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Abstract

The exploratory nature of data analysis and data mining makes clustering one of the most usual tasks in these
kind of projects. More frequently these projects come from many different application areas like biology, text
analysis, signal analysis, etc that involve larger and larger datasets in the number of examples and the number
of attributes. Classical methods for clustering data like K-means or hierarchical clustering are beginning to
reach its maximum capability to cope with this increase of dataset size. The limitation for these algorithms
come either from the need of storing all the data in memory or because of their computational time complexity.

These problems have opened an area for the search of algorithms able to reduce this data overload. Some
solutions come from the side of data preprocessing by transforming the data to a lower dimensionality manifold
that represents the structure of the data or by summarizing the dataset by obtaining a smaller subset of examples
that represent an equivalent information.

A different perspective is to modify the classical clustering algorithms or to derive other ones able to cluster
larger datasets. This perspective relies on many different strategies. Techniques such as sampling, on-line
processing, summarization, data distribution and efficient datastructures have being applied to the problem of
scaling clustering algorithms.

This paper presents a review of different strategies and clustering algorithms that apply these techniques.
The aim is to cover the different range of methodologies applied for clustering data and how they can be scaled.
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1 Introduction

According to a recent poll about the most frequent tasks and methods employed in data mining
projects (KDNuggets, 2011), clustering was the third most frequent task. It is usual that these
projects involve areas like astronomy, bioinformatics or finance, that generate large quantities of data.
Also according to a recurrent poll of KDNuggets the most frequent size of the datasets being processed
has shifted from tens of gigabytes in 2011 to terabytes in 2013. It is also common also that, in some
of these domains, data is a continuous stream representing and boundless dataset, that is collected
and processed in batches to incrementally update or refine a previously built model.

The classical methods for clustering (e.g.: K-means, hierarchical clustering) are not able to cope
with this increasing amount of data. The reason is mainly because either the constraint of maintain-
ing all the data in main memory or the temporal complexity of the algorithms. This makes them
impractical for the purpose of processing these increasingly larger datasets. This means that the need
of scalable clustering methods is a real problem and in consequence some new approaches are being
developed.

There are several methodologies that have been used to scale clustering algorithms, some inspired
in methodologies successfully used for supervised machine learning, other specific for this unsupervised
task. For instance, some of these techniques use different kinds of sampling strategies, in order to store
in memory only a subset of the data. Others are based on the partition of the whole dataset in several
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independent batches for separate processing and the merging of the result in a consensuated model.
Some methodologies assume that the data is a continuous stream and has to be processed on-line
or in successive batches. Also, these techniques are integrated in different ways depending on the
model that is used for the clustering process (prototype based, density based, ...). This large variety
of approaches makes necessary to define their characteristics and to organize them in a coherent way.

The outline of this paper is as follows. In section 2 some preprocessing techniques available for
dimensionality reduction will be reviewed. In section 3 the different paradigms for clustering data will
be presented, analyzing their capability for processing large quantities of data. Section 4 will discuss
the different strategies used for scaling clustering algorithms. Section 5 describe some algorithms that
use these scalability strategies. Finally, section 6 will outline some conclusions.

2 Preprocessing: Dimensionality reduction

Before applying the specific mining task that has to be performed on a dataset, several preprocessing
steps can be done. The first goal of the preprocessing step is to assure the quality of the data by
reducing the noisy and irrelevant information that it could contain. The second goal is to reduce the
size of the dataset, so the computational cost of the discovery task is also reduced.

There are two dimensions that can be taken in account when reducing the size of the dataset. The
first one is the number of instances. This problem can be addressed by sampling techniques when it
is clear that a smaller subset of the data holds the same information that the whole dataset. Not in
all application it is the case, and sometimes the specific goal of the mining process is to find specific
groups of instances with low frequency, but of high value. This data could be discarded by the sampling
process, making unfruitful the process. In other applications, the data is a stream, this circumstance
makes more difficult the sampling process or carries the risk of losing important information from the
data if its distribution changes over time.

With dimensionality reduction techniques, the number of attributes of the dataset also can be
addressed. There are several areas related to the transformation of a dataset from the original repre-
sentation to a representation with a reduced set of features. The goal is to obtain a new dataset that
preserves, up to a level, the original structure of the data, so its analysis will result in the same or
equivalent patterns present in the original data. Broadly, there are two kinds of methods for reducing
the attributes in a dataset, feature selection and feature extraction.

Most of the research on feature selection is related to supervised learning [14]. More recently,
methods for unsupervised learning have been appearing in the literature [4], [11], [24], [26]. These
methods can be divided on filters, that use characteristics of the features to determine their salience
so the more relevant ones can be kept, and wrappers, that involve the exploration of the subset of
features and a clustering algorithm to evaluate the quality of the partitions generated with the subset,
according to a internal or external quality criteria. The main advantage of all these methods is that
they preserve the original attributes, so the resulting patterns can be interpreted more easily.

Feature extraction is an area with a large number of methods. The goal is to create a smaller
new set of attributes that maintains the patterns present in the data. This reduction process is used
frequently to visualize the data to help with the discovery process. These methods generate new
attributes that are linear or non linear combinations of the original attributes. The most popular
method that obtains a linear transformation of the data is Principal Component Analysis [10]. This
transformation results in a set of orthogonal dimensions that account for the variance of the dataset.
It is usual for only a small number of these dimensions to hold most of the variance of the data, so with
only this subset should be enough to discover the patterns in the data. Nonlinear feature extraction
methods have been becoming more popular because of the ability to uncover more complex patterns in
the data. Popular examples of these methods include the kernelized version of PCA [19] and methods
based on manifold learning like ISOMAP [21] or Locality Linear Embedding [18]. A mayor drawback
these methods is their computational cost. Most of them include some sort of matrix factorization
and scale poorly.
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3 Clustering algorithms

The clustering task can be defined as a process that, using the intrinsic properties of a dataset X ,
uncovers a set of partitions that represents its inherent structure. It is, thus, an usupervised task,
that relies in the patterns that present the values of the attributes that describe the dataset. The
partitions can be either nested, so a hierarchical structure is represented, or disjoint partitions with
or without overlapping.

There are several approaches to obtain a partition from a dataset, depending on the characteristics
of the data or the kind of the desired partition. Broadly these approaches can be divided in:

• Hierarchical algorithms, that result in a nested set of partitions, representing the hierarchical
structure of the data. These methods are usually based on a matrix of distances/similarites and
a recursive divisive or agglomerative strategy.

• Partitional algorithms, that result in a set of disjoint or overlapped partitions. There is a more
wide variety of methods of this kind, depending on the model used to represent the partitions
or the discovery strategy used. The more representative ones include algorithms based on pro-
totypes or probabilistical models, based on the discovery of dense regions and based on the
partition of the space of examples into a multidimensional grid.

In the following sections the main characteristics of these methods will be described with an outline
of the main representative algorithms.

3.1 Hierarchical clustering
Hierarchical methods [5] use two strategies for building a tree of nested clusters that partitions a
dataset, divisive and agglomerative. Divisive strategies begin with the entire dataset, and each itera-
tion it is determined a way to divide the data into two partitions. This process is repeated recursively
until individual examples are reached. Agglomerative strategies iteratively merge the most related
pair of partitions according to a similarity/distance measure until there is only one partition. Usually
agglomerative strategies are computationally more efficient.

These methods are based on a distance/similarity function that compares partitions and examples.
The values of these measures for each pair of examples are stored in a matrix that is updated during
the clustering process.

Some algorithms consider this matrix as a graph that is created by adding each iteration new edges
in an ascending/descending order of length. In this case, a criteria determines when the addition of a
new edge result in a new clusters. For example, the single link criteria defines a new cluster each time
a new edge is added if that connects two disjoint groups, or the complete link criteria considers that
a new cluster appears only when a the union of two disjoint groups form a clique in the graph.

Other algorithms reduce the distance/similarity matrix each iteration by merging two groups,
deleting these groups from the matrix and then adding the new merged group. The distances of this
new group to the remaining groups are recomputed as a combination of the distances to the two
merged group. Popular choices for this combination are the maximum, minimum and mean of these
distances. Also the size or the variance of the clusters can be used to weight the combination.

These variety of choices in the criteria for merging the partitions and updating the distances,
creates a continuous of algorithms that can obtain very different partitions from the same data. But
the main drawback of these algorithms is their computational cost. The distance matrix has to be
stored and this scales quadratically with the number of examples. Also, the computational cost of
these algorithms is cubic with the number of examples in the general case and it can be reduced in
some particular cases to O(n2 log(n)) or even O(n2).

3.2 Prototype/model based clustering
Prototype and model based clustering assume that clusters fit to a specific shape, so the goal is to
discover how different numbers of these shapes can explain the spatial distribution of the data.
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The most used prototype based clustering algorithm is K-Means [5]. This algorithm assumes that
clusters are defined by their center (the prototype) and have spherical shapes. The fitting of this
spheres is done by minimizing the distances from the examples to these centers. Examples are only
assigned to one cluster.

Different optimization criteria can be used to obtain the partition, but the most common one is
the minimization of the sum of the euclidean distance of the examples assigned to a cluster and the
centroid of the cluster. The problem can be formalized as:

min
C

∑
Ci

∑
xj∈Ci

‖ xj − µi ‖2

This minimization problem is solved iteratively using a gradient descent algorithm.
Model based clustering assumes that the dataset can be fit to a mixture of probability distributions.

The shape of the clusters depends on the specific probability distribution used. A common choice is
the gaussian distribution. In this case, depending on the choice about if covariances among attributes
are modelled or not, the clusters correspond to arbitrarily oriented ellipsoids or spherical shapes. The
model fit to the data can be expressed in general as:

P (x|θ) =
K∑
i=1

P (wi)P (x|θi, wi)

Being K the number of clusters, with
∑K
i=1 P (wi) = 1. This model is usually fit using the

Expectation-Maximization algorithm (EM), assigning for each example a probability to each clus-
ter.

The main limitation of all these methods is to assume that the number of partition is known.
Both types of algorithms need to have all the data in memory for performing the computations, so
their spatial needs scale linearly with the size of the dataset. The storage of the model is just a
fraction of the size of the dataset for prototype based algorithms, but for model base algorithms
depends on the number of parameters needed to estimate the probability distributions, this number
can grow quadratically with the number of attributes if, for example, gaussian distributions with
full covariance matrices are used. The computational time cost for the prototype based algorithms
depends on the number of examples (n), the number of attributes (d), the number of clusters (k) and
the number of iterations needed for convergence (i), so it is proportional to O(ndki). The number of
iterations depends on the dataset, but it is bounded by a constant. For the model based algorithms,
each iteration has to estimate all the parameters of the distribution of the model for all instances,
so the computational time depends on the number of parameters, that in the case of full covariance
estimation, each iteration results in a total time complexity of O(nd2k)

3.3 Density based clustering
Density based clustering does not assumes an specific shape for the clusters or that the number of
clusters is known. The goal is to uncover areas of high density in the space of examples. There are
different strategies to find the dense areas of a dataset, but the usual methods are derived from the
works of the algorithm DBSCAN [6].

This algorithm is based on the idea of core points, that constitute the examples that belong to the
interior of the clusters, and the neighborhood relations of this points with the rest of the examples.
The ε-neighborhood of an example (Nε(x)) is defined as the set of instances that are at a distance
less than ε to a given instance. A core point is defined as the examples that have more than a
certain number of elements (MinPts) in its ε-neighborhood. From this neighborhood sets, different
reachability relations are defined allowing to connect density areas defined by these core points. A
cluster is defined as all the core points that are connected by this reachability relations and the points
that belong to their neighborhood.

The key point of this algorithm is the choice of the ε and MinPts parameters, the algorithm
OPTICS [2] is an extension of the original DBSCAN that uses heuristics to find good values for these
parameters.
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The main drawback of this methods comes from the cost of finding the nearest neighbors for an
example. Indexing data structures can be used to reduce the computational time, but these structures
degrade with the number of dimensions to a linear search. This makes the computational time of these
algorithms proportional to the square of the number of examples for datasets with a large number of
dimensions.

3.4 Grid based clustering
Grid based clustering is another approach to finding dense areas of examples. The basic idea is to
divide the space of instances in hyperrectangular cells by discretizing the attributes of the dataset. In
order to avoid to generate a combinatorial number of cells, different strategies are used. It has to be
noticed the fact that, the maximum number of cells that contain any example is bounded by the size
of the dataset. Clusters of arbitrary shapes can be discovered using these algorithms.

The different algorithms usually rely on some hierarchical strategy to build the grid top down or
bottom up. For example, the algorithm STING [23] assumes that the data has a spatial relation and,
beginning with one cell, recursively partitions the current level into four cells chosen by the density
of the examples. Each cell is summarized by the sufficient statistics of the examples it contains. The
algorithm of CLIQUE [1] uses a more general approach. Assumes that the attributes of the dataset
have been are discretized and the one dimensional dense cells for each attribute can be identified. This
cells are merged attribute by attribute in a bottom up fashion, considering that a merging only can
be dense if the cells of the attributes that compose the merge are dense. This antimonotonic property
allows to prune the space of possible cells. Once the cells are identified, the clusters are formed by
finding the connected components in the graph defined by the adjacency relations of the cells.

These methods can usually scale well, but it depends on the granularity of the discretization of
the space of examples. The strategies used to prune the search space allow to largely reduce the
computational cost, that scales on the number of examples and a quadratic factor in the number of
attributes.

3.5 Other approaches
There are several other approaches that use other criteria for obtaining a set of clusters from a dataset.
Two methods have gained popularity in the latest years: spectral clustering and affinity clustering.

Spectral clustering methods [15] define a Laplacian matrix from the similarity matrix of the dataset
that can be used to define different clustering algorithms. Assuming that the Laplacian matrix repre-
sent the neighborhood relationships among examples, the eigenvectors of this matrix can be used as a
dimensionality reduction method, transforming the data to a new space where traditional clustering
algorithms can be applied. This matrix can also be used to solve a min-cut problem for the defined
graph. Several objective functions have been defined for this purpose. The computational complexity
of this family of methods is usually high because the computation of the eigenvectors of the Laplacian
matrix is needed. This cost can be reduced by approximating the first k eigenvalues of the matrix.

Affinity clustering [7] is an algorithm based on message passing. Iterativelly, the number of clusters
and their representatives are determined by refining a pair of measures, responsibility, that accounts for
the suitability of an exemplar for being a representative of a cluster and availability, that accounts for
the evidence that certain point is the representative of other example. This two measures are linked
by a set of equations and are initialized using the similarity among the examples. The algorithm
recomputes this measures each iteration until a stable set of clusters appear. The computational
complexity of this method is quadratic on the number of examples

4 Scalability strategies

The strategies used to scale clustering algorithms range from general strategies that can be adapted to
any algorithm to specific strategies that exploit the characteristics of the algorithm in order to reduce
its computational cost.
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Some of the strategies are also dependent on the type of data that is used. For instance, only
clustering algorithms that incrementally build the partition can be used for data streams. For this
kind of datasets it means that the scaling strategy has to assume that the data will be processed
continuously and only one pass through the data will be allowed. For applications where the whole
dataset can be stored in secondary memory, other possibilities are also available.

The different strategies applied for scalability are not disjoint and several strategies can be used
in combination. These strategies can be classified in:

One-pass strategies: The constraint assumed is that the data only can be processed once and in a
sequential fashion. A new example is integrated in the model each iteration. Depending on the
type of the algorithm a data structure can be used to efficiently determine how to perform this
update. This strategy does not only apply to data streams and can be actually used for any
dataset.

Summarization strategies: It is assumed that all the examples in the dataset are not needed for obtain-
ing the clustering, so an initial preprocess of the data can be used to reduce its size by combining
examples. The preprocess results in a set of representatives of groups of examples that fits in
memory. The representatives are then processed by the clustering algorithm.

Sampling/batch strategies: It is assumed that processing samples of the dataset that fit in memory
allows to obtain an approximation of the partition of the whole dataset. The clustering algorithm
generates different partitions that are combined iterativelly to obtain the final partition.

Approximation strategies: It is assumed that certain computations of the clustering algorithm can be
approximated or reduced. These computations are mainly related with the distances among
examples or among the examples and the cluster prototypes.

Divide and conquer strategies: It is assumed that the whole dataset can be partitioned in roughly inde-
pendent datasets and that the combination/union of the results for each dataset approximates
the true partition.

4.1 One-pass strategies
The idea of this strategy is to reduce the number of scans of the data to only one. This constraint
may be usually forced by the circumstance that the dataset can not fit in memory and it has to be
obtained from disk. Also the constraint could be imposed by a continuous process that does not allow
to store all the data before processing it.

Sometimes this strategy is used to perform a preprocess of the dataset. This results in two stages
algorithms, a first one that applies the one-pass strategy and a second one that process in memory a
summary of the data obtained by the first stage.

The assumption of the first stage is that a simple algorithm can be used to obtain a coarse
representation of the clusters in the data and that these information will be enough to partition the
whole dataset.

Commonly this strategy is implemented using the leader algorithm. This algorithm does not
provide very good clusters, but can be used to estimate densities or approximate prototypes, reducing
the computational cost of the second stage.

4.2 Summarization Strategies
The purpose of this strategy is to obtain a coarse approximation of the data without losing the
information that represent the different densities of examples. This summarization strategy assumes
that there is a set of sufficient quantities that can be computed from the data, capable of representing
their characteristics. For instance, by using sufficient statistics like mean and variance.

The summarization can be performed single level, as a preprocess that is feed to a cluster algorithm
able to process summaries instead of raw examples, or also can be performed in a hierarchical fashion.
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This hierarchical scheme can reduce the computational complexity by using a multi level clustering
algorithm or can be used as an element of a fast indexing structure that reduces the cost of obtaining
the first level summarization.

4.3 Sampling/batch strategies
The purpose of sampling and batch strategies is to allow to perform the processing in main memory
for a part of the dataset.

Sampling assumes that only a random subset or subsets of the data are necessary to obtain the
model for the data and that the complete dataset is available from the beginning. The random subsets
can be or not disjoint. If more than one sample of the data is processed, the successive samples are
integrated with the current model. This is usually done using an algorithm able to process raw data
and cluster summaries. The algorithms that use this strategy do not process all the data, so they
scale on the size of the sampling and not on the size of the whole dataset.

The use of batches assume that the data can be processed sequentially and that after applying
a clustering algorithm to a batch, the result can be merged with the results from previous batches.
This processing assumes that data is available sequentially as in a data stream and that the batch is
complete after observing an amount of data that fits in memory.

4.4 Approximation strategies
These strategies assume that some computations can be saved or approximated with reduced or null
impact on the final result. The actual approximation strategy is algorithm dependent, but usually
the most costly part of clustering algorithms corresponds to distance computation among instances or
among instances and prototypes. This circumstance focus these strategies particularly on hierarchical,
prototype based and some density based algorithms, because they use distances to decide how to assign
examples to partitions.

For example, some of these algorithms are iterative and the decision about what partition is
assigned to an example does not change after a few iterations. If this can be determined at an early
stage, all these distance computations can be avoided in successive iterations.

This strategy is usually combined with a summarization strategy where groups of examples are
reduced to a point that is used to decide if the decision can be performed using only that point or the
distances to all the examples have to be computed.

4.5 Divide and conquer strategies
This is a general strategy applied in multiple domains. The principle is that data can be divided in
multiple independent datasets and that the clustering results can be then merged on a final model.
This strategy rely sometimes on a hierarchical scheme to reduce the computational cost of merging all
the independent models. Some strategies assume that each independent clustering represent a view
of the model, being the merge a consensus of partitions. The approach can also result on almost
independent models that have to be joined, in this case the problem to solve is how to merge the parts
of the models that represent the same clusters.

5 Algorithms

All these scalability strategies have been implemented in several algorithms that represent the full range
of different approaches to clustering. Usually more than one strategy is combined in an algorithm
to take advantage of the cost reduction and scalability properties. In this section, a review of a
representative set of algorithms and the use of these strategies is presented.
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5.1 Scalable hierarchical clustering
The main drawback of hierarchical clustering is its high computational cost (time O(n2), space O(n2)
) that makes it impractical for large datasets. The proposal in [17] divides the clustering process in
two steps. First a one pass clustering algorithm is applied to the dataset, resulting in a set of cluster
summaries that reduce the size of the dataset. This new dataset fits in memory and can be processed
using a single link hierarchical clustering algorithm.

For the one-pass clustering step, the leader algorithm is used. This algorithm has as parameter
(d), the maximum distance between example and cluster prototype. The processing of each example
follows the rule, if the nearest existing prototype is closer than d, it is included in that cluster and
its prototype recomputed, otherwise, a new cluster with the example is created. The value of the
parameter is assumed to be known or can be estimated from a sample of the dataset. The time
complexity of this algorithm is O(nk) being k the number of clusters obtained using the parameter d.

The first phase of the proposed methodology applies the leader algorithm to the dataset using as
a parameter half the estimated distance between clusters (h). For the second stage, the centers of
the obtained clusters are merged using the single-link algorithm until the distance among clusters is
larger than h.

The clustering obtained this way is not identical to the resulting from the application of the single-
link algorithm to the entire dataset. To obtain the same partition, an additional process is performed.
During the merging process, the clusters that have pairs of examples at a distance less than h are also
merged. For doing this, only the examples of the clusters that are at a distance less than 2h have to
be examined. The overall complexity of all three phases is O(nk), that corresponds to the complexity
of the first step. The single-link is applied only to the cluster obtained by the first phase, reducing its
time complexity to O(k2), being thus dominated by the time of the leader algorithm.

5.2 Rough-DBSCAN
In [22] a two steps algorithm is presented. The first step applies a one pass strategy using the leader
algorithm, just like the algorithm in the previous section. The application of this algorithm results in
an approximation of the different densities of the dataset. This densities are used in the second step,
that consists in a variation of the density based algorithm DBSCAN.

This method uses a theoretical result that bounds the maximum number of leaders obtained by
the leader algorithm. Given a radius τ and a closed and bounded region of space determined by the
values of the features of the dataset, the maximum number of leaders k is bounded by:

k ≤ VS
Vτ/2

being VS the volume of the region S and Vτ/2 the volume of a sphere of radius τ/2. This number
is independent of the number of examples in the dataset and the data distribution.

For the first step, given a radius τ , the result of the leader algorithm is a list of leaders (L), their
followers and the count of their followers. The second step applies the DBSCAN algorithm to the set
of leaders given an ε and a MinPts parameters.

The count of followers is used to estimate the count of examples around a leader. Different
estimations can be derived from this count. First it is defined Ll as the set of leaders at a distance
less or equal than ε to the leader l:

Ll = {lj ∈ L | ‖lj − l‖ ≤ ε}

The measure roughcard(Nε(l,D)) is defined as:

roughcard(Nε(l,D)) =
∑
li∈Ll

count(li)

approximating the number of examples less than a distance ε to a leader. Alternate counts can be
derived as upper and lower bounds of this count using ε+ τ (upper) or ε− τ (lower) as distance.
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From this counts it can be determined if a leader is dense or not. Dense leaders are substituted
by their followers, non dense leaders are discarded as outliers. The final result of the algorithm is the
partition of the dataset according to the partition of the leaders.

The computational complexity of this algorithm is for the first step O(nk), being k the number of
leaders, that does not depend on the number of examples n, but on the radius τ and the volume of
the region that contains the examples. For the second step, the complexity of the DBSCAN algorithm
is O(k2), given that the number of leaders will be small for large datasets, the cost is dominated by
the cost of the first step.

5.3 CURE
CURE [9] is a hierarchical agglomerative clustering algorithm. The main difference with the classical
hierarchical algorithms is that it uses a set of examples to represent the clusters, allowing for non
spherical clusters to be represented. It also uses a parameter that shrinks the representatives towards
the mean of the cluster, reducing the effect of outliers and smoothing the shape of the clusters. Its
computational cost is O(n2 log(n))

The strategy used by this algorithm to attain scalability combines a divide an conquer and a
sampling strategy. The dataset is first reduced by using only a sample of the data. Chernoff bounds
are used to compute the minimum size of the sample so it represents all clusters and approximates
adequately their shapes.

In the case that the minimum size of the sample does not fit in memory a divide and conquer
strategy is used. The sample is divided in a set of disjoint batches of the same size and clustered
until a certain number of clusters is achieved or the distance among clusters is less than an specified
parameter. This step has the effect of a pre-clustering of the data. The clusters representatives from
each batch are merged and the same algorithm is applied until the desired number of clusters is
achieved. A representation of this strategy appears in figure 1. Once the clusters are obtained all the
dataset is labeled according to the nearest cluster. The complexity of the algorithm is O(n2

p log(np )),
being n the size of the sample and p the number of batches used.
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5.4 BIRCH
BIRCH [27] is a multi stage clustering algorithm that bases its scalability in a first stage that incre-
mentally builds a pre-clustering of the dataset. The first stage combines a one pass strategy and a
summarization strategy that reduces the actual size of the dataset to a size that fits in memory.

The scalability strategy relies on a data structure named Clustering Feature tree (CF-tree) that
stores information that summarizes the characteristics of a cluster. Specifically, the information in a
node is the number of examples, the sum of the examples values and the sum of their square values.
From these values other quantities about the individual clusters can be computed, for instance, the
centroid, the radius of the cluster, its diameter and quantities relative to pairs of clusters, as the
inter-cluster distance or the variance increase.

A CF-tree (figure 2) is a balanced n-ary tree that contains information that represents probabilistic
prototypes. Leaves of the tree can contain as much as l prototypes and their radius can not be more
than t. Each non terminal node has a fixed branching factor (b), each element is a prototype that
summarizes its subtree. The choice of these parameters is crucial, because it determines the actual
available space for the first phase. In the case of selecting wrong parameters, the CF-tree can be
dynamically compressed by changing the parameters values (basically t). In fact, t determines the
granularity of the final groups.

The first phase of BIRCH inserts sequentially the examples in the CF-tree to obtain a set of clusters
that summarizes the data. For each instance, the tree is traversed following the branch of the nearest
prototype of each level, until a leave is reached. Once there, the nearest prototype from the leave to
the example is determined. The example could be introduced in this prototype or a new prototype
could be created, depending whether the distance is greater or not than the value of the parameter t.
If the current leave has not space for the new prototype (already contains l prototypes), the algorithm
proceeds to create a new terminal node and to distribute the prototypes among the current node and
the new leaf. The distribution is performed choosing the two most different prototypes and dividing
the rest using their proximity to these two prototypes. This division will create a new node in the
ascendant node. If the new node exceeds the capacity of the father, it will be split and the process
will continue upwards until the root of the tree is reached if necessary. Additional merge operations
after completing this process could be performed to compact the tree.

For the next phase, the resulting prototypes from the leaves of the CF tree represent a coarse
vision of the dataset. These prototypes are used as the input of a clustering algorithm. In the original
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Algorithm 1 OptiGrid algorithm
Given: number of projections k, number of cutting planes q, min cutting quality min_c_q,

data set X
Compute a set of projections P = {P1, ..., Pk}
Project the dataset X wrt the projections {P1(X), ..., Pk(X)}
BestCuts ← ∅, Cut ← ∅
for i ∈ 1..k do

Cut ← ComputeCuts(Pi(X))
for c in Cut do

if CutScore(c)> min_c_q then BestCuts.append(c)
end

end
if BestCuts.isEmpty() then return X as a cluster
BestCuts ← KeepQBestCuts(BestCuts,q)
Build the grid for the q cutting planes
Assign the examples in X to the cells of the grid
Determine the dense cells of the grid and add them to the set of clusters C
foreach cluster cl ∈ C do

apply OptiGrid to cl
end

algorithm, single link hierarchical clustering is applied, but also K-means clustering could be used.
The last phase involves labeling the whole dataset using the centroids obtained by this clustering
algorithm. Additional scans of the data can be performed to refine the clusters and detect outliers.

The actual computational cost of the first phase of the algorithm depends on the chosen parameters.
Chosen a threshold t, considering that s is the maximum number of leaves that the CF-tree can contain,
also that the height of the tree is logb(s) and that at each level b nodes have to be considered, the
temporal cost is O(nb logb(s)). The temporal cost of clustering the leaves of the tree depends on the
algorithm used, for hierarchical clustering it is O(s2). Labeling the dataset has a cost O(nk), being k
the number of clusters.

5.5 OptiGrid
OptiGrid [12] presents an algorithm that divides the space of examples in an adaptive multidimensional
grid that determines dense regions. The scalability strategy is based on recursive divide and conquer.
The computation of one level of the grid determines how to divide the space on independent datasets.
These partitions can be divided further until no more partitions are possible.

The main element of the algorithm is the computation of a set of low dimensional projections of
the data that are used to determine the dense areas of examples. These projections can be computed
using PCA or other dimensionality reduction algorithms and can be fixed for all the iterations. For a
projection, a fixed number of orthogonal cutting planes are determined from the maxima and minima
of the density function computed using kernel density estimation or other density estimation method.
These cutting planes are used to compute a grid. The dense cells of the grid are considered clusters at
the current level and are recursively partitioned until no new cutting planes can be determined given
a quality threshold. A detailed implementation is presented in algorithm 1

For the computational complexity of this method. If the projections are fixed for all the com-
putations, the first step can be obtained separately of the algorithm and is added to the total cost.
The actual cost of computing the projections depends on the method used. Assuming axis parallel
projections the cost for obtaining k projections for N examples is O(Nk), O(Ndk) otherwise, being
d the number of dimensions. Computing the cutting planes for k projections can be obtained also in
O(Nk). Assigning the examples to the grid depends on the size of the grid and the insertion time for
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Fig. 3: Scalable K-means

the data structure used to store the grid. For q cutting planes and assuming a logarithmic insertion
time structure, the cost of assigning the examples has a cost of O(Nqmin(q, log(N))) considering axis
parallel projections and O(Nqdmin(q, log(N))) otherwise. The number of recursions of the algorithm
is bound by the number of clusters in the dataset that is a constant. Considering that q is also a
constant, this gives a total complexity that is bounded by O(Nd log(N))

5.6 Scalable K-means
This early algorithm for clustering scalability presented in [3] combines a sampling strategy and a
summarization strategy. The main purpose of this algorithm is to provide an on-line and anytime
version of the K-means algorithm that works with a pre-specified amount of memory.

The algorithm repeats the following cycle until convergence:

1. Obtain a sample of the dataset that fits in the available memory

2. Update the current model using K-means

3. Classify the examples as:

(a) Examples needed to compute the model
(b) Examples that can be discarded
(c) Examples that can be compressed using a set of sufficient statistics as fine grain prototypes

The discarding and compressing of part of the new examples allows to reduce the amount of data
needed to maintain the model each iteration.

The algorithm divides the compression of data in two differentiated strategies. The first one is
called primary compression, that aims to detect those examples that can be discarded. Two criteria
are used for this compression, the first one determines those examples that are closer to the cluster
centroid than a threshold. These examples are not probably going to change their assignment in the
future. The second one consist in perturbing the centroid around a confidence interval of its values. If
an example does not change its current cluster assignment, it is considered that future modifications
of the centroid will still include the example.
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The second strategy is called secondary compression, that aims to detect those examples that
can not be discarded but form a compact subcluster. In this case, all the examples that form these
compact subclusters are summarized using a set of sufficient statistics. The values used to compute
that sufficient statistics are the same used by BIRCH to summarize the dataset.

The algorithm used for updating the model is a variation of the K-means algorithm that is able to
treat single instances and also summaries. The temporal cost of the algorithm depends on the number
of iterations needed until convergence as in the original K-means, so the computational complexity is
O(kni), being k the number of clusters, n the size of the sample in memory, and i the total number
of iterations performed by all the updates.

5.7 STREAM LSEARCH
The STREAM LSEARCH algorithm [8] assumes that data arrives as a stream, so holds the property
of only examining the data once. The algorithm process the data in batches obtaining a clustering for
each batch and merging the clusters when there is not space to store them. This merging is performed
in a hierarchical fashion. The strategy of the algorithm is then a combination of one-pass strategy
plus batch and summarization strategies.

The basis of the whole clustering scheme is a clustering algorithm that solves the facility location
(FL) problem. This algorithm reduces a sequential batch of the data to at most 2k clusters, that
summarize the data. These clusters are used as the input for the hierarchical merging process. The
computational cost of the whole algorithm relies on the cost of this clustering algorithm. This algo-
rithm finds a set of between k and 2k clusters that optimizes the FL problem using a binary search
strategy. An initial randomized procedure computes the clusters used as initial solution. The cost
of this algorithm is O(nm + nk log(k)) being m the number of clusters of the initial solution, n the
number of examples and k the number of clusters.

The full algorithm can be outlined as:
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Algorithm 2 Mini Batch K-Means algorithm
Given: k, mini-batch size b, iterations t, data set X
Initialize each c ∈ C with an x picked randomly from X
v ← 0
for i ← 1 to t do

M ← b examples picked randomly from X
for x ∈ M do

d[x] ← f(C,x)
end
for x ∈ M do

c ← d[x]
v[c] ← v[c] + 1
η ← 1

v[c]
c ← (1-η)c+ηx

end
end

1. Input the first m points; use the base clustering algorithm to reduce these to at most 2k cluster
centroids. The number of examples at each cluster will act as the weight of the cluster.

2. Repeat the above procedure until m2

2k examples have been processed so we have m centroids

3. Reduce them to 2k second level centroids

4. Apply the same criteria for each existing level so after having m centroids at level i then 2k
centroid at level i+ 1 are computed

5. After seen all the sequence (or at any time) reduce the 2k centroids at top level to k centroids

The number of centroids to cluster is reduced geometrically with the number of levels, so the
main cost of the algorithm relies on the first level. This makes the time complexity of the algorithm
O(nk log(nk)), while needing only O(m) space.

5.8 Mini batch K-means
Mini Batch K-means [20] uses a sampling strategy to reduce the space and time that K-means algorithm
needs. The idea is to use small bootstrapped samples of the dataset of a fixed size that can be fit in
memory. Each iteration, the sample is used to update the clusters. This procedure is repeated until
the convergence of the clusters is detected or a specific number of iterations is reached.

Each mini batch of data updates the cluster prototypes using a convex combination of the attribute
values of the prototypes and the examples. A learning rate that decreases each iteration is applied for
the combination. This learning rate is the inverse of number of examples that have been assigned to
a cluster during the process. The effect of new examples is reduced each iteration, so convergence can
be detected when no changes in the clusters occur during several consecutive iterations. A detailed
implementation is presented in algorithm 2.

The mayor drawback of this algorithm is that the quality of the clustering depends on the size
of the batches. For very large datasets, the actual size for a batch that can be fit in memory can
be very small compared with the total size of the dataset. The mayor advantage is the simplicity
of the approach. This same strategy is also used for scaling up other algorithms as for example
backpropagation in artificial neural networks.

The complexity of the algorithm depends on the number of iterations needed for convergence (i),
the size of the samples (n), and the number of clusters (k) so it is bound by O(kni).
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5.9 Canopy clustering
Canopy clustering [16] uses a divide and conquer and an approximation strategies to reduce the
computational cost. It also uses a two phases clustering algorithm, that is implemented using the well
known mapreduce paradigm for concurrent programming.

The first stage divides the whole dataset in a set of overlapping batches called canopies. The com-
putation of these batches depends on a cheap approximate distance that determines the neighborhood
of a central point given two distance thresholds. The smaller distance (T2) determines the examples
that will belong exclusively to a canopy. The larger distance (T1) determines the examples that can be
shared with other canopies. The values of these two distance thresholds can be manually determined
or computed using crossvalidation.

To actually reduce the computational cost of distance computation the distance function used in
this first phase should be cheap to compute. The idea is to obtain an approximation of the densities
in dataset. The specific distance depends on the characteristics of the attributes in the dataset, but it
is usually simple to obtain such a function by value discretization or using locality sensitive hashing.

The computation of the canopies proceeds as follows: One example is randomly picked as the
center of a canopy from the dataset, all the examples that are at a distance less than T2 are assigned
to this canopy and can not be used as centers in the future iterations. All the examples that are
at a distance less than T1 are included in the canopy but can be used as centers in the future. The
process is repeated until all the examples have been assigned to a canopy. In figure 5 can be seen a
representation of this process.

The second stage of the algorithm consist in clustering all the canopies separately. For this process,
different algorithms can be used, for example agglomerative clustering, expectation maximization
(EM) for gaussian mixtures or K-means. Also different strategies can be used for applying these
algorithms. For example, for K-means or EM the number of prototypes for a canopy can be fixed at
the beginning, using only the examples inside the canopy to compute them, saving this way many
distance computations. Other alternative is to decide the number of prototypes globally, so they can
move among canopies and be computed not only using the examples inside a canopy, but also using
the means of the nearest canopies.

These different alternatives make difficult to give a unique computational complexity for all the
process. For the first stage, the data has to be divided in canopies, this computational cost depends
on the parameters used. The method used for obtaining the canopies is similar to the one used by the
leader algorithm, this means that equivalently as was shown in 5.2, the number of partitions obtained
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does not depend on the total number of examples (n), but on the volume defined by the attributes
and the value of parameter T2. Being k this number of canopies, the computational cost is bounded
by O(nk). The cost of the second stage depends on the specific algorithm used, but the number of
distance computations needed for a canopy will be reduced in a factor n

k , so for example if single link
hierarchical clustering is applied the total computational cost of applying this algorithm to k canopies
will be O(nk

2).

5.10 Indexed K-means
The proposal in [13] relies in an approximation strategy. This strategy is applied to the K-means
algorithm. One of the computations that have most impact in the cost of this algorithm is that, each
iteration all the distances from the examples to the prototypes have to be computed. One observation
about the usual behavior of the algorithms is that, after some iterations, most of the examples are not
going to change their cluster assignment for the remaining iterations, so computing their distances
increases the cost, without having an impact in the decisions of the algorithm.

The idea is to reduce the number of distance computations by storing the dataset in an intelligent
data structure that allows to determine how to assign them to the cluster prototypes. This data
structure is a kd-tree, a binary search tree that splits the data along axis parallel cuts. Each level can
be represented by the centroid of all the examples assigned to each one of the two partitions.

In this proposal, the K-means algorithm is modified to work with this structure. First, a kd-tree
is built using all the examples. Then, instead of computing the distance from each example to the
prototypes and assigning them to the closest one, the prototypes are inserted in this kd-tree. At each
level, the prototypes are assigned to the branch that has the closest centroid. When a branch of the
tree has only one prototype assigned, all the examples in that branch can be assigned directly to that
prototype, avoiding further distance computations. When a leave of the kd-tree is reached and still
there is more that one prototype, the distances among the examples and the prototypes are computed
and the assignments are decided by the closest prototype as in the standard K-means algorithm. A
representation of this algorithm can be seen in figure 6.

The actual performance depends on how separated are the clusters in the data and the granu-
larity of the kd-tree. The more separated the clusters are, the less distance computations have to
be performed, as the prototypes will be assigned quickly to only one branch near to the root of the
kd-tree.

The time computational cost in the worst case scenario is the same as K-means, as in this case all
the prototypes will be assigned to all branches, so all distance computations will be performed. The
more favorable case will be when the clusters are well separated and the number of levels in the kd-tree
is logarithmic respect to the dataset size (n), this cost will depend also on the volume enclosed in the



5 Algorithms 17

Fig. 7: Quantized K-means

leaves of the kd-tree and the number of dimensions (d). The computational cost for each iteration is
bound by log(2dk log(n)).

The major problem of this algorithm is that as the dimensionality increases, the benefit of the
kd-tree structure degrades to a lineal search. This is a direct effect of the curse of the dimensionality
and the experiments show that for a number of dimensions larger than 20 there are no time savings.

5.11 Quantized K-means
The proposal in [25] relies on an approximation strategy combined with a summarization strategy. The
idea is to approximate the space of the examples by assigning the data to a multidimensional histogram.
The bins of the histograms can be seen as summaries. This reduces the distance computations by
considering all the examples inside a bin of the histogram as a unique point.

The quantization of the space of attributes is obtained by fixing the number of bins for each
dimension to ρ = blogm(n)c, being m the number of dimensions and n the number of examples. The
size of a bin is λl = pl−pl

ρ , being pl and pl the maximum and minimum value of the dimension l. All
examples are assigned to a unique bin depending on the values of their attributes.

From this bins, a set of initial prototypes are computed for initializing a variation of the K-means
algorithm. The computation of the initial prototypes uses the assumption that the bins with a higher
count of examples are probably in the areas of more density of the space of examples. A max-heap
is used to obtain these highly dense bins. Iteratively, the bin with the larger count is extracted from
the max-heap and all the bins that are neighbors of this bin are considered. If the count of the bin is
larger than its neighbors, it is included in the list of prototypes. All neighbor cells are marked, so they
are not used as prototypes. This procedure is repeated until k initial bins are selected. The centroids
of these bins are used as initial prototypes.

For the cluster assignment procedure two distance functions are considered involving the distance
from a prototype to a bin. The minimum distance from a prototype to a bin is computed as the distance
to the nearest corner of the bin. The maximum distance from a prototype to a bin is computed as
the distance to the farthest corner of the bin. In figure 7, the quantization of the dataset and these
distances are represented.

Each iteration of the algorithm first computes the maximum distance from each bin to the pro-
totypes and then it keeps the minimum of these distances as d(bi, s∗). Then, for each prototype the
minimum distance to all the bins is computed and the prototypes that are at a distance less than
d(bi, s∗) are assigned to the bins.

If only one prototype is assigned to a bin, then all its examples are assigned to the prototype without
more distance computations. If there is more than one prototype assigned, the distance among the
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examples and the prototypes are computed and the examples are assigned to the nearest one. After
the assignment of the examples to prototypes, the prototypes are recomputed as the centroid of all
the examples.

Further computational improvement can be obtained by calculating the actual bounds of the bins,
using the maximum and minimum values of the attributes of the examples inside a bin. This allows
to obtain a more precise maximum and minimum distances from prototypes to bins, reducing the
number of prototypes that are assigned to a bin.

It is difficult to calculate the actual complexity of the algorithm because it depends on the quanti-
zation of the dataset and how separated the clusters are. The initialization step that assigns examples
to bins is O(n). The maximum number of bins is bounded by the number of examples n, so at each
iteration in the worst case scenario O(kn) computations have to be performed. In the case that the
data presents well separated clusters, a large number of bins will be empty, reducing the actual number
of computations.

6 Conclusion

The scalability of clustering algorithms is a recent issue arisen by the need to solve unsupervised
learning tasks in data mining applications. The commonly used clustering algorithms can not scale to
the increased size of the datasets due to their time or space complexity. This problem opens the field
for different strategies to adapt the commonly used clustering algorithms to the current needs.

This paper presents a perspective on different strategies used to scale clustering algorithm. The
approaches range from the general divide and conquer scheme to more algorithm specific strategies.
These strategies are used frequently in combination to obtain the different advantages that they
provide. For instance, two stage clustering algorithms that apply a summarization strategy as a first
stage combined with a one pass strategy.

Some algorithms implementing successfully different combinations of the presented strategies have
been described in some detail, including their computational time complexity. The algorithms cover
all the range of clustering paradigms including hierarchical, model based, density based and grid based
algorithms.

All the discussed solutions show an evident improvement for clustering scalability. But little has
been discussed about how to adjust the different parameters of these algorithms. In an scenario of very
large datasets this is a challenge, and the usual trial and error does not seem an efficient approach.
Further research into these methods should address this problem.
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