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Abstract

An important consideration when applying neural netwogkghie sen-
sitivity to weights and threshold in strict separating eys$ representing a
linearly separable function. Two parameters have beenduotred to mea-
sure the relative errors in weights and threshold of stepasating systems:
the tolerance and the greatest tolerance. Given an agbsieparating system
we study which is the equivalent separating system thatigegvmaximum
tolerance or/and maximum greatest tolerance.

Keywords: Neural nets, circuit-switching networks, deterministieastruc-
tural pattern recognition.

1 Introduction

Research in threshold logic synthesis became an area df igteeest and was
done mostly in the 1950s and 1960s. Approximation methoelssed in (Winder,
1962), (Dertouzos, 1965) and (Hu, 1965) to determine thetiweights and thresh-
old of a threshold function. Linear programming and tabafatnethods have been
used in (Muroga, 1971) and (Hammer et al., 1981) to deterifiindunction is
threshold or not. However, Parberry (Parberry, 1994) blearotes that “it would
be unreasonable to expect that natural or artificial neuaomsible to realize every
linear threshold function”.

Recent research in Capacitive Threshold Logic (Sang-HoohLee, 1995),
(Ozdemir et al., 1996) and (Beiu et al., 2003) has reviveer@tt in this area, and
it has re—introduced some of the problems that have yet tmlveds One of the
main issues of threshold logic is the application of neuediworks to the problem
of realizing Boolean functions, the linear separabilitplgem has been dealt with,
among others, in (Yao and Ostapko, 1968), (Roychowdhurly,dt394), (Siu et al.,



1995), (Picton, 1991), (Elizondo, 2004) and (Elizondo,@0MNeural networks are
usually designed to have the ability to learn and generalize

A neural network is capable of setting and input—output nrappy adjusting
its threshold and weights. How can network designers préakceffect of thresh-
old and weight perturbations on neural networks’ outputictvlare unavoidable
because of limited precision of digital an analog hardwavéRat is then a tight
bound for weights and threshold to prevent output devi&tidrhich is the sharpest
bound one may consider for weights and threshold to mairkerinearly sepa-
rable function unchangeable? Is there any guideline foigdesy a more robust
and safer neural network? These kind of problems were destydijed in the six-
ties (Hu, 1960), (Elgot, 1961), (Myhill and Kautz, 1961) aidinder, 1962), until
(Hu, 1965) proposed as a solution to the main problem, a nuftdeéned for each
strict separating system) which he called, tilerance Recently (Freixas and Mo-
linero, 2008a) proposed a new bound which improves theanotar,the greatest
tolerance(G-tolerance), and proved that t&tolerance is the greatest bound one
may consider.

In this work we consider two parameters for an arbitrary ditye separable
switching function: the number of variablesand the number of typésof dis-
tinguished variablek. For each paifn,k) we are interested in determining the
maximum achievable value for the tolerance and for@imlerance. Moreover,
we demonstrate that taking strict separating systems wilftipe integer (natural)
weights are enough to our purpose.

2 Preliminaries

Let Q be the sef{0,1}. For any given positive integer, consider the cartesian
power productQ" = Q x --- x Q. Thus, the elements @" are the 2 orderedn-
tuples(xi,...,X,), with variablesx, € {0,1} for all i = 1,...,n. By a switching
functionof n variables, we mean a functidn: Q" — Q from then-cubeQ" into Q.
If fis not surjective then eithdixc Q": f(x) =0} =0or{xeQ": f(x)=1} =0
that is, f is a constant function. The two constant functions are déale two
trivial switching functions. A switching function imonotonicif: (i) f is not
decreasing in each argument; afiid f(0) = 0 and f(1) = 1. The two constant
Boolean functions are usually considered to be monotonichére the restriction
(i) relegates them to be non-monotonic. In a monotonic switctiimction a
variablei is relevantif there exists at leasty € Q", x > ywith f(x) =1, f(y) =0,
X # yi andy; = x; for j #i. Note thatrrelevant(that is, not relevant) variables do
not add any value to the outconfiei.e., ifi is irrelevant therf (x) = f (y) whenever
Xi #Yi andyj = x; for j #1.

A switching functionf : Q" — Q is alinearly separable functioor threshold
function if it admits a system oh+ 1 real numbersT, wq,...,w,, denoted by
[T;wi,...,Wy] such that for each arbitrary poirt= (xi,...,%,) in the n-cubeQ"

1A type is a set of variables which are equivalent among them.



we have

w(x) >T, if f(x)=1,
w(x) < T, if f(x)=0;

beingw(x) = S Wi X.

Then real numberswvy, ..., wy in this system are called theeights and the
first real numberT is referred to as théhreshold By the finiteness ofQ" it is
always possible to modify the threshold in such a way thaptiegious definition
could be rewritten using strict inequalities. In this cabke,system is called strict
separating systerfor the linear separable functioh Thus, from now on we will
just consider strict separating systems.

Note that a switching function has only two possible valties or false. True
or false can also be referred, as we do here, to as 1 or 0 oftshincomputer
programming, on or off as seen with computer hardware dsctiring or rest-
ing used to describe the state of an artificial neuron, fongig state or failing
state as seen with reliability, and voting in favor (“yeat)amainst (“nay”) in bi-
nary decision—making mechanisms. If one draws the grapHiogarly separable
switching function of two variables in a square with the edens ofQ? as vertices,
it takes only one straight line to separate the true outpuis fthe false outputs.
In general, fom variables it is required afn — 1)-hyperplane to separate the true
outputs from the false outputs.

It is important to point out that both, the tolerance and®@iwlerance, we are
going to introduce next, are defined for each strict sepayaystem and, thus they
depend on the threshold and the set of weights chosen torimeplethe linearly
separable switching function.

2.1 The Tolerance

In this part we are going to define the tolerance introduce@Huy 1960). LetA
denote the maximum of the function(x) for all x such thatf (x) = 0,

A= max w(x)
x: f(x)=0

and letB denote the minimum of the functiom(x) for all x such thatf (x) = 1,

B= min w(x).
x: f(x)=1
The two trivial switching functions are linearly separabife f = 0, we set
A= —oo; if f =1, we setB= . Then we havéA < T < B. Let m denote the
smallest of the two positive numbelis— A andB — T. On the other hand, let
M =|T|+ 3L, |wi|. Then, for each point € Q" we have|T|+ S, [wi| % < M.
LetAq,...,Ay andA ben+ 1 arbitrary real numbers and let

W = (1+A)w;, foralli=1,...,n
T=01+NT.



Figure 1: Separating hyperplane for a threshold functidimdd in Q2.

Then, the real numbers, ..., Ay andA represent the relative errors if we use the
numbersw),...,w, andT’ instead of the original non—null numbexs, ..., w, and

T as weights and threshold. In other words, if we initiallyrstath [T;ws, ..., W]
which is transformed intgT’;w;, ..., wj] thenA; = %" for all i = 1,...,n and
N= T'% where it is requiredv; and T to be different from zero. That is to say,

these numbers are thelative errorsin weights and threshold, that is why we use
the term “error” in the title of this paper.

Theorem 2.1 (Hu, 1965)

Let f: Q" — Q be an arbitrary linearly separable switching function of n
variables, let[T;w,...,w,] be a given strict separating systérfor f and let
T[T;wi,...,Wy] == 5 be the tolerance fofT;ws,...,wy]. If [Aj| < T for each
i=1,...,nand if [A| < T then[T’;wj,...,w,] is a strict separating system for
the given linearly separable switching function f.

Hu called this positive number thieleranceof the separating system and denoted
it T[T; W, ..., Wyl

Note that the tolerance is well-defined, in factyg®) = O for any strict sepa-
rating system, it occurs that= 0 and saM # 0.
2.2 The Greatest Tolerance

(Freixas and Molinero, 2008a) improves tHa’s tolerance They find the greatest
positive real numbed such that if

INf<d and |A|<d, foralli=1,...,n

then[T’;wy,...,w,] is equivalent tdT;w,..., W], i.e., both strict separating sys-
tems still represent the same linearly separable switchingtion.

Definition 2.2 (Freixas and Molinero, 2008a)

27[T;ws,...,wy] is denoted byt if there is no confusion about the strict linearly sepagtigs-
tem.



Given a strict separating systefii;ws,...,wy|, for each xe Q" let a(x) =
W(X) —T1, b(x) = [T|+ T [wi|x andx[T;wi, ..., Wn] = Mingegn %. This num-
ber® is called thegreatest tolerancgoriefly, Gtolerancé of [T;wy,...,wy]. Note
that the G-tolerance of the strict separating systd@mw;, ..., w,| depends on the
chosen threshold and weights. Because of the finitenes®, gfiQattained for, at
least one xc Q", let X € Q" be one of the points attaining the G-tolerance.

Theorem 2.3 (Freixas and Molinero, 2008a)

Let f: Q" — Q be an arbitrarily linearly separable switching functiori 0
variables and lefT;ws, ..., wy] be a given strict separating system for fNf| < x
foreach i=1,...,nand if|[A| < X then:

(i) [T";w),...,w,] is a strict separating system for the given linearly sepégab
switching function f.

(ii) xis the greatest upper bound for the constakyis .., An, A.

3 Maximum Tolerance and Maximum G-Tolerance

Let f be an arbitrary monotorfidinearly separable switching function ofvari-
ables, now we are looking for a strict lineatlgeparating systerfT ;wy, ..., Wy
representingf with maximum achievable toleran@d maximum achievable G-
tolerance

We start by relating the tolerance (tftolerance) of an arbitrary strict sep-
arating system with the toleranc&-{olerance) of a strict separating system with
natural weights.

Theorem 3.1

If [T;wi,...,wy] € R x R" is arealstrict separating system, then there exists
an equivalentstrict separatingnaturalsystem, i.e., a system with natural weights
Wi, ..., W, with the same tolerance and the same G-tolerance.

Note that, even though the weights are the same natural rranidie both
systems (the system applied to the tolerance and the sysiphedto theG-
tolerance), the threshold can be a different real numbezdoh system.

An obvious corollary for maximums arises:

Corollary 3.2

If [T;wa,...,wy] € Rx R"is areal strict separating system with maximum
tolerance (maximum G-tolerance), then there exists@unvalentstrict separating
naturalsystem with the same maximum tolerance (maximum G-tokgxanc

3X[T;wa,...,wy] is denoted by if there is no confusion about the strict separating system.
4From now on we will omit the woranonotonic
5From now on we will omits the wortinearly.



Second, we propose a way to get maximum tolerance and max{®taterance.

Theorem 3.3

Maximum toleranceand maximum G-toleranceamong all equivalent strict
separating systems are attained when the weights are rlaturabers and their
sum is the minimum achievable one.

Given a strict separating system with fixed weigfitswi, ..., wy], it is known
(Freixas and Molinero, 2008a) that adjusting the corredprgﬁthreshold,’*%B
for the tolerance ang/AB for the G-tolerance, the system achieves the maximum
tolerance and the maximu@-tolerance, respectively. Thus, given a strict sepa-
rating system of an arbitrary separable switching fungtiwe have a procedure
to compute a strict separating system with maximum tolerawéand maximum
G-tolerance, respectively.

For instance, lef5;8 8,6,3,3] be a strict separating system, thea: ﬁ =
0.0303..; but the equivalent strict separating natural system wétlural weights
having minimum sum and threshold equalﬁ%ﬁ, ie., [%;2, 2,2,1 1], achieves the

1/2

maximum available tolerance = 3758 = 0.0526... In the same vein, the strict

separating systenb;8,8,6,3,3] hasy = %1 = 0.0909.., but the equivalent strict
separating natural system with natural weights havingmmimn sum and threshold
equal tov/AB, i.e., [v/2;22,2,1,1], achieves the maximum availal@tolerance

X = g—j = 0.1715...
Another important new result is how we get the maximum toleeawithn

variables:

Proposition 3.4
The maximum tolerance for n variables is given by the folhgwstrict sepa-
rating (natural) system:

and such tolerance = 5.

Any other strict (natural or not) separating system (of nah weights) with
tolerancet’ fulfills v/ <.

Finally, we extend this result for systems wittvariables and distinguished
types of variables, i.e., with exactkinon-equivalent variables:

Conjecture 3.5
The maximum achievable tolerance for n variables and k tgpdistinguished
variables is obtained by the following strict separableteys

1
k—=;kk—1k-2,...,1.1,...,1]
2 N——
n—k
_ 1
and such a tolerance is= T



Again, any other strict linearly (natural or not) sepamtaystem (of non null
weights) with tolerance’ fulfills v/ < 1.
In the same vein, we establish the corresponding conjeftittiee G-tolerance:

Conjecture 3.6
The maximum G-tolerance for n variables and k types (B of distinguished
variables is given by the following strict separable system

[Vk(k—1);kk—1,k-2,...,1,1,....1].
n—k
k(k—1)—(k—1)
k(k—1)+(k-1)"

In general, given a strict separating system for an arlyisaparable switching
function, we are able to find an equivalent strict separasiygfem (with natural
weights having minimum integer sum) achieving the maximoharance and the
maximumG-tolerance. Moreover, it is known, see (Freixas and Mobn2008b),
that for less than 8 variables all linearly separable switghunctions have, up to
isomorphism, a unique strict separating system with nhtweights having min-
imum sum. So, we only need to adjust the threshél?s—, for the tolerance and
V/AB for the G-tolerance, for these systems to achieve the maximum taierand
the maximumG-tolerance, respectively. Note that for 8 variables thaagibn
changes: There are 154 linearly separable switching fumgtiup to isomorphism,
with two strict separating systems having natural weightsminimum sum.

and such a G-tolerance =

4 Future Work

Generating a huge number of random strict separating naystems and then to
conjecturate what distribution follows the tolerance, thaximum tolerance, the
G-tolerance and the maximug@-tolerance.

It is also interesting to provide tables of all, up to isontagm, linearly sep-
arable switching functions of a reasonable high number pélikes with: a strict
separating system achieving its tolerance; its toleraacsrict separating system
achieving itsG-tolerance; and it&-tolerance.

Although the computational limitation (complexity) of fimg) the tolerance
and theG-tolerance of a given strict separating system (both areéhané), it will
be of interest to develop an efficient algorithm able to dateuthe tolerance and
the greatest tolerance for strict separating systems wigasonable high number
of variables.
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