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Abstract

An important consideration when applying neural networks is the sen-
sitivity to weights and threshold in strict separating systems representing a
linearly separable function. Two parameters have been introduced to mea-
sure the relative errors in weights and threshold of strict separating systems:
the tolerance and the greatest tolerance. Given an arbitrary separating system
we study which is the equivalent separating system that provides maximum
tolerance or/and maximum greatest tolerance.

Keywords: Neural nets, circuit-switching networks, deterministic and struc-
tural pattern recognition.

1 Introduction

Research in threshold logic synthesis became an area of great interest and was
done mostly in the 1950s and 1960s. Approximation methods are used in (Winder,
1962), (Dertouzos, 1965) and (Hu, 1965) to determine the input weights and thresh-
old of a threshold function. Linear programming and tabulation methods have been
used in (Muroga, 1971) and (Hammer et al., 1981) to determineif a function is
threshold or not. However, Parberry (Parberry, 1994) clearly quotes that “it would
be unreasonable to expect that natural or artificial neuronsare able to realize every
linear threshold function”.

Recent research in Capacitive Threshold Logic (Sang-Hoon and Lee, 1995),
(Ozdemir et al., 1996) and (Beiu et al., 2003) has revived interest in this area, and
it has re–introduced some of the problems that have yet to be solved. One of the
main issues of threshold logic is the application of neural networks to the problem
of realizing Boolean functions, the linear separability problem has been dealt with,
among others, in (Yao and Ostapko, 1968), (Roychowdhury et al., 1994), (Siu et al.,
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1995), (Picton, 1991), (Elizondo, 2004) and (Elizondo, 2006). Neural networks are
usually designed to have the ability to learn and generalize.

A neural network is capable of setting and input–output mapping by adjusting
its threshold and weights. How can network designers predict the effect of thresh-
old and weight perturbations on neural networks’ output, which are unavoidable
because of limited precision of digital an analog hardware?What is then a tight
bound for weights and threshold to prevent output deviation? Which is the sharpest
bound one may consider for weights and threshold to maintainthe linearly sepa-
rable function unchangeable? Is there any guideline for designing a more robust
and safer neural network? These kind of problems were deeplystudied in the six-
ties (Hu, 1960), (Elgot, 1961), (Myhill and Kautz, 1961) and(Winder, 1962), until
(Hu, 1965) proposed as a solution to the main problem, a number (defined for each
strict separating system) which he called, thetolerance. Recently (Freixas and Mo-
linero, 2008a) proposed a new bound which improves the tolerance,the greatest
tolerance(G-tolerance), and proved that theG-tolerance is the greatest bound one
may consider.

In this work we consider two parameters for an arbitrary linearly separable
switching function: the number of variablesn and the number of types1 of dis-
tinguished variablesk. For each pair(n,k) we are interested in determining the
maximum achievable value for the tolerance and for theG-tolerance. Moreover,
we demonstrate that taking strict separating systems with positive integer (natural)
weights are enough to our purpose.

2 Preliminaries

Let Q be the set{0,1}. For any given positive integern, consider the cartesian
power productQn = Q× ·· ·×Q. Thus, the elements ofQn are the 2n orderedn-
tuples(x1, . . . ,xn), with variablesxi ∈ {0,1} for all i = 1, . . . ,n. By a switching
functionof n variables, we mean a functionf : Qn → Q from then-cubeQn into Q.
If f is not surjective then either{x∈ Qn : f (x) = 0}= /0 or {x∈ Qn : f (x) = 1}= /0
that is, f is a constant function. The two constant functions are called the two
trivial switching functions. A switching function ismonotonicif: (i) f is not
decreasing in each argument; and(ii) f (0) = 0 and f (1) = 1. The two constant
Boolean functions are usually considered to be monotonic, but here the restriction
(ii) relegates them to be non-monotonic. In a monotonic switching function a
variablei is relevantif there exists at leastx,y∈ Qn, x≥ y with f (x) = 1, f (y) = 0,
xi 6= yi andy j = x j for j 6= i. Note thatirrelevant (that is, not relevant) variables do
not add any value to the outcomef , i.e., if i is irrelevant thenf (x) = f (y) whenever
xi 6= yi andy j = x j for j 6= i.

A switching function f : Qn → Q is a linearly separable functionor threshold
function if it admits a system ofn+ 1 real numbersT, w1, . . . ,wn, denoted by
[T;w1, . . . ,wn] such that for each arbitrary pointx = (x1, . . . ,xn) in the n-cubeQn

1A type is a set of variables which are equivalent among them.
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we have

w(x) ≥ T, if f (x) = 1,

w(x) < T, if f (x) = 0;

beingw(x) = ∑n
i=1 wi xi .

The n real numbersw1, . . . ,wn in this system are called theweights, and the
first real numberT is referred to as thethreshold. By the finiteness ofQn it is
always possible to modify the threshold in such a way that theprevious definition
could be rewritten using strict inequalities. In this case,the system is called astrict
separating systemfor the linear separable functionf . Thus, from now on we will
just consider strict separating systems.

Note that a switching function has only two possible values,true or false. True
or false can also be referred, as we do here, to as 1 or 0 often used in computer
programming, on or off as seen with computer hardware circuits, firing or rest-
ing used to describe the state of an artificial neuron, functioning state or failing
state as seen with reliability, and voting in favor (“yea”) or against (“nay”) in bi-
nary decision–making mechanisms. If one draws the graph of alinearly separable
switching function of two variables in a square with the elements ofQ2 as vertices,
it takes only one straight line to separate the true outputs from the false outputs.
In general, forn variables it is required an(n−1)-hyperplane to separate the true
outputs from the false outputs.

It is important to point out that both, the tolerance and theG-tolerance, we are
going to introduce next, are defined for each strict separating system and, thus they
depend on the threshold and the set of weights chosen to implement the linearly
separable switching function.

2.1 The Tolerance

In this part we are going to define the tolerance introduced by(Hu, 1960). LetA
denote the maximum of the functionw(x) for all x such thatf (x) = 0,

A = max
x: f (x)=0

w(x)

and letB denote the minimum of the functionw(x) for all x such thatf (x) = 1,

B = min
x: f (x)=1

w(x).

The two trivial switching functions are linearly separable; if f ≡ 0, we set
A = −∞; if f ≡ 1, we setB = ∞. Then we haveA < T < B. Let m denote the
smallest of the two positive numbersT −A and B−T. On the other hand, let
M = |T|+ ∑n

i=1 |wi|. Then, for each pointx∈ Qn we have|T|+ ∑n
i=1 |wi|xi ≤ M.

Let λ1, . . . ,λn andΛ ben+1 arbitrary real numbers and let

w′
i = (1+ λi)wi, for all i = 1, . . . ,n

T ′ = (1+ Λ)T.
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Figure 1: Separating hyperplane for a threshold function defined inQ3.

Then, the real numbersλ1, . . . ,λn andΛ represent the relative errors if we use the
numbersw′

1, . . . ,w
′
n andT ′ instead of the original non–null numbersw1, . . . ,wn and

T as weights and threshold. In other words, if we initially start with [T;w1, . . . ,wn]

which is transformed into[T ′;w′
1, . . . ,w

′
n] thenλi =

w′
i−wi

wi
for all i = 1, . . . ,n and

Λ = T ′−T
T where it is requiredwi andT to be different from zero. That is to say,

these numbers are therelative errorsin weights and threshold, that is why we use
the term “error” in the title of this paper.

Theorem 2.1 (Hu, 1965)
Let f : Qn → Q be an arbitrary linearly separable switching function of n

variables, let[T;w1, . . . ,wn] be a given strict separating system2 for f and let
τ[T;w1, . . . ,wn] := m

M be the tolerance for[T;w1, . . . ,wn]. If |λi| < τ for each
i = 1, . . . ,n and if |Λ| < τ then [T ′;w′

1, . . . ,w
′
n] is a strict separating system for

the given linearly separable switching function f .

Hu called this positive number thetoleranceof the separating system and denoted
it τ[T;w1, . . . ,wn].

Note that the tolerance is well–defined, in fact, asw(0) = 0 for any strict sepa-
rating system, it occurs thatT 6= 0 and soM 6= 0.

2.2 The Greatest Tolerance

(Freixas and Molinero, 2008a) improves theHu’s tolerance. They find the greatest
positive real numberδ such that if

|Λ| < δ and |λi| < δ, for all i = 1, . . . ,n

then[T ′;w′
1, . . . ,w

′
n] is equivalent to[T;w1, . . . ,wn], i.e., both strict separating sys-

tems still represent the same linearly separable switchingfunction.

Definition 2.2 (Freixas and Molinero, 2008a)

2τ[T;w1, . . . ,wn] is denoted byτ if there is no confusion about the strict linearly separating sys-
tem.
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Given a strict separating system[T;w1, . . . ,wn], for each x∈ Qn let a(x) =

|w(x)−T|, b(x) = |T|+∑n
i=1 |wi |xi andχ[T;w1, . . . ,wn] = minx∈Qn

a(x)
b(x) . This num-

ber3 is called thegreatest tolerance(briefly, G-tolerance) of [T;w1, . . . ,wn]. Note
that the G-tolerance of the strict separating system[T;w1, . . . ,wn] depends on the
chosen threshold and weights. Because of the finiteness of Qn, χ is attained for, at
least one x∈ Qn, let x0 ∈ Qn be one of the points attaining the G-tolerance.

Theorem 2.3 (Freixas and Molinero, 2008a)
Let f : Qn → Q be an arbitrarily linearly separable switching function of n

variables and let[T;w1, . . . ,wn] be a given strict separating system for f . If|λi |< χ
for each i= 1, . . . ,n and if|Λ| < χ then:

(i) [T ′;w′
1, . . . ,w

′
n] is a strict separating system for the given linearly separable

switching function f .

(ii) χ is the greatest upper bound for the constantsλ1, . . . ,λn,Λ.

3 Maximum Tolerance and Maximum G-Tolerance

Let f be an arbitrary monotonic4 linearly separable switching function ofn vari-
ables, now we are looking for a strict linearly5 separating system[T;w1, . . . ,wn]
representingf with maximum achievable toleranceandmaximum achievable G-
tolerance.

We start by relating the tolerance (theG-tolerance) of an arbitrary strict sep-
arating system with the tolerance (G-tolerance) of a strict separating system with
natural weights.

Theorem 3.1
If [T;w1, . . . ,wn] ∈ R×R

n is a real strict separating system, then there exists
an equivalentstrict separatingnaturalsystem, i.e., a system with natural weights
w′

1, . . . ,w
′
n, with the same tolerance and the same G-tolerance.

Note that, even though the weights are the same natural numbers for both
systems (the system applied to the tolerance and the system applied to theG-
tolerance), the threshold can be a different real number foreach system.

An obvious corollary for maximums arises:

Corollary 3.2
If [T;w1, . . . ,wn] ∈ R×R

n is a real strict separating system with maximum
tolerance (maximum G-tolerance), then there exists anequivalentstrict separating
naturalsystem with the same maximum tolerance (maximum G-tolerance).

3χ[T;w1, . . . ,wn] is denoted byχ if there is no confusion about the strict separating system.
4From now on we will omit the wordmonotonic.
5From now on we will omits the wordlinearly.
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Second, we propose a way to get maximum tolerance and maximumG-tolerance.

Theorem 3.3
Maximum toleranceand maximumG-toleranceamong all equivalent strict

separating systems are attained when the weights are natural numbers and their
sum is the minimum achievable one.

Given a strict separating system with fixed weights,[T;w1, . . . ,wn], it is known
(Freixas and Molinero, 2008a) that adjusting the corresponding threshold,A+B

2
for the tolerance and

√
AB for theG-tolerance, the system achieves the maximum

tolerance and the maximumG-tolerance, respectively. Thus, given a strict sepa-
rating system of an arbitrary separable switching function, we have a procedure
to compute a strict separating system with maximum tolerance or/and maximum
G-tolerance, respectively.

For instance, let[5;8,8,6,3,3] be a strict separating system, thenτ = 1
5+28 =

0.0303...; but the equivalent strict separating natural system with natural weights
having minimum sum and threshold equal toA+B

2 , i.e.,[3
2;2,2,2,1,1], achieves the

maximum available toleranceτ′ = 1/2
3/2+8 = 0.0526.... In the same vein, the strict

separating system[5;8,8,6,3,3] hasχ = 1
11 = 0.0909..., but the equivalent strict

separating natural system with natural weights having minimum sum and threshold
equal to

√
AB, i.e., [

√
2;2,2,2,1,1], achieves the maximum availableG-tolerance

χ′ =
√

2−1√
2+1

= 0.1715....
Another important new result is how we get the maximum tolerance withn

variables:

Proposition 3.4
The maximum tolerance for n variables is given by the following strict sepa-

rating (natural) system:
[

1
2 ; 1, . . . , 1

]
,

and such tolerance isτ = 1
1+2n.

Any other strict (natural or not) separating system (of non null weights) with
toleranceτ′ fulfills τ′ ≤ τ.

Finally, we extend this result for systems withn variables andk distinguished
types of variables, i.e., with exactlyk non-equivalent variables:

Conjecture 3.5
The maximum achievable tolerance for n variables and k typesof distinguished

variables is obtained by the following strict separable system:

[k− 1
2

;k,k−1,k−2, . . . ,1,1, . . . ,1
︸ ︷︷ ︸

n−k

]

and such a tolerance isτ = 1
2n+k2+k−1.
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Again, any other strict linearly (natural or not) separating system (of non null
weights) with toleranceτ′ fulfills τ′ ≤ τ.

In the same vein, we establish the corresponding conjecturefor theG-tolerance:

Conjecture 3.6
The maximum G-tolerance for n variables and k types (k> 1) of distinguished

variables is given by the following strict separable system:

[
√

k(k−1);k,k−1,k−2, . . . ,1,1, . . . ,1
︸ ︷︷ ︸

n−k

].

and such a G-tolerance isχ =

√
k(k−1)−(k−1)√
k(k−1)+(k−1)

.

In general, given a strict separating system for an arbitrary separable switching
function, we are able to find an equivalent strict separatingsystem (with natural
weights having minimum integer sum) achieving the maximum tolerance and the
maximumG-tolerance. Moreover, it is known, see (Freixas and Molinero, 2008b),
that for less than 8 variables all linearly separable switching functions have, up to
isomorphism, a unique strict separating system with natural weights having min-
imum sum. So, we only need to adjust the threshold,A+B

2 for the tolerance and√
AB for theG-tolerance, for these systems to achieve the maximum tolerance and

the maximumG-tolerance, respectively. Note that for 8 variables the situation
changes: There are 154 linearly separable switching functions, up to isomorphism,
with two strict separating systems having natural weights and minimum sum.

4 Future Work

Generating a huge number of random strict separating natural systems and then to
conjecturate what distribution follows the tolerance, themaximum tolerance, the
G-tolerance and the maximumG-tolerance.

It is also interesting to provide tables of all, up to isomorphism, linearly sep-
arable switching functions of a reasonable high number of variables with: a strict
separating system achieving its tolerance; its tolerance;a strict separating system
achieving itsG-tolerance; and itsG-tolerance.

Although the computational limitation (complexity) of finding the tolerance
and theG-tolerance of a given strict separating system (both are NP-hard), it will
be of interest to develop an efficient algorithm able to calculate the tolerance and
the greatest tolerance for strict separating systems with areasonable high number
of variables.

Acknowledgements

J. Freixas was partially supported by Grant MTM 2006–06064 of “Ministerio de
Educación y Ciencia y el Fondo Europeo de Desarrollo Regional”, and SGRC
2009-1029 of “Generalitat de Catalunya”.

7



X. Molinero were partially supported by the Spanish “Ministerio de Educación
y Ciencia” programme TIN2006-11345 (ALINEX), and SGRC 2009-1137 of “Gen-
eralitat de Catalunya”.

J. Freixas and X. Molinero were also partially supported by Grant MTM2009-
08037 of “Ministerio Ciencia e Innovación”, and Grant 9-INCREC-11 of “(PRE /
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