
Towards the Implementation of a Preference- and
Uncertain-Aware Solver Using Answer Set Programming

Roberto Confalonieri, Juan Carlos Nieves, Javier Vázquez-Salceda

Technical Report LSI-10-16-R

June 2010





Dept. Llenguatges i Sistemes Informàtics (LSI)
Universitat Politècnica de Catalunya

Towards the Implementation of a Preference- and
Uncertain-Aware Solver Using Answer Set Programming

Roberto Confalonieri, Juan Carlos Nieves, Javier Vázquez-Salceda

Dept. Llenguatges i Sistemes Informàtics (LSI)
Universitat Politècnica de Catalunya

C/ Jordi Girona Salgado 1-3

E - 08034 Barcelona

{confalonieri,jcnieves,jvazquez}@lsi.upc.edu

Technical Report LSI-10-16-R

June 2010





Abstract
Logic programs with possibilistic ordered disjunction (or LPPODs) are a recently defined logic-programming
framework based on logic programs with ordered disjunction and possibilistic logic. The framework inherits the
properties of such formalisms and merging them, it supports a reasoning which is nonmonotonic, preference- and
uncertain-aware. The LPPODs syntax allows to specify 1) preferences in a qualitative way, and 2) necessity values
about the certainty of program clauses. As a result at semantic level, preferences and necessity values can be used
to specify an order among program solutions. This class of program therefore fits well in the representation
of decision problems where a best option has to be chosen taking into account both preferences and necessity
measures about information. In this technical report we study the computation and the complexity of the LPPODs
semantics and we describe the algorithm for its implementation following on Answer Set Programming approach.
We describe some decision scenarios where the solver can be used to choose the best solutions by checking
whether an outcome is possibilistically preferred over another considering preferences and uncertainty at the same
time.



1 Introduction
Logic programs based on answer set semantics [14] are usually considered expressive enough to address many
knowledge representation problems in Artificial Intelligence. In fact they have been regarded as the computational
incarnation of nonmonotonic reasoning. Answer set programming (ASP) is a form of declarative programming
towards complex combinatorial problems which has been applied in multiple areas such as product configuration
[18], planning [15] and diagnosis [1]. Its expressivity allows reasoning about incomplete information, but at the
same time their syntax is restrictive enough to allow the implementation of several efficient answer set solvers
such as dlv [12] and smodels [17]. However, with the increasing complexity of many type of qualitative decision
making contexts, answer set programs lack the capability to express preferences [3]. For this reason several ASP
extensions have been proposed to model preferences [9], showing how ASP can constitute an effective way of
solving indeterminate solutions, reasoning in terms of preferred answer sets of a logic program. One of these
extensions, which has its root in qualitative choice logic [4] is logic programs with ordered disjunction [5].

Logic programs with ordered disjunction (or LPODs) are extended logic programs augmented with an or-
dered disjunction connector × which permits to explicitly represent qualitative preferences in the head of ordered
disjunction rules [5]. Programs of this form can capture user qualitative preferences by means of ordered dis-
junction rules, represent choices among different alternatives and specify a preference order between the answer
sets through predefined comparison criteria. LPODs have been used in applications such as policy languages [2],
game theory [13] and user preference representation and reasoning [5]. The semantics of LPODs is implemented
by an efficient solver psmodels [5].

Although LPODs have shown to be an effective way to model preferences and to specify an order between their
outcomes, a priority order between the program clauses can only be specified by defining static meta-preference
relations between its preference rules. But in some realistic scenarios, where a knowledge discovery process may
retrieve uncertain information, it is desiderable to be able to capture and reason about uncertain knowledge to
define a priority order between preference rules in a dynamic way.

Logic programs with possibilistic ordered disjunction (or LPPODs) are a recently defined logic programming
framework based on logic programs with ordered disjunction and possibilistic logic [7] which join together in
only one formalism common-sense reasoning with qualitative preferences and reasoning under uncertainty. The
LPPODs syntax allows to specify qualitative preferences and to associate a priority order to ordered disjunctions
rules by means of necessity values according to possibilistic logic [11]. As a result at semantic level, preferences
and necessity values can be used to specify an order among program solutions. This class of programs fits well in
the representation of decision problems where a best option has to be chosen taking into account both preferences
and necessity measures about information. In [7] the semantics for this class of programs has been defined but
neither an algorithm nor a complexity study have been presented.

In this technical report we will study the computation and the complexity of LPPODs and we describe the
algorithm for its implementation. The algorithm considers the answer set semantics and the possibilistic stable
semantics [16] as building block and describes how LPPODs semantics can be computed using a possibilistic
program reduction and a possibilistic consequence operator which are a syntactic approach to compute the pos-
sibilistic answer set semantics of LPPODs. The LPPODs implementation will be able to compute the candidate
possibilistic answer sets and to check whether a given candidate is possibilistically preferred over another consid-
ering rules’ satisfaction degrees and rules’ necessity values at the same time. We present two possible applications
where the solver can be used and we compare the LPPODs representation with others such as possibilistic normal
logic programs and LPODs.

The technical report is organized as follows. After giving some background information of the basic concepts
involved (Section 2), we discuss in Section 3 the computation and the complexity of the LPPODs semantics. Our
main results in this section is that the LPPODs semantics is computable and we present the algorithm. In Section
4 we discuss two application scenarios and we show how the LPPOD implementation can be used to decide the
best options given the preferences and the necessity values associated to the program clauses. Finally with Section
5 we conclude the technical report.

2 Background
In this section we present the basic definitions we will use throughout the technical report. We assume that the
reader has familiarity with basic concepts of answer set semantics [14], possibilistic stable model semantics [16],

1



and possibilistic logic [11].1

2.1 Logic Programs with Possibilistic Ordered Disjunction
We consider extended logic programs which have two kinds of negation, strong negation ¬ and default negation
not. A signature L is a finite set of elements that we call atoms, where atoms negated by ¬ are called extended
atoms. Intuitively, not a is true whenever there is no reason to believe a, whereas ¬a requires a proof of the
negated atom. In the following we use the concept of atom without paying attention if it is an extended atom or
not. A literal is either an atom a called positive literal, or the negation of an atom not a called negative literal.
Given a set of atoms {a1, ..., an}, we write not {a1, ..., an} to denote the set of atoms {not a1, ..., not an}.

Logic programs with possibilistic ordered disjunction (LPPODs) are a recently defined logic-programming
framework based on logic programs with ordered disjunction (LPODs) and possibilistic logic [7]. LPODs are
extended logic programs with an ordered disjunction connector × which allows to express qualitative preferences
in the head of rules [5] and necessity values to the program clause themselves can be specified according to
possibilistic logic [11]. Given a finite lattice (Q,≤), an LPPOD is a tuple of the form P := 〈(Q,≤), N〉 where
N is a finite set of possibilistic ordered disjunction rules such as:

α : c1 × . . .× ck ← b1, . . . , bm, not bm+1, . . . , not bm+n

where α ∈ Q and ci(1 ≤ i ≤ k), bj(1 ≤ i ≤ m+n) are atoms. c1×. . .×ck ← b1, . . . , bm, not bm+1, . . . , not bm+n

is an ordered disjunction rule as defined in [5]. Please observe that an ordered disjunction rule uses the operator
× which means that if possible c1, but if c1 is not possible then c2 and so on. When k = 1, the given clause is
called a possibilistic normal rule. A possibilistic normal program is a finite set of possibilistic normal rules. When
k = 1 and n = 0, the given clause is called possibilistic definite rule. A possibilistic definite program is a finite
set of possibilistic definite rules. Let ProgL−(Q,≤) be the set of all LPPODs with atoms from the signature L and
their possibilistic ordered disjunction rules evaluated in terms of the lattice (Q,≤).

In a slight abuse of notation we will denote a possibilistic ordered disjunction rule r by α : c1 × . . . × ck ←
B+, not B− and sometimes by C× ← B+, not B− where C× = {c1, . . . , ck}, B+ = {b1, . . . , bm} and B− =
{bm+1, . . . , bm+n}. n(r) = α is a necessity degree representing the certainty level of the information described
by r. According to possibilistic logic, n(r) represents the least certainty value of the knowledge represented by r.
The projection ∗ for any possibilistic atom p is defined as p∗ = a.

A possibilistic atom is a pair p = (a, q) ∈ A×Q where A is a set of atoms and (Q,≤) a finite lattice. Given a
set of possibilistic atoms M , the projection of ∗ over M is defined as M∗ = {p∗ | p ∈ M}. The projection ∗ for
a possibilistic ordered disjunction rule r, is r∗ = c1 × . . .× ck ← B+, not B− and the projection of ∗ over P is
defined as P ∗ := {r∗ | r ∈ N}. Notice that P ∗ is an LPOD.

Following the construction of the LPODs semantics [5], the semantics of LPPODs is defined by the following
syntactic reductions [7]:

Definition 1 [7] Let r = α : c1 × . . .× ck ← B+, not B− be a possibilistic ordered disjunction rule and M be
a set of atoms. The ×-possibilistic reduct rM

× is defined by

rM
× := {α : ci ← B+|ci ∈M and M ∩ ({c1, . . . , ci−1} ∪ B−) = ∅}

Definition 2 [7] Let P = 〈(Q,≤), N〉 be an LPPOD and M be a set of atoms. The ×-possibilistic reduct PM
× is

defined by
PM
× =

⋃
r∈N

rM
×

Please notice that the ×-possibilistic reduct reduces an LPPOD to a possibilistic definite logic program. This
is an important reduction since the semantics of LPPODs can be computed using the possibilistic consequence
operator ΠTP which maps a set of possibilistic atom to another one until the fix-point ΠCn is found (from
possibilistic stable model semantics). Due to lack of space, the complete definition of ΠTP is omitted and we
cross-refer its definition to [7, 16].

Keeping in mind the syntactic reduction×-possibilistic reduct and the fix-point ΠCn, the possibilistic seman-
tics which captures LPPODs is defined as follows:

1A comprehensive description of these concepts can also be found in [7, 8].

2



Definition 3 [7] Let P = 〈(Q,≤), N〉 be an LPPOD, M be a set of possibilistic atoms such that M∗ is an
answer set of P ∗. M is a possibilistic answer set of P if and only if M = ΠCn(PM∗

× ). SEMLPPOD(P ) is the
mapping which assigns to P the set of all possibilistic answer sets of P and the LPPODs semantics is denoted by
SEMLPPOD.

Once the possibilistic answer sets of an LPPOD have been identified, it is possible to associate a satisfaction
degree to each possibilistic answer answer set w.r.t. to each possibilistic ordered disjunction rule.

Definition 4 Let M be a possibilistic answer set of an LPPOD P . Then M satisfies the rule r = α : c1 × . . . ×
ck ← b1, . . . , bm, not bm+1 . . . , not bm+n

• to degree 1 if bj 6∈M for some j (1 ≤ j ≤ m), or bi ∈M for some i (m + 1 ≤ i ≤ m + n),

• to degree j (1 ≤ j ≤ k) if all bl ∈M (1 ≤ l ≤ m), bi 6∈M (m + 1 ≤ i ≤ m + n), and j = min{r | cr ∈
M, 1 ≤ r ≤ k}.

By considering this satisfaction degree and necessity values of program clauses, the authors in [7] introduce a
possibilistic preference relation for comparing possibilistic answer sets. Such preference relation is defined in the
next section.

2.2 Transformation Rules for LPPODs and Possibilistic Preference Relation
In order to define a concrete criterion for selecting possibilistic answer set of an LPPOD, the authors in [7] define
a set of basic rewriting rules. These rewriting rules are a generalization of the rewriting rules introduced by Dix et
al. in [10].

Definition 5 [7] Let P and P ′ be LPPODs. The following possibilistic transformation rules are defined:

Possibilistic Contra: P ′ results from P by possibilistic elimination of contradictions (P →PC P ′) if P contains
a rule r = α : C× ← B+, not B− which has an atom b such that b ∈ B+ and b ∈ B−, and P ′ = P\{r}

Possibilistic Positive Reduction: P ′ results from P by possibilistic positive reduction PRED+ (P →PRED+

P ′), if there is a rule r = α : C× ← B+, not (B− ∪ {b}) in P and such that b /∈ HEAD(P ), and
P ′ = (P\{r}) ∪ {α : C× ← B+, not B−}

Possibilistic Negative Reduction: P ′ results from P by possibilistic negative reduction PRED− (P →PRED−

P ′), if P contains the rules r = α : a← >, and r′ = β : C× ← B+, not (B− ∪ {a}), and P ′ = (P\{r′})

Possibilistic Success: P ′ results from P by possibilistic success (P →PS P ′), if P contains a fact α : a ← >
and a rule r = β : C× ← B+, not B− such that a ∈ B+, and P ′ = (P\{r}) ∪ {GLB{α, β} : C× ←
(B+\{a}), not B−}

Possibilistic Failure: P ′ results from P by possibilistic failure (P →PF P ′), if P contains a rule r = α : C× ←
B+, not B− such that a ∈ B+ and a /∈ HEAD(P ), and P ′ = (P\{r}).

Let CSLPPOD be the rewriting system based on the possibilistic rewriting rules introduced in Definition 5. In
[7] it has been shown how these transformations are closed under the LPPODs semantics and that the rewriting
system CSLPPOD guarantees that the normal form of an LPPOD P (normCSLP P OD

(P )) can always be reached
and it is always unique. In this way the following preference relation between possibilistic answer sets which
considers rules’ satisfaction degrees and rules’ necessity values at the same time is semantically consistent w.r.t.
the LPPODs semantics.

Definition 6 [7] Let P be an LPPOD, M1 and M2 be possibilistic answer sets of P , normCSLP P OD
(P ) be the

normal form of P w.r.t. the rewriting system CSLPPOD. M1 is possibilistic preferred to M2 (M1 >pp M2) iff ∃
r ∈ normCSLP P OD

(P ) such that degM1(r) < degM2(r), and @r′ ∈ normCSLP P OD
(P ) such that degM1(r

′) >
degM2(r

′), and n(r) < n(r′).

3



Stable Semantics

Possibilistic Stable 
Model Semantics

LPOD Semantics

LPPOD Semantics

Possibilistic Logic 

Figure 1: Possibilistic Semantics for LPPODs

3 Computing the LPPODs Semantics
In [7] the semantics for this class of programs has been defined but neither an algorithm nor a complexity study
have been discussed and presented and such topics are covered in this technical report. Before doing this, it is
necessary to recall an important result obtained when the LPPODs semantics has been defined.

Proposition 1 [7] Let P = 〈(Q,≤), N〉 be an LPPOD and M be a possibilistic answer set of P , then M∗ is an
answer set of P ∗.

The proposition defines a close relation between the LPPODs semantics and the semantics of its LPODs
classical part. The possibilistic answer sets of an LPPOD can in fact be computed by means of the LPODs
semantics [5] and the possibilistic stable model semantics [16]. This relationship is shown in Figure 1.

Such result leads to the following theorems which show how the decision problem of existence of a possibilistic
answer set of an LPPOD is computable and how it remains in the same complexity class as the decision problem
of the existence of an answer set of an LPOD.

Theorem 1 The LPPOD semantics is computable.

From computational theory it is well known that a function is computable if it exists an algorithm that can
calculate the function’s result in a finite number of steps. As the LPPOD semantics maps any LPPOD to the set
of its possibilistic answer sets, it can be represented as the function

SEMLPPOD : ProgL−(Q,≤) → 2A×Q

Hence, to prove Theorem 1 it is sufficient to find an algorithm that can compute the possibilistic answer sets given
an LPPOD P . The algorithm exists and it is described below.

Algorithm 1 SEMLPPOD

Input: An LPPOD P
Output: Partially Ordered Set of Possibilistic Answer Sets

PLPOD ← P ∗

M← SEMLPOD(PLPOD)
whileM 6= ∅ do

M ← pop(M)
PM ← ΠCn(PM

× )
push(PM, PM)

end while
PM← sortPossibilisticModels(PM, P )
return PM

4



According to the LPPODs semantics definition (Definition 3) a possibilistic set of atoms cannot be a possi-
bilistic answer set of an LPPOD P , if its projection ∗ is not an answer set of the LPOD PLPOD. Therefore as a
first step, the projection ∗ is applied to an LPPOD to obtain the corresponding LPOD. In this way it is possible
to use the LPODs semantics (denoted by SEMLPOD) to compute the set of answer sets (M) of PLPOD [5]. As
next step, for each answer set M ∈ M, the possibilistic consequence operator ΠTP M

×
is applied to compute the

corresponding possibilistic answer set PM of P (given by Cn(PM
× )). The algorithm always terminates as the

consequence operator is monotonic and it always reaches a fix-point (Proposition 8 in [16]).
Another important result that can be obtained is that the complexity of SEMLPPOD remains in the same

complexity class of its classical part as stated by the following theorem.

Theorem 2 The problem of deciding whether an LPPOD has a possibilistic answer set is NP−complete.

As previously said, the computation of SEMLPPOD is based on the LPODs semantics and on the possibilistic
stable models semantics. Thus the SEMLPPOD complexity is related to the complexity of these two semantics.
It is known from Theorem 1 in [5] that the complexity of the LPODs semantics is NP−complete. As by the ×-
possibilistic reduction (Definition 2) we reduce the problem of computing possibilistic answer sets of an LPPOD
to the class of possibilistic definite logic programs by means of Cn(PM∗

× ) and by Proposition 9 in [16] we know
that this can be done polynomially from the moment an answer set M∗ is provided, the complexity of the LPPOD
semantics is not significantly harder than the computation of the answer sets for LPODs. Therefore the complexity
for SEMLPPOD is NP−complete.

The theorems presented in this section are an important result as they permit to define a straightforward
methodology for the LPPODs semantics implementation. We aim to implement the solver in the next future.
In the next section we present two possible application areas which show the main features of our approach.

4 Possible Applications
LPPODs are class of logic programs which fit well in the representation of decision problems where a best option
has to be chosen taking into account both preference and necessity measures about knowledge. In this section we
will present the applicability of LPPODs in two different simple scenarios and how they relate to other ASP-based
knowledge representation formalisms such as possibilistic normal logic programs and LPODs.

4.1 Drug Treatment Decision
The first scenario considers the decision problem of a doctor who has to choose between two incompatible drugs
when treating one of her patient (taken from [16]).

Example 1 A patient suffering from two diseases (di1, di2) needs a medical treatment. Each disease can be cured
by one drug but the two drugs (dr1, dr2) are incompatible. If the patient is given drug dg1 then she is healed c1,
while if she receives dg2 she will be healed c2.

It would be interesting for the doctor to be able to evaluate what choice to do between these two treatments
which are incompatible. In the following we will see how the scenario can be encoded in three different way,
possibilistic normal logic programs, LPODs, and LPPODs respectively and we show how LPPODs can effectively
help the doctor in making a decision.

In [16] the authors address this problem by means of possibilistic normal logic programs where necessity
degrees associated to rules can be be taken into account to determine the level of certainty of each conclusion
allowing the doctor to compare them. The representation according to possibilistic normal programs is [16]:

Example 2 Let us consider a possibilistic normal logic program P modeling the scenario in Example 1.
r1 = 1 : dr1← di1, not dr2. r4 = 0.3 : c2← dr2, di2.
r2 = 1 : dr2← di2, not dr1. r5 = 0.9 : di1.
r3 = 0.7 : c1← dr1, di1. r6 = 0.7 : di2.

It can be proved that the possibilistic normal logic program P has two possibilistic models {(di1, 0.9), (di2, 0.7),
(dr1, 0.9), (c1, 0.7)} and {(di1, 0.9), (di2, 0.7), (dr2, 0.7), (c2, 0.3)}. According to Nicolas et al. the doctor
should be able to decide which drug to give to the patient based on the necessity values associated to each atoms of

5



the possibilistic models (dr1 has a major necessity values than dr2, and also its efficiency looks more prominent).
But still the doctor is supposed to interpret these results.

An alternative way of representing incompatibility between decisions is by means of qualitative preferences
expressed in LPODs’ rules. For instance, the doctor decision problem can be captured in LPODs in the following
way:

Example 3 Let us consider an LPOD P ′ modeling the scenario in Example 1.
r1 = dr1× dr2← di1. r4 = c2← dr2, di2.
r2 = dr2× dr1← di2 r5 = di1.
r3 = c1← dr1, di1. r6 = di2.

The LPOD representation leads to two answer sets {di1, di2, dr1, c1} and {di1, di2, dr2, c2} which happen not
to be comparable using any of the preference relations defined in [5]. However, if we consider the LPOD program
in Example 3 and associate to each of its program clause the necessity degrees of the possibilistic program in
Example 2, we obtain:

Example 4 Let us consider an LPPOD P ′′ modeling the scenario in Example 1.
r1 = 1 : dr1× dr2← di1. r4 = 0.3 : c2← dr2, di2.
r2 = 1 : dr2× dr1← di2. r5 = 0.9 : di1.
r3 = 0.7 : c1← dr1, di1. r6 = 0.7 : di2.

As expected the LPPOD program has two possibilistic answer sets, M1 = {(di1, 0.9), (di2, 0.7), (dr1, 0.9), (c1, 0.7)}
and M2 = {(di1, 0.9), (di2, 0.7), (dr2, 0.7), (c2, 0.3)}, which correspond to the possibilistic answer sets of the
possibilistic normal logic program P . Moreover we can observe that M∗

1 and M∗
2 are answer sets of the LPOD

program P ′ (which is consistent w.r.t. Proposition 1). Let us consider the rewriting system CSLPPOD defined
in Section 2.2. It can be noticed that by applying the Possibilistic Success transformation rule we are able to
propagates the necessity values of the information about di1 and di2 to the possibilistic disjunction rules r1, and
r2. In this way we obtain the normal form of P ′′ represented by:

Example 5 Let P ′′
1 be the LPPOD obtained by P ′′ →PS P ′′

1 .
r1 = 0.9 : dr1× dr2. r4 = 0.3 : c2← dr2, di2.
r2 = 0.7 : dr2× dr1. r5 = 0.9 : di1.
r3 = 0.7 : c1← dr1, di1. r6 = 0.7 : di2.

The normal form P ′′
1 allows to apply the possibilistic preference relation to check whether there is a possibilistic

answer set which is the most preferred. Considering rules’ satisfaction degrees (degM1(r1) = 1, degM1(r2) = 2
and degM2(r1) = 2, degM2(r2) = 1) and rules r1 and r2 necessity values (n(r1) = 0.9, n(r2) = 0.7), it is not
difficult to see that M1 <pp M2 as n(r1) > n(r2) (M2 ≮pp M1 follows by Definition 6 as well).

4.2 User Recommendation With Uncertain Information
The second scenario aims to illustrate how the LPPODs solver can be used to implement the reasoning of a
simple recommendation agents which takes into account users preferences and certainty about the information
discovered in a simple knowledge discovery scenario (Figure 2). The system can be seen as a very simplified
version of the system architecture described in [6] whose aim is to provide personalized Semantic web-oriented
ubiquitous services to citizens and tourist. The system consists essentially of three types of agents: a personal
assistant agent collecting and representing user preferences in behalf of the user; a broker agent processing user
preference to suggest the best recommendation, and a crawler agent which retrieves information from an uncertain
database. In the following we will see how the scenario can be encoded using LPODs first and then LPPODs.

Let us imagine we want to model the following user recommendation scenario:

Example 6 A tourist visiting Barcelona is interested in getting some recommendations about restaurants in the
city. She normally prefers Mexican to Italian food if she does not have any information about Mexican and Italian
restaurants. Otherwise she may prefer to go to either a Mexican or Italian restaurant.

A natural way to represent user preferences is by means of this LPOD.

6



Uncertain dataPAA

PERSONAL ASSISTANT 
AGENT

BROKER AGENT CRAWLER AGENT

user preferences

recommendation list

recommendation gathering

preferences 
elicitation

possibilistic 
reasoning

PAA

recommendation list
B

B C

C

Figure 2: Knowledge Discovery Scenario for User Recommendation

Example 7 Let us consider an LPOD P modeling the scenario in Example 6.
r1 : mex× ita← not info(ita), not info(mex).
r2 : ita×mex← info(ita).
r3 : mex× ita← info(mex).
r4 :← mex, ita.

It can be proved that the LPOD P has two answer sets M1 = {mex} and M2 = {ita}, representing the possible
choices of the user, and according to the comparison criteria defined in [5] M1 is preferred to M2 as expected.
However, let us imagine that new information about the restaurants is discovered by the crawler agent. Then the
LPOD in Example 7 with the added knowledge the broker agent has to consider is:

Example 8 Let us consider the LPOD P ′ in Example 7 with new knowledge about restaurant added.
r1 : mex× ita← not info(ita), not info(mex).
r2 : ita×mex← info(ita).
r3 : mex× ita← info(mex).
r4 :← mex, ita.
r5 : info(ita).
r6 : info(mex).

The LPOD P ′ still has two answer sets {mex, info(mex), info(ita)} and {ita, info(mex), info(ita)} but now
they are not comparable anymore as the satisfaction degrees prevent from achieving an order. In such a situation,
a mechanism that can express the priority between the preference rules of the LPOD is important. The authors
in [5] actually propose to introduce meta-preferences by defining a relation � on rules to define the preference
rules’ priority. However, this approach assumes to have a prior knowledge about which rules are more important
for the user. A natural question is whether it would be possible to discover the priority of the rules at run-time
considering the certainty about the new knowledge.

Hence, if we consider the LPOD program in Example 8 and associate to each of its program clauses necessity
degrees as the certainty about the information retrieved by a knowledge discovery process it is possible to induce
an order between the rule of the program. Let us imagine that the crawler agent retrieves some information about
Italian and Mexican restaurants.

Example 9 Let us consider an LPPOD P ′′ extending P ′ with necessity values about the discovered knowledge.
r1 = 1 : mex× ita← not info(ita), not info(mex).
r2 = 1 : ita×mex← info(ita).
r3 = 1 : mex× ita← info(mex).
r4 = 1 : ← mex, ita.
r5 = 0.8 : info(ita).
r6 = 0.5 : info(mex).

As expected the LPPOD program P ′′ has two possibilistic answer sets, M1 = {(mex, 0.8), (info(mex), 0.5),
(info(ita), 0.8)} and M2 = {(ita, 0.8), (info(mex), 0.5), (info(ita), 0.8)}. If we consider the rewriting sys-

7



tem CSLPPOD and transformation rules→PRED− and→PS are applied, the normal form of P ′′ can be obtained
where the necessity values are propagated to the preference rules:

Example 10 Let P ′′
2 be the LPPOD obtained by P ′′ →PRED− P ′′

1 →PS P ′′
2

r2 = 0.8 : ita×mex. r5 = 0.8 : info(ita).
r3 = 0.5 : mex× ita. r6 = 0.5 : info(mex).
r4 = 1 : ← mex, ita.

The normal form P ′′
2 allows to use the possibilistic preference relation and considering rules’ satisfaction degrees

(degM1(r2) = 2, degM1(r3) = 1 and degM2(r2) = 1, degM2(r3) = 2) and rules r2 and r3 necessity values
(n(r2) = 0.8, n(r3) = 0.5), it is not difficult to see that M2 <pp M1 as n(r2) > n(r3) (M1 ≮pp M2 follows by
Definition 6 as well).

5 Conclusions
In this report we have demonstrated that the LPPODs semantics is computable and we the algorithm for its im-
plementation following an ASP approach. We have demonstrated how the complexity of the LPPODs semantics
belongs to the same complexity class of its classical part, i.e. LPODs. This is an important result as it shows
that LPPODs yield a more expressive framework without preventing the semantics to become no computable.
We have presented two decision making scenarios in which the solver can be effectively used to choose the best
available option taking into account both preferences and priorities about preference rules encoded as necessity
values according to possibilistic logic. To the best of our knowledge, no other approaches able to reason about
preferences and uncertainty have been proposed yet.

References
[1] M. Balduccini and M. Gelfond. Diagnostic reasoning with A-Prolog. Theory Practice of Logic Program-

ming, 3(4):425–461, 2003.

[2] E. Bertino, A. Mileo, and A. Provetti. PDL with Preferences. In Proc. of the Sixth IEEE Int. Workshop on
Policies for Distributed Systems and Networks, pages 213–222. IEEE Computer Society, 2005.

[3] G. Brewka. Answer Sets and Qualitative Decision Making. In In Synthese, volume 146, pages 171–181,
2005.

[4] G. Brewka, S. Benferhat, and D. Le Berre. Qualitative choice logic. Artificial Intelligence, 157(1-2):203–
237, 2004.

[5] G. Brewka, I. Niemelä, and T. Syrjänen. Logic programs with ordered disjunction. Computational Intelli-
gence, 20(2):333–357, 2004.

[6] L. Ceccaroni, V. Codina, M. Palau, and M. Pous. PaTac: Urban, Ubiquitous, Personalized Services for
Citizens and Tourists. In ICDS, pages 7–12, 2009.

[7] R. Confalonieri, J. C. Nieves, M. Osorio, and J. Vázquez-Salceda. Possibilistic Semantics for Logic Pro-
grams with Ordered Disjunction. Foundations of Information and Knowledge Systems, 5956:133–152, Feb
2010.

[8] R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda. Logic Programs with Possibilistic Ordered Disjunc-
tion. Research Report LSI-09-19-R, Universitat Politècnica de Catalunya - LSI, 2009.

[9] J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A Classification and Survey of Preference Handling
Approaches in Nonmonotonic Reasoning. Computational Intelligence, 20(2):308–334, 2004.

[10] J. Dix, M. Osorio, and C. Zepeda. A General Theory of Confluent Rewriting Systems for Logic Programming
and its Applications. Annals of Pure and Applied Logic, 108(1–3):153–188, 2001.

[11] D. Dubois, J. Lang, and H. Prade. Possibilistic logic. Handbook of Logic in AI and Logic Programming,
3:439–513, 1994.

8



[12] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, T. Wien, and F. Scarcello. The KR System dlv: Progress Report,
Comparisons and Benchmarks. In L. S. A.G. Cohn and S. Shapiro, editors, Proc. of 6th Int. Conf. on
Principles of Knowledge Representation and Reasoning, pages 406–417. Morgan Kaufmann, 1998.

[13] N. Y. Foo, T. Meyer, and G. Brewka. LPOD Answer Sets and Nash Equilibria. In M. J. Maher, editor,
Advances in Computer Science, volume 3321 of LNCS, pages 343–351. Springer, 2004.

[14] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New Gener-
ation Computing, 9(3/4):365–386, 1991.

[15] V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138(1-2):39 – 54, 2002.

[16] P. Nicolas, L. Garcia, I. Stéphan, and C. Lafèvre. Possibilistic uncertainty handling for answer set program-
ming. Annals of Mathematics and Artificial Intelligence, 47:139–181, Nov 2006.

[17] I. Niemelä and P. Simons. Smodels - An Implementation of the Stable Model and Well-Founded Semantics
for Normal LP. In Proc. of the 4th Int. Conf. on LPNMR, LNCS, pages 421–430, 1997.

[18] T. Soininen and I. Niemelä. Developing a Declarative Rule Language for Applications in Product Config-
uration. In Proc. of the 1st Int. Workshop on Practical Aspects of Declarative Languages, volume 1551 of
LNCS, pages 305–319, London, UK, 1998. Springer-Verlag.

9


