Advanced Graph Algorithms
Spring 2003

Gabriel Valiente
valiente@lsi.upc.es

Technical University of Catalonia
Schedule

1. Introduction 13 May 2003
2. Intersection Graph Theory 27 May 2003
3. Algorithms on Permutation Graphs 28 May 2003
4. Algorithms on Circle Graphs 28 May 2003
5. Algorithms on Interval Graphs 03 June 2003
6. Algorithms on Chordal Graphs 04 June 2003
8. Student Presentations 10 June 2003 11 June 2003
Introduction
Introduction

- Most graph problems of theoretical interest and practical relevance are intractable, even hard to approximate.
- However, NP-hard problems become polynomial-time solvable on special graph classes.
- A closer look will be taken in this course at some fundamental graph problems (clique, independent set, coloring, isomorphism).
 - Understanding the structure of the graph classes that make them polynomial-time solvable.
 - Drawing the boundary between P and NP-hard for them.
 - Studying robust (certifying) algorithms.
 - Identifying open problems.
- Graph classes will be studied from the point of view of intersection graph theory.
Isomorphism expresses what is meant when two graphs are said to be the same graph.

Definition Two graphs G and H are isomorphic, denoted by $G \cong H$, if there is a bijection $h : V(G) \rightarrow V(H)$ such that, for every pair of vertices $u, v \in V(G)$, \{u, v\} $\in E(G)$ if and only if \{h(u), h(v)\} $\in E(H)$.

Two isomorphic graphs may be depicted in such a way that they look very different.

Example The following two graphs are isomorphic.
Introduction

Nonisomorphism of graphs is not usually hard to prove, because several invariants or necessary conditions for isomorphism are not difficult to compute. These are properties that do not depend on the presentation or labeling of a graph.

Definition An graph isomorphism invariant is a necessary condition for two graphs to be isomorphic.

Example Two graphs cannot be isomorphic if they differ in their order, size, or degree sequence.

Remark For input graphs G and H with $V(G) = \{u_1, \ldots, u_n\}$ and $V(H) = \{v_1, \ldots, v_n\}$, a necessary condition for $G \cong H$ is that the multisets $\{\Gamma(u_i) \mid 1 \leq i \leq n\}$ and $\{\Gamma(v_i) \mid 1 \leq i \leq n\}$ be equal.
Invariants are not sufficient conditions for isomorphism. Nothing can be concluded about two graphs which share an invariant.

Example The following two graphs are not isomorphic, although they have the same number of vertices, the same number of edges, and are both 4-regular.
Example The following two graphs are not isomorphic, although they have the same number of vertices, the same number of edges, and are both 4-regular.

\[
E(G) = \begin{cases}
\{u_0, u_1\}, \{u_0, u_2\}, \{u_0, u_4\}, \{u_0, u_6\}, \{u_1, u_3\}, \{u_1, u_5\}, \{u_1, u_7\}, \\
\{u_2, u_3\}, \{u_2, u_8\}, \{u_2, u_{10}\}, \{u_3, u_4\}, \{u_3, u_6\}, \{u_4, u_5\}, \{u_4, u_7\}, \\
\{u_5, u_9\}, \{u_5, u_{13}\}, \{u_6, u_8\}, \{u_6, u_{10}\}, \{u_7, u_9\}, \{u_7, u_{13}\}, \\
\{u_8, u_{11}\}, \{u_8, u_{14}\}, \{u_9, u_{12}\}, \{u_9, u_{15}\}, \{u_{10}, u_{11}\}, \{u_{10}, u_{14}\}, \\
\{u_{11}, u_{12}\}, \{u_{11}, u_{15}\}, \{u_{12}, u_3\}, \{u_{12}, u_{14}\}, \{u_{13}, u_{15}\}, \{u_{14}, u_{15}\}
\end{cases}
\]

\[
E(H) = \begin{cases}
\{v_0, v_1\}, \{v_0, v_2\}, \{v_0, v_4\}, \{v_0, v_6\}, \{v_1, v_3\}, \{v_1, v_5\}, \{v_1, v_7\}, \\
\{v_2, v_3\}, \{v_2, v_8\}, \{v_2, v_{10}\}, \{v_3, v_9\}, \{v_3, v_{11}\}, \{v_4, v_5\}, \{v_4, v_8\}, \\
\{v_4, v_{12}\}, \{v_5, v_9\}, \{v_5, v_{13}\}, \{v_6, v_7\}, \{v_6, v_{10}\}, \{v_6, v_{12}\}, \\
\{v_7, v_{11}\}, \{v_7, v_{13}\}, \{v_8, v_9\}, \{v_8, v_{14}\}, \{v_9, v_{15}\}, \{v_{10}, v_{11}\}, \\
\{v_{10}, v_{14}\}, \{v_{11}, v_{15}\}, \{v_{12}, v_3\}, \{v_{12}, v_{14}\}, \{v_{13}, v_{15}\}, \{v_{14}, v_{15}\}
\end{cases}
\]
Example The following two graphs are not isomorphic, although they have the same number of vertices, the same number of edges, and are both 4-regular.

There are, in fact, only five vertices at distance 2 of any given vertex of the graph to the left-hand side, but six vertices at distance 2 of any given vertex of the graph to the right-hand side.
Isomorphism of graphs is usually much harder to prove than nonisomorphism of graphs, because all known certificates or necessary and sufficient conditions for graph isomorphism are as difficult to compute as graph isomorphism itself.

Definition An graph isomorphism certificate is a necessary and sufficient condition for two graphs to be isomorphic.

From a complexity-theoretical point of view, graph isomorphism is one of the few NP problems believed neither to be in P nor to be NP-complete.
Introduction

Definition A subgraph isomorphism of a graph G into a graph H is an injection $h : V(G) \rightarrow V(H)$ such that, for every pair of vertices $u, v \in V(G)$, \(\{h(u), h(v)\} \in E(H) \) if \(\{u, v\} \in E(G) \). In an induced subgraph isomorphism, \(\{u, v\} \in E(G) \) if and only if \(\{h(u), h(v)\} \in E(H) \).

Definition The subgraph isomorphism problem is to determine, given two input graphs G and H, whether H has a subgraph which is isomorphic to G.

Remark Subgraph isomorphism is a common generalization of many important graph problems.

- Clique (K_n)
- Independent set (nK_1)
- Hamiltonian cycle (C_n)
- Matching (nK_2)
- Girth (P_n)
- Shortest path (P_n)
Introduction

Definition Two graphs G and H are *homomorphic*, denoted by $G \preceq H$, if there is a mapping $h : V(G) \rightarrow V(H)$ such that, for every pair of vertices $u, v \in V(G)$, \{\!\{h(u), h(v)\}\!\} \in E(H)$ if \{\!\{u, v\}\!\} \in E(G).

Definition The *subgraph homomorphism problem* is to determine, given two input graphs G and H, whether H has a subgraph which is homomorphic to G.

Remark Graph homomorphism is a generalization of graph coloring, in which adjacent vertices obtain adjacent colors.

Example $G \preceq K_n$ if and only if G is n-colorable.
Introduction

Definition A graph G is *homeomorphic* to a graph H if G can be obtained from H by deleting degree-two vertices.

Definition The *subgraph homeomorphism problem* is to determine, given two input graphs G and H, whether H has a subgraph which is homeomorphic to G.

Remark Subgraph homeomorphism is the recognition problem for classes of graphs characterized by the absence of forbidden structures.

Example (Kuratowski, 1930) Planar graphs are characterized by the absence of a subdivision of either K_5 or $K_{3,3}$.
Introduction

Example Series-parallel graphs are characterized by the absence of a subdivision of K_4.
Introduction

Definition A graph G is a minor of a graph H if G can be obtained from a subgraph of H by contracting edges.

Definition The minor containment problem is to determine, given two input graphs G and H, whether H (has a subgraph which) is a minor of G.

Remark Minor containment is the recognition problem for classes of graphs characterized by the absence of forbidden minors.

Example K_5 is a minor of the Petersen graph.
Introduction

- graph
- subgraph
- common subgraph
- common supergraph
- minor
- homeomorphism
- homomorphism
- isomorphism
- graph class
Introduction

Definition A *certifying algorithm* for a decision problem is an algorithm that provides a certificate with each answer that it produces.

Example Consider the problem of recognizing bipartite graphs. Given an input graph G, a 2-coloring of G is an acceptance certificate, while an odd cycle in G is a rejection certificate.

![Diagram of bipartite graph](image)

Remark Certifying algorithms are also called *robust*.
Introduction

Intersection Graph Theory
Intersection Graph Theory

Definition The intersection graph of a multiset of sets $\mathcal{F} = \{S_1, \ldots, S_n\}$, denoted by $\Omega(\mathcal{F})$, is the graph having \mathcal{F} as vertex set with S_i adjacent to S_j if and only if $i \neq j$ and $S_i \cap S_j \neq \emptyset$. A graph G is called an intersection graph if there exists a multiset of sets \mathcal{F} such that $G \cong \Omega(\mathcal{F})$.

Example Let $\mathcal{F} = \{S_1, S_2, S_3, S_4\}$, where $S_1 = \{x_1\}$, $S_2 = \{x_1, x_2, x_3\}$, $S_3 = \{x_4\}$, and $S_4 = \{x_1, x_3, x_4, x_5\}$. Then, $G \cong \Omega(\mathcal{F})$ is depicted next.

Theorem (Marczewski, 1945) Every graph is an intersection graph.

Theorem Every graph is the intersection graph of a family of subgraphs of a graph.
Intersection Graph Theory

Definition A **chordal graph** is the intersection graph of a finite set of subtrees of a tree.

Definition A **circular-arc graph** is the intersection graph of a finite set of arcs along a circle.

Definition An **interval graph** is the intersection graph of a finite set of intervals along a line.

Definition A **circle graph** is the intersection graph of a finite set of chords of a circle.

Definition A **permutation graph** is the intersection graph of a finite set of chords between an ordered set of vertices and a permutation of them.
Intersection Graph Theory

Definition A permutation graph is a graph that is isomorphic to the intersection graph of a finite set of chords between an ordered set of vertices and a permutation of them.

Example The following finite set of chords between an ordered set of vertices and a permutation of them is a permutation model or matching diagram of the permutation graph shown to the left.

Remark A permutation graph is the graph of inversions in a permutation.
Definition A *circle graph* is a graph that is isomorphic to the intersection graph of a finite set of chords of a circle.

Example The following finite set of chords of a circle is a *chord model* of the circle graph shown to the left.
Definition A *chordal graph* is a graph that is isomorphic to the intersection graph of a finite set of subtrees of a tree.

Example The following family of subtrees of a tree is a subtree model of the chordal graph shown to the left.
Definition A *circular-arc graph* is a graph that is isomorphic to the intersection graph of a finite set of arcs along a circle.

Example The following finite set of arcs along a circle is an *arc model* of the circular-arc graph shown to the left.
Definition An interval graph is a graph that is isomorphic to the intersection graph of a finite set of intervals along a line.

Example The following finite set of intervals along a line is an interval model of the interval graph shown to the left.
Lemma The following diagram summarizes the relationships that hold between the previous five graph classes.
Exercise Prove the previous lemma. Show that the claimed relationships between the five graph classes hold, or give at most 32 examples of graphs that belong to some of the previous five graph classes.

Example A permutation graph is a circle graph, but it need not be a circular-arc graph. Consider, for instance, the intersection graph of three noncrossing chords which all cross two noncrossing chords along the circle graph with equator. This permutation graph is isomorphic to $K_{2,3}$ and has no circular-arc model, because two arcs along the circle cannot both intersect three nonintersecting arcs along the circle without intersecting themselves.
Intersection Graph Theory

Example (Hajós, 1957) *Interval graphs are chordal. As a matter of fact, Let $G = (V, E)$ be an interval graph having a chordless cycle $[v_0, v_1, v_2, \ldots, v_{\ell-1}, v_0]$ with $\ell > 3$, and let I_k denote the interval corresponding to vertex v_k. Choose a point $p_i \in I_{i-1} \cap I_i$, for $i = 1, 2, \ldots, \ell - 1$. Since I_{i-1} and I_{i+1} do not overlap, the points p_i constitute a strictly increasing or strictly decreasing sequence. Therefore, it is impossible for I_0 and $I_{\ell-1}$ to intersect, contradicting the assumption that $\{v_0, v_{\ell-1}\} \in E$.

Example

K_n has a permutation model, a circle model, a circular-arc model, an interval model, and is chordal.
Student Presentations

- Prove the claimed relationships between the five classes of intersection graphs (chordal, circle, circular-arc, interval, and permutation graphs).
Algorithms on Permutation Graphs
Algorithms on Permutation Graphs

Definition A permutation graph is a graph that is isomorphic to the intersection graph of a finite set of chords between an ordered set of vertices and a permutation of them.

Example The following finite set of chords between an ordered set of vertices and a permutation of them is a permutation model or matching diagram of the permutation graph shown to the left.

Remark A permutation graph is the graph of inversions in a permutation.
Algorithms on Permutation Graphs

- Recognition of Permutation Graphs

Algorithms on Permutation Graphs

- Maximum Independent Set of Permutation Graphs

Algorithms on Permutation Graphs

- Maximum Independent Set of Permutation Graphs

Algorithms on Permutation Graphs

- Isomorphism of Permutation Graphs

Lemma (Gries, 1981) The longest nondecreasing sequence problem can be solved in $O(n \log n)$ time.

Proof Scan the sequence (v_1, v_2, \ldots, v_n) from left to right and maintain the minimum values m_1, m_2, \ldots, m_k which end the nondecreasing sequences of length $1, 2, \ldots, k$ found so far. Then, k is length of a longest nondecreasing sequence.

Each value v_i in the sequence is compared with the minimum value m_1 of the shortest nondecreasing sequence and with the minimum value m_k of the longest nondecreasing sequence.

- If $v_i < m_1$, then m_1 is set to v_i.
- If $v_i \geq m_k$, then a nondecreasing sequence of length $k + 1$ is found, and m_{k+1} is set to v_i.
- If $m_1 \leq v_i < m_k$, then an index j is found such that $m_{j-1} \leq v_i < m_j$, and m_j is set to v_i.

Finding the index j takes $O(\log k)$ time, yielding the $O(n \log n)$ time bound.
Lemma (Golumbic, 1980) Let G be the (permutation) graph of inversions of a permutation π. Then, the decreasing sequences of π are in one-to-one correspondence with the cliques of G, and the increasing sequences of π are in one-to-one correspondence with the independent sets of G.

Proof Follows from two vertices v_i and v_j in a permutation graph G being adjacent if and only if the corresponding chords in a matching diagram of G intersect if and only if v_i and v_j are inverted in the permutation π.

![Diagram](image-url)
Lemma The maximum independent set problem can be solved on permutation graphs in $O(n \log \log n)$ time.

Proof Follows from the problem of finding the successor of an element in a restricted universe being solvable in $O(n \log \log n)$ time.
Algorithms on Circle Graphs
Algorithms on Circle Graphs

- Recognition of Circle Graphs

Algorithms on Circle Graphs

- Maximum Independent Set of Circle Graphs

Algorithms on Circle Graphs

- Maximum Independent Set of Circle Graphs

Algorithms on Circle Graphs

- Maximum Independent Set of Circle Graphs
 \(O(nd) \) Alberto Apostolico, Mikhail J. Atallah, Susanne E. Hambrusch.
 New Clique and Independent Set Algorithms for Circle Graphs.
Algorithms on Circle Graphs

- Isomorphism of Circle Graphs
Definition A circle graph is a graph that is isomorphic to the intersection graph of a finite set of chords of a circle.

Example The following finite set of chords of a circle is a chord model of the circle graph shown to the left.
Algorithms on Circle Graphs

- A set of mutually disjoint, or contained in each other, intervals of $I(G)$ models an independent set of G.
- A set of mutually overlapping intervals of $I(G)$ models a clique of G.
Algorithms on Circle Graphs

(3, 6)-cage

P. J. Heawood (1861–1955)
Algorithms on Circle Graphs

(3, 7)-cage

W. F. McGee (1937–)
Algorithms on Circle Graphs

(3, 8)-cage

W. T. Tutte (1917–2002) and H. S. Coxeter (1907–)
Exercise Maximum number of non-overlapping regions r that can be obtained by joining n points on the circle with chords.
Exercise Maximum number of non-overlapping regions r that can be obtained by joining n points on the circle with chords

$n = 2$ \hspace{2cm} r = 2
Exercise Maximum number of non-overlapping regions r that can be obtained by joining n points on the circle with chords

$n = 3$
$r = 4$
Exercise Maximum number of non-overlapping regions r that can be obtained by joining n points on the circle with chords

$n = 4$ \hspace{1cm} r = 8
Exercise Maximum number of non-overlapping regions r that can be obtained by joining n points on the circle with chords
Exercise Maximum number of non-overlapping regions \(r \) that can be obtained by joining \(n \) points on the circle with chords

\[n = 5 \quad r = 16 \]
Exercise Maximum number of non-overlapping regions r that can be obtained by joining n points on the circle with chords
Exercise Maximum number of non-overlapping regions r that can be obtained by joining n points on the circle with chords

$n = 6$ \hspace{1cm} r = 31$
Definition The total chord length of a circle graph is the sum of the length of all chords in the chord model of the graph

Example The total chord length of the previous circle graph is 37
In the interval model of a circle graph, the total order on the vertex set along the circumference of a circle is replaced by a total order along the line.

\begin{center}
\begin{tikzpicture}
 \foreach \i in {1,...,14}
 \node[fill=black,circle,inner sep=2pt] (v\i) at (\i*360/14:0) {};
 \draw (v1) -- (v3);
 \draw (v6) -- (v7);
 \draw (v10) -- (v12);
 \draw (v13) -- (v14);
\end{tikzpicture}
\end{center}
Definition The density of a circle graph is the maximum number of intervals crossing any position on the line in the interval model of the graph.

Example The density of the previous circle graph is 4.
Algorithms on Circle Graphs

• An interval model of a circle graph can be obtained from the chord model of the circle graph by a simple transformation, consisting in cutting the circumference of the circle at some point p which is not an endpoint of a chord and unfolding it at point p

• The chord model can be reconstructed by wrapping around the circle the collection of intervals on the line

• Given a chord model of a circle graph, for each choice of point p in the previous transformation a different interval model is obtained, and both the density and the total chord length of the circle graph depend on the particular chord or interval model chosen, that is, on the choice of point p for the transformation between the chord model and the interval model of the circle graph
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 37 and density 4.
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 43 and density 5
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 37 and density 4
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 43 and density 5
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 47 and density 6
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 41 and density 5
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 45 and density 6.
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 39 and density 5
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 41 and density 5
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 37 and density 5
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 45 and density 6
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 41 and density 5
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 47 and density 6.
Example The following chord model and corresponding interval model for the previous circle graph have total chord length 39 and density 5.
Algorithms on Circle Graphs

It will be assumed, without loss of generality, that all chords are ordered from lower to higher vertex number, that is, \(i < j \) for all chords \((v_i, v_j) \in E\) in a circle graph \(G = (V, E) \)

- The length of chord \(e = (v_i, v_j) \in E \) is \(\text{len}(e) = j - i \)
- \(\text{MIS}(G) \) denotes a maximum independent set of \(G \)
- For all chords \((v_i, v_j) = e \in E\), \(\text{MIS}(e) \) denotes a maximum independent set of the subgraph of \(G \) induced by \(\{v_k \in V \mid i < k < j\} \)
Algorithms on Circle Graphs

It can be assumed, without loss of generality, that chords in a circle model of a circle graph are vertex-disjoint.
Algorithms on Circle Graphs

- A maximum independent set of the line graph $L(G)$ of a graph G corresponds to a maximum matching of G
- A maximum independent set of a permutation graph corresponds to a noncrossing bipartite matching
- A maximum independent set of a circle graph corresponds to a maximum planar subgraph (maximum planar matching) of a general graph with a fixed vertex ordering
Remark (Gavril, 1973) There are families of circle graphs whose number of independent sets grow exponentially with the number of vertices.

Example Family of graphs with \(n \) chords and \(3^{n/3} \) maximum independent sets.
Lemma (Supowit, 1987) Let $G = (V, E)$ be a circle graph with n chords. Then, $\text{MIS}(G)$ can be found in $O(n^2)$ time using $O(n^2)$ space

Proof By dynamic programming
The dynamic programming solution involves subproblems that do not contribute to the solution of any larger problem.

The problem of finding a MIS of a circle graph can be decomposed along the chords of the graph.

Unnecessary computation can be avoided by solving subproblems in nondecreasing order of chord length, because a chord can only contain shorter chords.
Lemma Let $e = (v_i, v_j) \in E$, and assume $\text{MIS}(e')$ is known for all chords $e' \in E$ with $\text{len}(e') < \text{len}(e)$. Then, $\text{MIS}(e)$ can be found in $O(\text{len}(e))$ time using $O(\text{len}(e))$ space.

Proof For all vertices $v_k \in V$ with $i < k < j$, let $T(k)$ be a MIS of the subgraph of G induced by $\{v_\ell \in V \mid k \leq \ell < j\}$.

- $T(k) = T(k + 1)$
- $T(k) = \max\{\text{MIS}(e') \cup T(\ell + 1), T(k + 1)\}$
Lemma Let $G = (V, E)$ be a circle graph with n chords, and assume $\text{MIS}(e)$ is known for all chords $e \in E$. Then, $\text{MIS}(G)$ can be found in $O(n)$ time using $O(n)$ space.

Proof Let $T(i)$ be a MIS of the subgraph of G induced by $\{v_j \in V \mid i \leq j \leq 2n\}$.

- $T(i) = \max\{\text{MIS}(e) \cup T(j+1), T(i+1)\}$.
- $T(1) = \text{MIS}(G)$.
Lemma Let $G = (V, E)$ be a circle graph with n chords, and let ℓ be the total chord length of G. Then, $\text{MIS}(G)$ can be found in $O(\ell)$ time using $O(n)$ space.

Proof Immediate.

- The chords of G can be oriented in $O(n)$ time using $O(1)$ space, and can be bucket sorted in nondecreasing order of chord length in $O(n)$ time using $O(n)$ space.
- For each chord $e \in E$ in nondecreasing order of chord length, $\text{MIS}(e)$ can be found in $O(\text{len}(e))$ time using $O(\text{len}(e))$ space.
- $\text{MIS}(G)$ can be found in $O(\ell)$ time using $O(\ell + n)$ space.
- Independent sets need not be stored explicitly and can be represented by reference to the sets they directly contain only.
Theorem Let G be a circle graph with m chords and $n = 2m$ vertices, let ℓ be the total chord length of G, and let d be the density of G. Then, $\ell \leq dn$.

Proof For any fixed density d, the circle graph on $n = 2m = 2kd$ vertices with the largest total chord length ℓ has $k = m/d = n/(2d)$ identical blocks, each of them with d chords of length d each. The total chord length is thus $\ell = kdd = nd$.

Example The circle graph on $n = 24$ vertices with the largest total chord length $\ell = 84$, for a fixed density $d = 4$, has $n/(2d) = 3$ identical trapezoidal blocks of d identical chords each. No other circle graph of density $d = 4$ and $n = 24$ vertices can have a larger total chord length, because the chords, which must be vertex-disjoint, already fill up the space along d line segments.
Corollary Let \(G = (V, E) \) be a circle graph with \(n \) chords. Then, \(MIS(G) \) can be found in \(O(dn) \) time using \(O(n) \) space.

Proof Immediate.

- Orient all chords \(e \in E \) from lower to higher-numbered vertices.
- Orient all chords \(e \in E \) and bucket sort \(E \) in nondecreasing order of chord length.
- Compute \(MIS(e) \) for all chords \(e \in E \).
- Compute \(T(i) \) for all vertices \(v_i \in V \).
- \(MIS(G) = T(1) \).
Example Shared representation of each set $T(k)$ with $2 < k < 12$ by reference to a maximum independent set (for some shorter chord) and/or to a previous set, when computing $\text{MIS}(e_2)$.
Example Shared representation of each set $\text{MIS}(e)$ with $e \in E$ by reference to zero or more previous maximum independent sets (for shorter chords) and to chord e itself, together with the shared representation of $\text{MIS}(G) = T(1)$.
Algorithms on Circle Graphs

The following choice of simple data structures allows to meet the time and space bounds. Given a circle graph $G = (V, E)$ with n chords and $2n$ vertices,

- For each chord $e \in E$, $MIS(e)$ is represented by a MIS structure, consisting of a list of pointers to MIS structures, a pointer to a chord, and a weight.
- For each vertex $v_i \in V$, $T(i)$ is represented by a T structure, consisting of a pointer to a T structure, a pointer to a MIS structure, and a weight.
- $MIS(G) = T(1)$ can be collected in $O(n)$ time by traversing the pointer structure.
Algorithms on Interval Graphs
Definition An interval graph is a graph that is isomorphic to the intersection graph of a finite set of intervals along a line.

Example The following finite set of intervals along a line is an interval model of the interval graph shown to the left.
Algorithms on Interval Graphs

- Recognition of Interval Graphs

\[O(n^4) \quad D. \text{Fulkerson, O. Gross. Incidence Matrices and Interval Graphs.} \]

\[O(n + m) \quad \text{Kellogg S. Booth, George S. Lueker. Testing for the} \]

\[O(n + m) \quad \text{Norbert Korte, Rolf H. Möhring. An Incremental Linear-Time} \]

\[O(n + m) \quad \text{Wen-Lian Hsu. A Simple Test for Interval Graphs. Proc. 18th} \]

\[O(n + m) \quad \text{Klaus Simon. A New Simple Linear Algorithm to Recognize} \]

Algorithms on Interval Graphs

- Maximum Independent Set of Interval Graphs
Algorithms on Interval Graphs

- Isomorphism of Interval Graphs
Algorithms on Interval Graphs

- A set of mutually disjoint intervals of $I(G)$ models an independent set of G.
- A set of mutually overlapping, or contained in each other, intervals of $I(G)$ models a clique of G.

Theorem (Gilmore, Hoffman, 1964) A graph G is an interval graph if and only if the maximal cliques of G can be linearly ordered such that, for every vertex v of G, the maximal cliques containing vertex v occur consecutively.

Example Consider the following interval representation of the interval graph of the previous example.
Algorithms on Interval Graphs

Let $C(G)$ be the set of maximal cliques of a graph G, let F be a transitive orientation of the complement of G and, for maximal cliques A_1, A_2 of $C(G)$, let $A_1 < A_2$ if and only if there is an edge of F connecting A_1 with A_2 which is oriented toward A_2.

Proof Let $G = (V, E)$ be a graph whose maximal cliques can be linearly ordered such that, for every vertex v of G, the maximal cliques containing vertex v occur consecutively.

- For each vertex $v \in V$, let $I(v)$ denote the set of all maximal cliques of G which contain v.
- The sets $I(v)$, for $v \in V$, are intervals of the linearly ordered set $(C(G), <)$.
- Now, for all vertices $u, v \in V$, it holds that $\{u, v\} \in E$ if and only if $I(u) \cap I(v) \neq \emptyset$, because two vertices are adjacent if and only if they are both contained in some maximal clique.

Therefore, G is an interval graph. (See (Golumbic, 1980) for a proof of the reverse implication.)
The Gilmore–Hoffman theorem has an interesting matrix formulation.

Definition A matrix whose entries are zeros and ones, is said to have the consecutive ones property for columns if its rows can be permuted in such a way that the ones in each column occur consecutively.

Example The following matrix has the consecutive ones property for columns.

\[
\begin{pmatrix}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{pmatrix}
\]
Example The following matrix does not have the consecutive ones property for columns.

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Definition The clique matrix of an undirected graph is an incidence matrix having maximal cliques as rows and vertices as columns.
Corollary A graph G is an interval graph if and only if the clique matrix of G has the consecutive ones property for columns.

Proof Let G be an undirected graph and M the clique matrix of G. An ordering of the maximal cliques of G corresponds to a permutation of the rows of M. The corollary follows from the Gilmore-Hoffman theorem.

Example The clique matrix of the interval graph of the previous example can be permuted as follows.

$$
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}
$$
Theorem
Interval graphs can be recognized in $O(n + m)$ time.

- George S. Lueker, Kellogg S. Booth. *Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity using PQ-Tree Algorithms.*

Sketch of recognition algorithm. Given an undirected graph $G = (V, E)$,

1. Verify that G is chordal and, if so, enumerate its maximal cliques.
2. Test whether or not the cliques can be ordered so that those which contain vertex v occur consecutively, for each $v \in V$.

- Step 1 takes $O(n + m)$ time and produces at most n maximal cliques.
 [Details will be given in the lecture on chordal graphs.]

- Step 2 also takes $O(n + m)$ time, because the clique matrix of an interval graph has $O(n + m)$ nonzero entries, and PQ-trees allow to test a zero-one matrix with r rows, c columns, and f nonzero entries for the consecutive ones property for columns in $O(r + c + f)$ time.
Definition Given a finite set X and a collection F of subsets of X, the consecutive arrangement problem is to determine whether or not there exists a permutation π of X in which the elements of each subset $S \in F$ appear as a consecutive subsequence of π.

- X is the set of maximal cliques of G.
- $F = \{S(v) \mid v \in V\}$, where $S(v)$ is the set of all maximal cliques of G containing vertex v.

The consecutive arrangement problem (over a finite set X) and the consecutive ones problem (over a zero-one matrix M) are equivalent.

- Each row of M corresponds to an element of X.
- Each column of M corresponds to a subset of X consisting of those rows of M containing a one in the specified column.
The PQ-tree is a data structure allowing to represent in a small amount of space all the permutations of X which are consistent with the constraints of consecutivity determined by F.

Definition A PQ-tree T is a rooted, ordered tree whose nonterminal nodes fall into two classes, namely P-nodes and Q-nodes.

- The children of a P-node occur in no particular order, while those of a Q-node appear in an order which must be locally preserved.
- P-nodes are designated by circles and Q-nodes by wide rectangles.
- The leaves of T are labeled bijectively by the elements of set X.
Definition The *frontier* of a PQ-tree is the permutation of X obtained by reading the labels of the leaves from left to right. The frontier of a node is the frontier of the subtree rooted at the node.

Example The frontier of the following PQ-tree is $[A, B, C, D, E, F, G, H, I, J]$.

![Diagram of a PQ-tree](image-url)
Definition A PQ-tree is proper if each P-node has at least two children, and each Q-node has at least three children.

All PQ-trees to be considered henceforth are assumed to be proper.

Definition Two PQ-trees T_1 and T_2 are equivalent, denoted $T_1 \equiv T_2$, if one can be obtained from the other by applying a sequence of the following transformation rules:

1. Arbitrarily permute the children of a P-node.
2. Reverse the children of a Q-node.
Example The following PQ-tree is equivalent to the one of the previous example.
Definition An ordering of the leaves of a PQ-tree T is *consistent* with T if it is the frontier of a PQ-tree equivalent to T. The set of all orderings consistent with T is called the **consistent set** of T, and is denoted $\text{consistent}(T)$.

Let $X = \{x_1, x_2, \ldots, x_n\}$. The class of consistent permutations of PQ-trees over X forms a lattice.

- The **null tree** T_0 has no nodes and $\text{consistent}(T_0) = \emptyset$.

- The **universal tree** T_n has one internal P-node (the root) and a leaf for every element of X, and $\text{consistent}(T_n)$ includes all permutations of X.

![Diagram of PQ-tree with nodes x_1, x_2, \ldots, x_n and a root node connecting them.]
Algorithms on Interval Graphs

Let F be a collection of subsets of a finite set X, and let $\Pi(F)$ denote the collection of all permutations π of X such that the elements of each subset $S \in F$ occur as a consecutive subsequence of π.

Example Let $F = \{\{A, B, C\}, \{A, D\}\}$. Then, $\Pi(F) = \{[D, A, B, C], [D, A, C, B], [C, B, A, D], [B, C, A, D]\}$.

Theorem (Booth and Lueker, 1976)

i. For every collection of subsets F of X there is a PQ-tree T such that $\Pi(F) = \text{consistent}(T)$.

ii. For every PQ-tree T there is a collection of subsets F of X such that $\Pi(F) = \text{consistent}(T)$.

The following algorithm calculates $\Pi(F)$.

1: **procedure** `consecutive` (X,F,Π)
2: let Π be the set of all permutations of X
3: **for all** $S \in F$ **do**
4: remove from Π those permutations in which the elements of S do not occur as a subsequence
5: **end procedure**
Despite the initially exponential size of Π, PQ-trees allow to represent Π using only $O(|X|)$ space.

1: procedure consecutive (X, F, Π)
2: let T be the universal PQ-tree over X
3: for all $S \in F$ do
4: reduce T using S
5: end procedure

The pattern matching procedure $reduce$ attempts to apply from the bottom to the top of the PQ-tree a set of 11 templates, consisting of a pattern to be matched against the current PQ-tree and a replacement to be substituted for the pattern.
Theorem (Booth and Lueker, 1976) The PQ-tree representation T of the class of permutations $\Pi(F)$ can be computed in $O(|F| + |X| + \sum_{S \in F} |S|)$ time.

- X is the set of maximal cliques of G.
- Each $S \in F$ is the set of all maximal cliques of G containing a given vertex of G.
- F is the set of S for all the vertices of G.

Corollary Let M be a zero-one matrix with r rows, c columns, and f nonzero entries. Then, M can be tested for the consecutive ones property for columns in $O(r + c + f)$ time.

Theorem (Booth and Lueker, 1976) Interval graphs can be recognized in $O(n + m)$ time. Moreover, if G is an interval graph, then there is an algorithm taking $O(n + m)$ time to construct a proper PQ-tree T such that consistent(T) is the set of orderings of the maximal cliques of G in which, for every vertex v of G, the maximal cliques containing vertex v occur consecutively.
Let $T(G)$ denote the proper PQ-tree constructed for an interval graph G by the recognition algorithm. It turns out that isomorphic interval graphs will have equivalent PQ-trees.

Theorem If T_1 and T_2 are PQ-trees, with the same number of leaves, such that $\text{consistent}(T_1) = \text{consistent}(T_2)$, then $T_1 \equiv T_2$.

It is possible, though, for interval graphs which are not isomorphic to have equivalent PQ-trees.
Example The interval graphs with the following interval representation are not isomorphic,

\[C_1 \quad C_2 \quad C_3 \quad C_4 \quad C_5 \]

but the following tree is a proper PQ-tree of either.

Therefore, the PQ-tree will have to be extended with more information about the structure of the interval graph.
Definition For any vertex \(v \) in an interval graph \(G \), the **characteristic node** of \(v \) in a PQ-tree \(T \) of \(G \) is the deepest node \(x \) in \(T \) such that the frontier of node \(x \) includes the set of maximal cliques containing vertex \(v \).

Example Given the following interval representation of the previous example,

\[
\begin{align*}
\text{C}_1 & \quad \text{C}_2 & \quad \text{C}_3 & \quad \text{C}_4 & \quad \text{C}_5 \\
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{align*}
\]

the characteristic nodes of all vertices (intervals) are the following:
Definition A labeled PQ-tree is a PQ-tree whose nodes are labeled by strings of integers which indicate how the sets of all maximal cliques containing each vertex are distributed over the frontier of the tree, as follows:

- If x is a P-node or a leaf, $\text{label}[x]$ is set to the number of vertices of G which have x as their characteristic node.
- If x is a Q-node, number the children of x as x_1, x_2, \ldots, x_k from left to right. For each vertex v of G having x as characteristic node, form a pair (i, j) such that x_i and x_j are the leftmost and rightmost child of x, respectively, whose frontier belongs to the set of maximal cliques containing vertex v. Sort all these pairs into lexicographically nondecreasing order and concatenate them to form $\text{label}[x]$.

The resultant labeled PQ-tree is denoted $T_L(G)$.
Example The interval graphs with the following interval representation are not isomorphic,

\[C_1 \quad C_2 \quad C_3 \quad C_4 \quad C_5 \]

and their labeled PQ-trees are not equivalent:

\[(1,2)(2,3)(3,4) \quad (1,2)(2,3)(2,4)(3,4) \]
Algorithms on Interval Graphs

Theorem (Lueker and Booth, 1979) A labeled PQ-tree contains enough information to reconstruct an interval graph up to isomorphism.

Definition Two labeled PQ-trees are identical if they are isomorphic as rooted ordered trees and corresponding nodes have identical labels.

Definition Two labeled PQ-trees are equivalent if one can be made identical to the other by a sequence of equivalence transformations, provided labels of Q-nodes whose children are reversed are appropriately modified as follows, for a Q-node x with k children:

- Replace each pair (i, j) in label$[x]$ by the pair $(k + 1 - j, k + 1 - i)$.
- Resort the pairs into lexicographically nondecreasing order.

Theorem (Lueker and Booth, 1979) Two interval graphs G_1 and G_2 are isomorphic if and only if $T_L(G_1) \equiv T_L(G_2)$.

Remark Equivalence of labeled PQ-trees can be tested using a modification of the Aho-Hopcroft-Ullman tree isomorphism algorithm.
Definition An interval graph is called *proper* if it has an interval representation such that no interval is properly contained in another interval.

Remark *Isomorphism of proper interval graphs can be tested by just computing and comparing canonical labels for the PQ-trees corresponding to adjacency matrices augmented by adding ones along the main diagonal, without need to find any maximal cliques.*

Algorithms on Chordal Graphs
Definition A *chordal graph* is a graph that is isomorphic to the intersection graph of a finite set of subtrees of a tree.

Example The following family of subtrees of a tree is a *subtree model* of the chordal graph shown to the left.
Algorithms on Chordal Graphs

- Recognition of Chordal Graphs

Algorithms on Chordal Graphs

- Maximum Independent Set of Chordal Graphs

Definition An undirected graph is called *chordal* if every cycle of length greater than three possesses a chord, that is, an edge joining two nonconsecutive vertices of the cycle.

- An undirected graph is chordal if it does not contain an induced subgraph isomorphic to C_n for $n > 3$.

Remark Being chordal is a hereditary property, inherited by all the induced subgraphs of a chordal graph.

Chordal graphs are also called triangulated and perfect elimination graphs.
Definition A vertex is called simplicial if its adjacency set induces a complete subgraph, that is, a clique (not necessarily maximal).

Definition A permutation $\sigma = [v_1, v_2, \ldots, v_n]$ of the vertices of an undirected graph G, or a bijection $\sigma : V \rightarrow \{1, \ldots, n\}$, is called a perfect elimination order if each v_i is a simplicial vertex of the subgraph of G induced by $\{v_i, \ldots, v_n\}$.

Example The following chordal graph has 96 different perfect elimination orders, one of which is $\sigma = [a, g, b, f, c, e, d]$.

\begin{itemize}
 \item a
 \item b
 \item c
 \item d
 \item g
 \item f
 \item e
\end{itemize}
Example The following undirected graph is not chordal. It has no simplicial vertex.
Theorem An undirected graph is chordal if and only if it has a perfect elimination order. Moreover, in such a case, any simplicial vertex can start a perfect elimination order.

Lemma Every chordal graph has a simplicial vertex and, if it is not a clique, then it has two nonadjacent simplicial vertices.

Corollary Chordal graphs can be recognized by the following iterative procedure: repeatedly locate a simplicial vertex and eliminate it from the graph, until no vertices remain (and the graph is chordal) or at some stage no simplicial vertex exists (and the graph is not chordal).
Remark A naïve implementation of the previous procedure takes $O(n^4)$ time. As a matter of fact, testing whether a given vertex is simplicial takes $O(n^2)$ time, finding a simplicial vertex requires eventually testing all remaining vertices and thus takes total $O(n^3)$ time, and such a step must be repeated $O(n)$ times when the graph is chordal.

Chordal graphs can be recognized in linear time, though. Since a chordal graph G which is not a clique has two nonadjacent simplicial vertices, and every induced subgraph of a chordal graph is chordal, it is possible to choose any vertex v of G and decide it will be last in the perfect elimination order, then choose any vertex w adjacent to v and put it in position $n - 1$, and so on, choosing vertices backward to the perfect elimination order.
Several linear-time algorithms for recognizing chordal graphs are based on this idea.

Lexicographic search: Number the vertices from n to 1 in decreasing order. For each unnumbered vertex v, maintain a list of the numbers of the numbered vertices adjacent to v, with the numbers in each list arranged in decreasing order. As the next vertex to number, select the vertex whose list is lexicographically greatest, breaking ties arbitrarily.
Several linear-time algorithms for recognizing chordal graphs are based on this idea.

Maximum cardinality search: Number the vertices from n to 1 in decreasing order. As the next vertex to number, select the vertex adjacent to the largest number of previously numbered vertices, breaking ties arbitrarily.
The following algorithm performs a maximum cardinality search on an undirected graph $G = (V, E)$, computing also a perfect elimination order σ when G is chordal.

procedure maximum cardinality search (G, σ)
 for all vertices v of G do
 set $label[v]$ to zero
 for all i from n downto 1 do
 choose an unnumbered vertex v with largest label
 set $\sigma(v)$ to i \{number vertex v\}
 for all unnumbered vertices w adjacent to vertex v do
 increment $label[w]$ by one
 end procedure
Example The following chordal graph has 96 different perfect elimination orders, one of which, $\sigma = [a, g, b, f, c, e, d]$, can be found by maximum cardinality search as follows.

\[
\begin{align*}
 i &= 7 \\
 a & b \quad c \quad d \\
 g & f \quad e \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 2 & 0 \\
 0 & 1 & 2 & 0 \\
 i &= 6 \\
 i &= 5 \\
 i &= 4 \\
 i &= 3 \\
 i &= 2 \\
 i &= 1 \\
\end{align*}
\]
Theorem The previous algorithm can be implemented to perform maximum cardinality search in $O(n + m)$ time.

Proof Let vertices be labeled by the number of adjacent numbered vertices, and let S_i be the set of unnumbered vertices with label i. Represent each set S_i by a doubly linked list of vertices, to facilitate deletion, and maintain an array of sets of vertices S_i, for $0 \leq i \leq m - 1$. Maintain also an index j to the nonempty set S_j with the largest label, and maintain for each vertex a pointer to the position of the vertex in the corresponding set. Maximum cardinality search proceeds by removing some vertex v from set S_j, numbering vertex v and, for all unnumbered vertices w adjacent to vertex v, moving vertex w from the set containing it, say S_i, to set S_{i+1}. Since this takes $O(1 + \deg(v))$ time, maximum cardinality search takes $O(n + m)$ time.
Algorithms on Chordal Graphs

Theorem (Tarjan and Yannakakis, 1984) An undirected graph G is chordal if and only if maximum cardinality search (G, σ) produces a perfect elimination order σ.

Remark A naïve procedure for testing whether σ is a perfect elimination order, and thus G is chordal, consists of simulating the vertex elimination process and, for each vertex to be eliminated, testing whether its remaining neighbors form a clique. However, this procedure takes $O(nm)$ time.
Let σ be the permutation of the vertices of G produced by maximum cardinality search (G, σ). The following algorithm tests whether σ is a perfect elimination order.

\begin{verbatim}
function perfect elimination order (G, σ)
 for all i from 1 to $n - 1$ do
 set v to $\sigma^{-1}(i)$
 set $m[v]$ to $\sigma^{-1}(\min\{\sigma(w) \mid w \in \text{adj}(v), \sigma(w) > \sigma(v)\})$
 for all vertices w adjacent to vertex v do
 if $\sigma(m(v)) < \sigma(w)$ and $w \not\in \text{adj}(m(v))$ then
 return false
 return true
end function
\end{verbatim}
Theorem The previous algorithm can be implemented to test a perfect elimination order in $O(n + m)$ time.

Proof The algorithm returns false during the $\sigma(u)$-th iteration if and only if there are vertices v, u, w with $\sigma(v) < \sigma(u) < \sigma(w)$, where $u = m(v)$ is defined during the $\sigma(v)$-th iteration, such that u and w are adjacent to v but u is not adjacent to w. In this case, σ is clearly not a perfect elimination order.

Conversely, suppose σ is not a perfect elimination order and the algorithm returns true. Let v be the vertex with the largest $\sigma(v)$ possible such that $W = \{w \in \text{adj}(v) \mid \sigma(w) > \sigma(v)\}$ is not complete. Let also $u = m(v)$ be the vertex of W defined during the $\sigma(v)$-th iteration. Since during the $\sigma(u)$-th iteration the body of the conditional (return false) is not executed, every vertex $w \in W \setminus \{u\}$ is adjacent to vertex u, and every vertex pair $\{w, z\} \in W \setminus \{u\}$ is adjacent, because of the maximality of $\sigma(v)$, contradicting the assumption that W is not complete.

Regarding time complexity, the body of the algorithm takes $O(\deg(v))$ time for each vertex v. The algorithm takes thus $O(n + m)$ time.
Corollary Chordal graphs can be recognized in linear time.

Let \(X(v) = \{ w \in \text{adj}(v) \mid \sigma(v) < \sigma(w) \} \).

Lemma Every maximal clique of a chordal graph \(G = (V, E) \) is of the form \(\{v\} \cup X(v) \), for some vertex \(v \in V \).

Proof The set \(\{v\} \cup X(v) \) is complete, because \(\sigma \) is a perfect elimination order. On the other hand, if \(w \) is the vertex of a maximal clique \(C \) with smallest \(\sigma \) number, then \(C \) is of the form \(\{w\} \cup X(w) \).

Lemma A chordal graph has at most \(n \) maximal cliques.
Remark

- Suppose \(A = \{v\} \cup X(v) \) is not a maximal clique. Then, there is another clique \(B = \{w\} \cup X(w) \) such that \(A \subseteq B \) and, by the previous to last lemma, it must be \(\sigma(w) < \sigma(v) \).

- Recall that \(m(w) \) is defined by
 \[
 \sigma(m(w)) = \min \{ \sigma(z) \mid z \in X(w) \} = \min \{ \sigma(z) \mid z \in \text{adj}(w), \sigma(w) < \sigma(z) \}.
 \]

- Among all cliques \(B = \{w\} \cup X(w) \) with \(A \subseteq B \), the one with largest \(\sigma(w) \) implies \(m(w) = v \) and, therefore, the clique \(A = \{v\} \cup X(v) \) is not maximal if and only if \(m(w) = v \) and \(|X(v)| \leq |X(w)| - 1 \) for all vertices \(w \in V \).
Let σ be the perfect elimination order produced by maximum cardinality search (G, σ). The following algorithm enumerates all maximal cliques of G.

```plaintext
procedure all maximal cliques $(G, \sigma)$
    for all vertices $v$ of $G$ do
        set $size[v]$ to zero
    for all $i$ from 1 to $n$ do
        set $v$ to $\sigma^{-1}(i)$
        if $\deg(v) = 0$ then
            output maximal clique $\{v\}$
        set $X$ to $\{w \in \text{adj}(v) \mid \sigma(v) < \sigma(w)\}$
        if $X \neq \emptyset$ then
            if $size[v] < |X|$ then
                output maximal clique $\{v\} \cup X$
            set $m[v]$ to $\sigma^{-1}(\min\{\sigma(w) \mid w \in X\})$
            set $size[m[v]]$ to $\max\{size[m[v]], |X| - 1\}$
        end procedure
```
Lemma The previous algorithm can be implemented to enumerate all maximal cliques in $O(n + m)$ time.
Theorem (Lueker and Booth, 1979) \textit{Graph isomorphism is polynomially reducible to chordal graph isomorphism.}

\textbf{Proof} \textit{A chordal graph }M(G) = G' = (V', E')\textit{ can be associated to an arbitrary graph }G = (V, E)\textit{ as follows.}

- Let \(V' = V \cup E \).
- Let \(E' = \{\{v, w\} \mid v, w \in V\} \cup \{\{v, e\} \mid v \in V, e \in E, v \text{ is incident with } e\} \).

The construction can be implemented to take \(O(n + m) \) time.

- Consider any cycle of length greater that three in \(G' \). If the cycle contains only \(V \)-vertices, then it has a chord, since all \(V \)-vertices are adjacent. Otherwise, the cycle contains an \(E \)-vertex, and then the two vertices adjacent to this \(E \)-vertex must be \(V \)-vertices, and they are adjacent. Therefore, \(G' \) is chordal.

- Assume now \(n \geq 4 \). It turns out that \(G' \) contains enough structure to allow to reconstruct \(G \), up to isomorphism.
Proof (Continued.)

- As a matter of fact, since all V-vertices are adjacent, all have degree at least equal to $n - 1$, which is greater than two, while E-vertices always have degree two, because an E-vertex is adjacent to exactly two V-vertices.

- Furthermore, two vertices of G are adjacent if the corresponding V-vertices are adjacent to a common E-vertex.

The problem of testing isomorphism of G_1 and G_2 is then polynomially reduced to the problem of testing isomorphism of $M(G_1)$ and $M(G_2)$.
Example Construction underlying the reduction of graph isomorphism to chordal graph isomorphism.
Algorithms on Circular-Arc Graphs
Definition A circular-arc graph is a graph that is isomorphic to the intersection graph of a finite set of arcs along a circle.

Example The following finite set of arcs along a circle is an arc model of the circular-arc graph shown to the left.
Algorithms on Circular-Arc Graphs

- Recognition of Circular-Arc Graphs

Algorithms on Circular-Arc Graphs

• Maximum Independent Set of Circular-Arc Graphs

Algorithms on Circular-Arc Graphs

- Isomorphism of Circular-Arc Graphs
A set of mutually disjoint arcs of $I(G)$ models an independent set of G.

A set of mutually overlapping, or contained in each other, arcs of $I(G)$ models a clique of G.
Algorithms on Circular-Arc Graphs

Definition The open neighborhood of a vertex v is $N(v) = \{w \in V \mid vw \in E\}$. The closed neighborhood of a vertex v is the set of vertices $N[v] = N(v) \cup \{v\}$.

Remark The overlap relationship between a pair of arcs in any circular-arc model of a circular-arc graph is determined by the neighborhood containment relation between the corresponding vertices.

- Arcs ax and ay are disjoint if and only if $xy \notin E$.
- Arc ax can be contained in arc ay if and only if $xy \in E$ and $N(x) \subseteq N[y]$.
- Arcs ax and ay can cover the circle (they can intersect at both endpoints) if and only if $xy \in E$ and, for every $w \in V - N[x]$, $wy \in E$ and $N(w) \subseteq N[y]$.
- Arc ax must cross arc ay (they must intersect at one endpoint only) if and only if $xy \in E$ and neither of the previous two conditions are satisfied.

Lemma $N(x) \subseteq N[y]$ if and only if $|N(x) - y| = A^2[x,y]$.
Algorithms on Circular-Arc Graphs

- Arc ax can be contained in arc ay if and only if $xy \in E$ and $N(x) \subseteq N[y]$.

- Arcs ax and ay can cover the circle if and only if $xy \in E$ and, for every $w \in V - N[x]$, $wy \in E$ and $N(w) \subseteq N[y]$.
Theorem Circular-arc graphs can be recognized in $O(n^{2.37})$ time.

Proof (Sketch) Compute the neighborhood containment relation by matrix multiplication. There are two cases to consider:

1. \bar{G} is bipartite. (G partitions into two cliques.)
2. \bar{G} is not bipartite. (G contains and odd-length cycle as induced subgraph.)

 (a) \bar{G} has a triangle.

 (b) \bar{G} has a cycle of odd length ≥ 5 as induced subgraph.

The algorithm consists of three stages.

- **Find a valid placement for an initial set of arcs.** (The endpoints of these arcs divide the circle into sections such that no remaining arc can have both its endpoints in the same section.)
- **Place the endpoints of the remaining arcs in the appropriate sections.**
- **Order the arc endpoints in each section.**