(sco, beo, sale(g, p), 2w)))

2. “BigCo received the offer three days later and it has been effective since then.”
Occurs(1/4/04 + 3d, Receive(beo, offer(sco, beo, sale(g, p), 2w))) A
Horps(1/4/04 + 3d, now, Effective( offer(sco, beo, sale(g, p), 2w)))

3. “A properly formalized offer becomes effective when is received by the offered ...”
Vit Tpointa TayYa * Aa
[ Correct_form(offer(zqa, Ya, -, -)) N OCCURS(t1, Receive(yaq, offer(za, Ya, -, -))) —
3ty : Tpoing [ HOLDS (ty, 1y, Effective(offer(za, Ya, -, -)))]

]

4. “...(an effective offer) continues to be so until it is accepted by the offered or the offer
expires (as indicated by its expiration interval).”
Y t1,t2  Tpoings Tas Ya * A, 26 2 O, 15 1 Topan
[ HoLps(ty, te, Effective(offer(za, Ya, o, tS))) —
E|t3 : Tpoint [tl <tz S t1 +ts A OCCURS(t3, ACC@pt(ya, mo))] \%
(ta = t1 +ts A Occurs(ty, Ezpire(of fer(za, Ya, To,ts))))

]

5. “Anybody who makes an offer is committed to the offer as long as the offer is effective.”
Vit t2  Tpoings Ta A, 700 O
[ HoLps(t1, t2, Effective( offer(zq, -, -, -))) —

HoLps(ty, ty, Committed(xq, offer(za, -, -, 2))) |

6. “Anybody who receives an offer is obliged to send a confirmation to the offerer within
two days.”
Vit: Tpoint7 TasYa : A, 701 O,
[Occurs(t, Receive(ya, offer(za, Ya, To,_))) —
Howups(¢,t + 2d, Obliged(ya, send(Ya, Ta, confloffer(za, Ya, o, -)))))]

Now last formula is legal but still the formalization we have is not that clear. It expresses
that the obligation holds between ¢ and t+42d but indeed it is “sending the confirmation” that
must be between t and £+ 2d. Next, let’s see how the more general statements are formalized:

e Time axioms are expressed as usual:

Vt17t2at3:Tp0int [tl <thANty <tz =1 St3]
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e Temporal incidence axioms become more compact since we can quantify over all the
instances of a given entity (e.g. all fluents) independently of their particular meaning
(and it is no longer necessary to have an “axiom schema”). For instance the “homo-
geneity of fluent holding” is stated as:
vt ylo,t3,ta Tpointa f : Efluent

[ HoLDS(ty,tg, f) Aty < tg <ty <tg Aty # ty — HoLDS(t3,14, f) ]

e “It is necessary for an offer to be properly written to be effective”.
Vt,t" : Thoint, To : O [HoLDS(Effective(t,t',x,)) — Correct_form(z,)]

o “Whenever an offer is effective it causes the agent who made the offer to be committed
to it for as long as the offer is effective.”
V t1,te : Thoint) Tay Ya : A, To 1 O,t5 : Tspan
[ Causk(Effective(ty, tg, offer(za, Ya, o, ts)), Committed(ty, ta, x4, offer(2a, Yo, 0, t5))) ]

o “Whenever a cause occurs its effects hold.”
Ve : Eevent, f 1 Efuent [ Occurs (6) A CAUSE(ea f) — HOLDS(f) ]

e “Causes precede their effects.”

V € : Eevent [ Eftuent
[ Causk(e, f) = (Occurs(e) — HoLDs(f) A time(e) < begin(f)) ]

5.2 Full Temporal Reified Logic

Implicitly in the previous section we have restricted ourselves to reification of atomic propo-
sitions, but we can push it further and reify also non-atomic propositions (as first discussed
in [14, 2]). This can be motivated by statements like the following:

1. “The offer ...has been sent but not effective from ¢, to t3”. HoLDsS(ty,t, Sent(or) A
— Effective(oy)

2. “From t; to ty all offers offered by agent a; have been frozen.” HoLDs(t1,t2,Vz, : 4, 2, :
O,ts : Tspan [frozen(offer(ai, Ya, o, 15))]

3. “Asof 1/may/04, when an offer is sent the offerer will have to pay a tax within the next 3
days.” HoLps(1/may/04, +00,Vea, ya : A, 26 : O,ts : Typan [send(2q, Ya, offer(za, Ya, 2o, ts)) — Obliga

Reichgelt’s reified temporal logic takes as its starting point modal temporal logic, and
the observation that the semantics for such logics can itself relatively straightforward be
formalized in a first-order language. This language, however, becomes rather baroque as it
needs to include terms to refer both to semantic entities and terms to refer to the expressions
in the modal temporal logic. Thus, a full reified logic would need to codify such statements
as “Fp(a) is true at time t if and only if there is a time t’ later than t at which the individual
denoted by a is an element of the set denoted by P” and this requires the full reified logic to
have expressions to refer to times (“t, t’”), expressions to refer to individuals (“the individual
denoted by a”) and denotations of predicates (“the set denoted by P”), as well as expressions
to refer to expressions in the modal temporal logic that is used as its starting point (“the
expression a”). The semantics for a full reified logic becomes correspondingly complex, as
it needs to include normal individuals and points in time, as well as entities corresponding
to the linguistic entities that make up the underlying modal temporal logic. Reichgelt’s

23



logic is therefore more of academic interest, rather than of any practical use. However, the
system shows that one can indeed use Shoham’s proposal to regard reified temporal logics as
a formalization of the semantics of modal temporal logic in a complicated, sorted but classical
first-order logic.

5.3 Advantages and Shortcomings of Temporal Reified method

As illustrated by the example, the temporal reification method provides a fairly natural and
efficient notation and an expressive power clearly superior than temporal arguments as it can
talk and quantify over temporal relations satisfactorily.

However temporal reified approaches have been criticized on two different direction. On
the one hand, because the ontologies they commit one to. In the example Occurs(1/4/04+
3d, Receive(beo, offer(sco, beo, sale(g, p),2w))) A
Horps(1/4/04 + 3d, now, Effective( offer(sco, beo, sale(g, p),2w))) we observe that, in both
cases, the non-time arguments to the temporal incidence predicate stand for a type of event
or fluent, respectively. There are two objections against the introduction of event and state
types. The first is ontological. Thus, taking his lead from [7], and following a long tradition
in ontology, A. Galton [9] argues that a logic which forces one to reify event tokens instead
of event types, would be preferable on ontological grounds. Using Occam’s razor, Galton
argues that one should not multiply the entities in one’s ontology without need, and that,
unless one is a die-hard Platonist, one would prefer an ontology based on particulars rather
than universals. A second argument against the introduction of types is that the resulting
logic may have expressiveness shortcomings. Haugh [10] talks about the “individuation and
counting of the events of a particular type”. One cannot, for instance, refer to the set of
multiple effects originated by a single event causing them. Also, one cannot quantify over
causes and the related set of the effects each produces in order to assert general constraints
between them.

On the other hand, temporal reification has been criticized as an unnecessary technical
complication, specially in the case that it is not defined as a standard many-sorted logic and
we have to develop a new model theory and a proof theory that is complete for it. Some
researchers look at the temporal token arguments method a the ideal alternative since it avoid
both criticisms and seem to retain the expressiveness adavantages, in particular in quatifying
over predicates as shown in the TTA section.

6 Temporal Token Reification

This method is motivated by the attempt of achieving the expressiveness advantages of tem-
poral reification (while staying in standard FOL) and the ontological and technical advantages
of temporal tokens shown by the temporal token arguments approach which avoids having to
reify temporal types.

The primary intuition behind Temporal Token Reification (TTR ) is that one reifies tem-
poral tokens rather than temporal types. However rather than making names for event tokens
an additional argument to a predicate (like in the temporal token arguments approach), it
proposes to introduce “meaningful” names for temporal tokens. This allows one to talk and
quantify about “parts of a token” as well as over all tokens and thus express express general
temporal properties.
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6.1 Definition

The logical language of TTR is a many-sorted FOL with same sorts that TTA : Ty, ..., T,,,
one for each time set, a number of non-time sorts Uy, ..., U, and one token sort Ey,..., E,

e

for each temporal entity.

Syntax. The vocabulary is is defined accordingly to the ideas above.

e Function symbols: In addition to the time and atemporal function symbols of TTA , we
have On the one hand, we have a m+ n-place function symbol for each n-place temporal
relation, with its first m arguments being of a time sort and its last n arguments being
of some non-time or token sort and its output being either of type E;.

On the other hand, we have the usual time-token function symbols, whose input argu-
ment is of sort E; and whose output argument is of sort T;. For instance, begin denotes
the starting point of a temporal token and their definition is straightforward. Thus

begin(f(...,t,t")) =+

where f(...,t,t) is a term referring to a temporal token.

Finally, the language contains the 1-place function symbol TyPE. It takes as argument
the name of a temporal token and returns a function from pairs of points in time into
the set of event or state tokens respectively. Hence,

Typre(f(...,tt))
is basically syntactic sugar for

AzAyf(...,z,y)

o Predicate symbols: As TTA , TTR makes TIPs 1-place. It contains one of them for
each F; with its only argument being the name for an temporal entity. For instance,
the predicates HOLDS or OCCURS simply state that a fluent token indeed holds, or that
an event token indeed occurs.

Semantics. The semantics of the TTR is relatively straightforward as well and TTR
function and predicate symbols are mapped onto the appropriate functions and relations
respecting the signature of the symbol. Additionally, there are a few conditions that we need
to impose on our models in order to reflect intuitions about the nature of time and the nature
of the temporal entities.

6.2 Formalizing the Example

The sorts and the vocabulary is as in the temporal reification with the following additions:

o Fiine = {end<Eﬂuent’Tpoint’Tpoint HTpoint)’begin<Eﬂuent’Tpoint’Tpoint HTpoint)} where
f(...,t,#) is a term referring to a fluent-token.
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o Fi = Fepent U Ffluent

Tp AAO=FE A0 Egyent)

’

oint’ event) ’ Recei?m(TpOint )

(AOE,

= Fevent = {SP’I’I(1<

Accept<Tpoin event) 7 EZpi‘re<Tp0int O Beyent) }

L J Pt = @
e P = {gép’m} (that denotes the < relation between prices).

e and a set of variable symbols for each sort.

The statements in the example can be formalized as follows:

1. “On 1/4/04, SmallCo sent an offer for selling goods ¢ to BigCo for price p with a 2 weeks
expiration interval.” Occurs(Send(1/4/04, sco, beo, offer(sco, beo, sale(g, p), 2w)))

2. “BigCo received the offer three days later and it has been effective since then.”
Occurs(Receive(1/4/04 4 3d, beo, offer(sco, beo, sale(g, p),2w))) A
HowLps (Effective(1/4/04 + 3d, now, offer(sco, beo, sale(g, p), 2w)))

3. “A properly formalized offer becomes effective when is received by the offered...”
Vit Tpointn TayYa : A, %o 1 Oyt Topan
[ Correct_form(offer(za, Ya, To,tS)) A
Occurs(Receive(ty, Ya, offer(Ta, Ya, To, t8))) —
Ity [Houps(Effective(ty, ta, offer(za, Ya, To,t8))) At1 < ta] ]

4. “...(an effective offer) continues to be so until it is accepted by the offered or the offer
expires (as indicated by its expiration interval).”
Vit ts: Tpoint7 TasYa : Ay T6: 0,18 Tspan
[ HoLps(Effective(ty, ta, offer(za, Ya, To, t8))) At1 <ty —
EltB : Tpoint [Accept(tg,, Yas Oﬁer(‘raa Yas Lo, tS)) Aty <tz <t + tS] v
(to = t1 + ts A Occurs(Ezpire(t2, offer(zq, Ya, 0, 15)))) ]

5. “Anybody who makes an offer is committed to the offer as long as the offer is effective.”
Y tl,tg : Tpointvxa A
[HoLps( Effective(ty, ta, offer(zq, -, _, ) —
Occurs(Committed(ty, ts, 24, offer(zq, -, -, -)))]

6. “Anybody who receives an offer is obliged to send a confirmation to the offerer within
two days.”
Vit Tpoint, Ta t A 20 O,
[Occurs(Receive(ty, Ya, offer(za, Ya, To,-))) —
Howrps(Obliged(t,t + 2d, ya, send(ya, confloffer(za, Ya, To,-)))))

]

Let’s look at the additional statements:

e Time axioms: “The ordering between instants is transitive”:
v t1,t9,%3 : Tpoint [tl <th ANty <ty =1t <t3 ]
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e Temporal Incidence axioms such as “Fluents hold homogeneously”:

Vf : Efuent, t1y t2, t3,ta  Thoing
[ HOLDS(TYPE(f)(< ty,tg >)) Aty <ty <ty <tg Aty # ity —
Horps(TYPE(f)(< t3,t4 >)) ]

e “It is necessary for an offer to be properly written to be effective”.
Vit ta: Tpoints To 0
[HoLps(Effective(ty, ty, 2,)) — Correct_form(z,)]

o “Whenever an offer is effective it causes the agent who made the offer to be committed
to it for as long as the offer is effective.”
Y t1,t2  Tpoings Tas Ya * A, 26 2 O, 15 1 Tspan
[Causk(Effective(ty, tq, offer(zq, Ya, 2o, ts)), Committed(ty, ta, 24, offer(zq, Ya, 20, tS)))]

o “Whenever a cause occurs its effects hold.”

Ve: Eevent, f t Efiuent
[ Occurs(e) A Causk(e, f) — Horps(f) ]

e “Causes precede their effects.”

Ve : Eevent, f * Eftuent
[ Causk(e, f) — (Occurs(e) — HoLps(f) A time(e) < begin(f)) ]

7 Conclusion

In this chapter we have identified the relevant issues around the temporal qualification method
which is central in the definition of a temporal reasoning system in AI. We have described
the most relevant temporal qualification methods, illustrated them with a rich example and
analysed advantages and shortcomings with respect to a number of representational and
reasoning efficiency criteria. The various methods are schematically presented in figure 1.

Add_argument(time) Reify_into(token)

Temporal Arguments Token Reification

effective(o,a,b,...,t1,t2) hol ds(effective(o,a,b,...,t1,t2))
Classical Logic
Reify_into(type) + Add_arguments(time e
Atomic Formula yintoltype) 9 stime) Temporal Reification
T
effective(o,a,b,...) hol ds(effective(o,a,b,...),t1,t2)

Add_argument(token)
\ Token Arguments

. . effective(o,a,b,...,ttl), holds(ttl),begin(ttl)=tl, end(ttl)=t2
First-order Logic ( ) (tt1), begin(ttl) (tt1)

Modal Logic
| Modal Temporal Logics

Hol ds[t1,t2] (effective(o,a,b,...))

Figure 1: Temporal qualification methods in Al
Temporal arguments is the classical, easy to define method that turns out to be more

expressive that what has traditionally been recognized. It is enough for many applications
except for those where one needs to represent nested temporal references or we needs to
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quantify over temporal propositions. In fact, the subsequent methods are a response to this
limitation in a more or less sophisticated manner. Temporal Token Arquments allows a “sort
of” quantification while the language is a mere temporal arguments approach by moving
to a token-based ontology and introducing names for temporal token in the language which
provides a good deal of represenation flexibility. The other two approaches are based on
reification which is a natural way to talk and quantify over temporal propositions. The
increased expressiveness allows one to express statements like “receiving an offer causes to be
obliged to send a confirmation” or
in the temporal argumentn method.

Technically the temporal reification methods are not that complex. It can be complex

“ causes never preced their effects” which is not possible

if one preferes to define a non-standard semantics for that, but it is not strictly necessary:
some temporal reified logics can be defined as a many-sorted logic with the appropriate time
and temporal incidence axiomatizations. In such case, it is important to be aware that these
axioms can be a source of high inefficiency for the theorem prover. Things can get very
complicated, though, if we aim at supporting the reification of non-atomic formula as shown
in [15]. It is not clear what is the practical interest of this and it is not known what is the
relationship between such logic and temporal modal logics defined over a first order language.
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