
Logic Programs with Possibilistic Ordered
Disjunction

Roberto Confalonieri, Juan Carlos Nieves, and Javier Vázquez-Salceda

Universitat Politècnica de Catalunya
Dept. Llenguatges i Sistemes Informàtics

C/ Jordi Girona Salgado 1-3
E - 08034 Barcelona

{confalonieri,jcnieves,jvazquez}@lsi.upc.edu

Abstract Logic programs with ordered disjunction have shown to be
a flexible specification language able to model common user preferences
in a natural way. However, in some realistic scenarios the preferences
should be linked to the evidence of the information when trying to reach
a single preferred solution. In this paper, we extend the syntax and the
semantics of logic programs with ordered disjunction in order to cope
with uncertain information. In particular, we define a possibilistic se-
mantics for capturing possibilistic ordered disjunction programs. We use
a simple example to explain the approach and outline an application
scenario showing the benefits of possibilistic ordered disjunction.

Keywords: Non-monotonic Reasoning, Answer Set Programming, Or-
dered Disjunction, Possibilistic Reasoning.

1 Introduction

Preference handling is more and more required in many types of decision-making
contexts such as online applications, system configuration and design, and com-
plex real-word decision problems [2]. In the case of online application, recom-
mender systems attempt to model user preferences in order to satisfy user re-
quests in a personalised way and new preference handling methods are needed
[10]. Classical preference modeling approaches assume in fact a complete spec-
ification of an utility function, used to map possible outcomes of decisions to
numerical values and select the best. However, in user preference modeling the
set of possible decisions tends to be either too large to be described explicitly or
information is incomplete, and thus more intelligent approaches are needed.

Nonmonotonic logics have shown to be a potent knowledge representation
formalism to reason about preferences. In [4] the relationship between nonmono-
tonic logics and preferences is discussed. Particularly it describes how extended
logic programming, one of the basic formalisms of answer-set programming, can
be used to represent user preferences, reasoning in terms of preferred answer
sets of a logic program. The ways how preferred answer sets are computed and

selected differ on the formalism chosen. For instance, logic programs with or-
dered disjunction permit to explicitly represent preference information directly
into head rules literals [3]. In this way, the language can capture user qualitative
preferences by means of disjunction rules, represent choices among different al-
ternatives and specify a preference order between the answer sets through some
comparison criteria.

However, in some realistic scenarios the aggregation of new uncertain infor-
mation can affect the established preference order, preventing the achievement
of a single preferred solution. In such cases a mechanism able to consider the
uncertainty about the new information is needed. As far as we know, a semantics
for logic programs with ordered disjunction that considers degrees of uncertainty
is lacking. One existing approach to deal with uncertainty degree is the combina-
tion of possibilistic logic with answer set semantics, where degrees of possibility
and necessity which are closed related to fuzzy sets [6] are associated as uncer-
tainty values to nonmonotonic logic programs clauses [12,13,14].

In this paper, we propose an extension of the semantics of logic programs
with ordered disjunction in order to cope with the degree of uncertainty in the
reasoning process. In particular, we define a possibilistic semantics for capturing
possibilistic ordered disjunction programs which is close to the proof theory of
possibilistic logic and answer set semantics. We show how by considering the
necessity-value of ordered disjunction clauses and using possibilistic inference,
in some cases it is possible to reach a single preferred possibilistic answer set,
whereas the ordered disjunction program cannot.

The rest of the paper is organized as follows. In the next section we recall
the basic notions underlying possibilistic logic and ordered disjunction programs.
Section 3 describes our possibilistic extension of ordered disjunction programs,
providing their syntax, semantics and three answer sets comparison criteria.
In Section 5 we describe an application scenario which shows the benefits of
possibilistic ordered disjunction. Throughout the paper, we use a simple example
to explain our approach.

2 Background

This section presents the reader with some basic definitions w.r.t. extended logic
programs, answer set semantics, possibilistic logic, some fundamental definitions
of lattice theory and logic programs with ordered disjunction, in order to make
this document self contained.

2.1 Extended Logic Programs

We consider extended logic programs which have two kinds of negation, strong
negation ¬ and default negation not. A signature L is a finite set of elements that
we call atoms, where atoms negated by ¬ are called extended atoms. Intuitively,
not a is true whenever there is no reason to believe a, whereas ¬a requires a
proof of the negated atom. In the following we use the concept of atom without

2

paying attention if it is an extended atom or not. A literal is either an atom a,
called positive literal ; or the negation of an atom not a, called negative literal.
Given a set of atoms {a1, ..., an}, we write not {a1, ..., an} to denote the set of
atoms {not a1, ..., not an}. An extended normal rule, r, is a rule of the form

a← b1, . . . , bn, not bn+1, . . . , not bn+m

where a and each of the bi are atoms for 1 ≤ i ≤ n + m. In a slight abuse of
notation we will denote such a clause by the formula a ← B+, not B− where
the set {b1, . . . , bn} will be denoted by B+, and the set {bn+1, . . . , bn+m} will
be denoted by B−. We denote by head(r) the head a of rule r and by body(r)
the B+, not B− of the rule r. A constraint is an extended rule of the form:
← B+, not B−. We define an extended logic normal program P , as a finite
collection of extended normal rules and constraints.

If the body of a normal rules is empty, then the clause is known as a fact and
can be denoted just by a. We write LP , to denote the set of atoms that appear
in the rules of P . We denote by HEAD(P) the set {a|a← B+, not B− ∈ P}.

We will manage the strong negation ¬, in our logic programs, as it is done
in Answer Set Programming (ASP). Basically, each atom ¬a is replaced by a
new atom symbol a′ which does not appear in the language of the program and
we add the constraint ← a, a′ to the program [1]. For managing the constraints
in our logic programs, we will replace each rule of the form ← B+ not B− by a
new rule of the from f ← B+, not B−, not f such that f is a new atom symbol
which does not appear in the language of the program.

Extended logic programs are very useful for knowledge representation pur-
poses. Two major semantics for extended logic programs have been defined:
answer set semantics [9], an extension of stable model semantics, and a version
of well-founded semantics [8]. The second approach can be viewed as an efficient
approximation of the first.

2.2 Answer set semantics

The answer set semantics was first defined in terms of the so called Gelfond-
Lifschitz reduction [9] and it is usually studied in the context of syntax dependent
transformations on programs. We will present this definition for the class of
programs considered in this paper (extended normal programs).

Definition 1. (PM Reduction)
Let P be any extended normal logic program, and M any a set of atoms such that
M ⊆ LP . The M-reduct of P , denoted by PM , is the positive normal program
obtained from P deleting

(i) each rule that has a formula not a in its body with a ∈M , and then
(ii) all formulæ of the form not a in the bodies of the remaining rules.

Note that clearly PM does not contain not, i.e. it is a positive extended logic
program. The following definition allows to check if a set of atoms M is a valid
model for P .

3

Definition 2. Let P an extended normal logic program and M a set of atoms.
Then M is an answer set of P if M is a minimal model of PM .

In order to illustrate these definitions let us consider the following example:

Example 1. Let us consider the set of atoms M := {b} and the following normal
logic program P :

b← not a. b.
c← not b. c← a.

We can see that PM is:
b. c← a.

Notice that this program has three models: {b}, {b, c} and {a, b, c}. Since the
minimal model amongst these models is {b}, we can say that M is an answer
set of P .

2.3 Possibilistic Logic

A necessity-valued formula is a pair (ϕ α) where ϕ is a classical logic formula
and α ∈ (0, 1] is a positive number. The pair (ϕ α) expresses that the formula ϕ
is certain at least to the level α, i.e. N(ϕ) ≥ α, where N is a necessity measure
modeling our possibly incomplete state knowledge [6]. α is not a probability (like
it is in probability theory) but it induces a certainty (or confidence) scale. This
value is determined by the expert providing the knowledge base. A necessity-
valued knowledge base is then defined as a finite set (i.e. a conjunction) of
necessity-valued formulae.

Dubois et al, [6] introduced a formal system for necessity-valued logic which
is based in the following axioms schemata (propositional case):

(A1) (ϕ→ (ψ → ϕ) 1)
(A2) ((ϕ→ (ψ → ξ))→ ((ϕ→ ψ)→ (ϕ→ ξ)) 1)
(A3) ((¬ϕ→ ¬ψ)→ ((¬ϕ→ ψ)→ ϕ) 1)

For the axioms above, the following inference rules are defined:

(GMP) (ϕ α), (ϕ→ ψ β) ` (ψ min{α, β})
(S) (ϕ α) ` (ϕ β) if β ≤ α

According to Dubois et al, basically we need a complete lattice in order to
express the levels of uncertainty in Possibilistic Logic. Dubois et al, extended the
axioms schemata and the inference rules for considering partially ordered sets.
We shall denote by `PL the inference under Possibilistic Logic without paying
attention if the necessity-valued formulæ are using either a totally ordered set
or a partially ordered set for expressing the levels of uncertainty.

The problem of inferring automatically the necessity-value of a classical for-
mula from a possibilistic base was solved by an extended version of resolution
for possibilistic logic (see [6] for details).

4

2.4 Lattices and Order

The order theory studied in mathematics formalizes the intuitive concept of an
ordering of the elements of a set. More recently, it has been introduced into
theoretical computer science, particularly into programming language semantics
[5]. As we will see in Section 3, an order set will be a suitable structure for
capturing uncertain information, particularly into answer set programs.

Definition 3. Partial order
Let Q be a set. A partial order ≤ is a binary relations on Q such that, ∀x, y, z ∈
Q,

(i) x ≤ x (reflexivity);
(ii) If x ≤ y and y ≤ x then x = y (antisymmetry);
(iii) If x ≤ y and y ≤ z then x ≤ z (transivity):

A set Q with a partial order relation ≤ is called a partial ordered set and is
denoted by (Q,≤). An element x ∈ Q is the LUB (least upper bound) of S ⊆ Q
if:

(i) s ≤ x, ∀s ∈ S, i.e. x is an upper bound of S and
(ii) ∀y ∈ Q[((∀s ∈ S)s ≤ y)⇒ x ≤ y], i.e. x ≤ y for all upper bound y of S.

The GLB (greatest lower bound) of S is defined dually. LUB of S is called the
supremum of S and it is denoted by sup S; GLB of S is also called the infimum
of S and it is denoted by inf S.

Definition 4. Lattice
Let (Q,≤) be a non-empty partially ordered set.

(i) If ∃ sup{x, y} and inf{x, y} ∀x, y ∈ Q, then Q is called lattice.
(ii) If ∃ sup S and inf S ∀S ⊆ Q, then Q is called complete lattice.

2.5 Logic Programs with Ordered Disjunction

Logic programs with ordered disjunction (LPODs) are extended logic programs
which allow the use of an ordered disjunction connector × in the head of rules
to express preferences among its literals [3].The rule

r = C1 × . . .× Cn ← b1, . . . , bm, not bm+1, . . . , not bm+k

states that if the body is satisfied then some Ci must be in the answer set, if
possible C1, if not then C2, and so on, and at least one of them must be true.
Each of the Ci can be seen as a preference the user is interested into according
to a desired order. One interesting characteristic of LPODs is that they provide
a mean to represent preferences among answer sets by considering degrees of
satisfaction [3].

5

Definition 5. [3] Let M be an answer set of an ordered disjunction program P .
Then M satisfies the rule r

C1 × . . .× Cn ← b1, . . . , bm, not bm+1 . . . , not bm+k

– to degree 1 if bj 6∈ M for some j (1 ≤ j ≤ m), or bi ∈ M for some i
(m+ 1 ≤ i ≤ m+ k),

– to degree j (1 ≤ j ≤ n) if all bl ∈ M (1 ≤ l ≤ m), no bi ∈ M (m+ 1 ≤ i ≤
m+ k), and j = min{r | Cr ∈M, 1 ≤ r ≤ n}.

The satisfaction degree of an answer set M w.r.t. a rule, denoted by degM (r),
provides a ranking of the answer sets of a LPOD, and a preference order on the
answer sets can be obtained using some proposed combination strategies. In [3],
the authors have proposed three criteria for comparing answer sets, respectively
cardinality, inclusion and Pareto. In this paper we show how we maintain the
three criteria and extend them for possibilistic answer sets.

LPODs allow to represent preferences which can depend on incomplete knowl-
edge. As LPODs are based on extended nonmonotonic logic incomplete informa-
tion can be expressed by means of default negation. We provide here a simple
example.

Example 2. We want to express the preferences of a tourist, visiting the city
of Barcelona. She is interested in getting restaurant information. She normally
prefers Mexican to Italian food if she does not have any information whether
Mexican ot Italian restaurants which can be found are goodly or badly reputated.
One way to represent the tourist preferences is by means of a LPOD.
Let P be an ordered disjunction program expressing the tourist preferences about
restaurants:1

r1 : rest(mex,)× rest(ita,)← not info(ita,), not info(mex,).
r2 : rest(ita,)× rest(mex,)← info(ita,).
r3 : rest(mex,)× rest(ita,)← info(mex,).
r4 :← rest(mex,), rest(ita,).

We can see that there are two answer sets satisfying the program,

M1 = {rest(mex,)}
M2 = {rest(ita,)}

and according to their satisfaction degrees M1 >p M2 and thus M1 is preferred
to M2 in all the three comparison criteria.

As shown in the example we have obtained a global order among the user
preferences. Sometimes, when defining preferences in ordered disjunction pro-
grams, it may happen that conflicting preference rules drive the establishment
of more than one preferred answer set.

1 The syntax of the example is based on the syntax of psmodels, an implementation
of ordered disjunction using answer set solvers for normal programs [3].

6

Example 3. Let P be the ordered disjunction program of Example 2 where in-
formation about Mexican and Italian restaurant is added:

r1 : rest(mex,)× rest(ita,)← not info(ita,), not info(mex,).
r2 : rest(ita,)× rest(mex,)← info(ita,).
r3 : rest(mex,)× rest(ita,)← info(mex,).
r4 :← rest(mex,), rest(ita,).
r5 : info(ita,).
r6 : info(mex,).

We can see that again, there are two answer sets satisfying the program,

M1 = {rest(mex,), info(mex,), info(ita,)}
M2 = {rest(ita,), info(mex,), info(ita,)}

but now M1 and M2 are not comparable anymore in any of the three criteria,
as M1 ≯c M2 and M2 ≯c M1, M1 ≯i M2 and M2 ≯i M1, M1 ≯p M2 and
M2 ≯p M1.

In such a situation, a mechanism that can express the difference in preference
importance is needed. The authors in [3] introduce meta-preferences by defining
a relation � on rules and incorporate this relation in the comparison criteria.
Instead, in our approach we aim at considering the degree of uncertainty as a
measure for deciding whether a rule should be considered or not. We will show
how our extension with possibilistic disjunction can in some cases overcome
the problem considering the necessity-value associated to the possibilistic rules.
Before that, we first provide the reader with the formal definition of possibilistic
ordered disjunction.

3 Logic Programs with Possibilistic Ordered Disjunction

In this section we propose the syntax and semantics of possibilistic ordered
disjunction programs.

3.1 Syntax

The syntax of a possibilistic ordered disjunction program is based on the syntax
of ordered disjunction rules (Section 2.5) and of possibilistic logic (Section 2.3).
A possibilistic atom is a pair p = (a, q) ∈ A ×Q where A is a set of atoms and
(Q,≤) a finite lattice.2 The projection ∗ for any possibilistic atom p is defined as:
p∗ = a. Given a set of possibilistic atoms M , the generalization of ∗ over M is
defined as: M∗ = {p∗ | p ∈M}. Given (Q,≤), a possibilistic ordered disjunction
rule r is of the form:

α : C1 × . . .× Cn ← B+, not B−

where α ∈ Q and C1 × . . .×Cn ← B+, not B− is an ordered disjunction rule as
defined in Section 2.5 with B+ = {b1, . . . , bm} and B− = {bm+1, . . . , bm+k}.
2 In the paper we will consider only finite lattices.

7

The projection ∗ for a possibilistic ordered disjunction rule r, is r∗ = C1 ×
. . .×Cn ← B+, not B−. n(r) = α is a necessity degree representing the certainty
level of the information described by r. A possibilistic constraint c is of the form:

T OPQ :← B+, not B−

where T OPQ is the top of the lattice (Q,≤) and ← B+, not B− is a con-
straint. Observe that any possibilistic constraint must have the top of the lattice
(Q,≤). This restriction is motivated by the fact that, like constraints in stan-
dard Answer Set Programming, the purpose of the possibilistic constraint is to
eliminate possibilistic models. Hence, it is assumed that there is no uncertainty
about the information captured by a possibilistic constraint. As in possibilis-
tic ordered disjunction rules, the projection ∗ for a possibilistic constraint c is
c∗ =← B+, not B−.

A Logic Program with Possibilistic Ordered Disjunction (LPPOD) is a tuple
of the form P := 〈(Q,≤), N〉 such that N is a finite set of possibilistic ordered
disjunction rules and possibilistic constraints. The generalization of ∗ over P is
defined as follows: P ∗ := {r∗ | r ∈ N}. Notice that P ∗ is an ordered disjunction
logic program. Given a possibilistic ordered disjunction program P := 〈(Q,≤
), N〉, we define the α-cut of P denoted by Pα as [6]:

Pα := {r | r ∈ P, n(r) ≥ α}

Example 4. Let P = 〈(Q,≤), N〉 be a possibilistic ordered disjunction program
such that Q = ({0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, ≤), ≤ be the stan-
dard relation between rational numbers, and N be the set of possibilistic rules
of the program of Example 2 with possibilistic values α ∈ Q associated to each
preference rule and constraint:

r1 = 0.5 : rest(mex,)× rest(ita,)← not info(ita,), not info(mex,).
r2 = 0.3 : rest(ita,)× rest(mex,)← info(ita,).
r3 = 0.1 : rest(mex,)× rest(ita,)← info(mex,).
r4 = 1 : ← rest(mex,), rest(ita,).
r5 = 0.9 : info(ita,).
r6 = 0.6 : info(mex,).

The way the uncertainty values of the rules are generated is described in Section
5.

3.2 Semantics

Our semantics are based on the definition of answer set semantics for extended
normal programs (see Section 2.2). We will consider sets of possibilistic atoms
as interpretations. Hence, before defining the possibilistic ordered disjunction
logic programming semantics, we introduce basic operations between sets of
possibilistic atoms and a relation of order between them.

8

Definition 6. Given A a finite set of atoms and (Q,≤) be a lattice, we consider
PS = 2A×Q as the finite set of all the possibilistic atoms sets induced by A and
Q. Let A,B ∈ PS, hence we define the operators u, t and v as follows:

A uB = {(x,GLB{q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B}
A tB = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪ {(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪

{(x, LUB{q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.
A v B ⇐⇒ A∗ ⊆ B∗, and ∀x, q1, q2, (x, q1) ∈ A ∧ (x, q2) ∈ B then q1 ≤ q2.

We will define a possibilistic ordered disjunction semantics which is close to
the proof theory of possibilistic logic and answer set semantics. As in answer
set semantics definition, our approach is based on a syntactic reduction. The
following reduction is a possibilistic extension of the reduction defined in [3].

Definition 7. (Reduction rM
×)

Let r = α : C1 × . . . × Cn ← B+, not B− be a possibilistic ordered disjunction
clause and M be a set of atoms. The ×-possibilistic reduct rM

× is defined as
follows:

rM
× := {α : Ci ← B+|Ci ∈M and M ∩ ({C1, . . . , Ci−1} ∪ B−) = ∅}

.

Definition 8. (Reduction PM
×)

Let P = 〈(Q,≤), N〉 be a possibilistic ordered disjunction program and M be a
set of atoms. The ×-possibilistic reduct PM

× is defined as follows:

PM
× =

⋃
r∈N

rM
×

Example 5. Let P be the possibilistic ordered disjunction of Example 4 and let
M be a possibilistic set,M={(rest(ita,), 0.3), (info(mex,), 0.6), (info(ita,), 0.9)}.
We can see that PM

× is:

0.3 : rest(ita,)← info(ita,). 0.1 : rest(ita,)← info(mex,). 0.9 : info(ita,).
0.6 : info(mex,).

Observe that the program PM
× is a possibilistic positive extended logic pro-

gram.3 Once a possibilistic ordered disjunction program P has been reduced by
a set of possibilistic atoms M , it is possible to test whether M is a possibilistic
answer set of the program P by considering the following definition.

Definition 9. (Possibilistic answer set)
Let P = 〈(Q,≤), N〉 be a possibilistic ordered disjunction program and M be
a set of possibilistic atoms such that M∗ is an answer set of (PM∗

×)∗. M is a
possibilistic answer set of P if and only if PM∗

× `PL M and @M ′ ∈ PS such

that M ′ 6= M , P (M ′)∗

× `PL M ′ and M vM ′.

3 A positive program is a program without negated as failure atoms.

9

Example 6. Let P be the possibilistic program of Example 4 and M the pos-
sibilistic set of atoms introduced in Example 5. First of all we can see that
M∗ is an answer set of the reduced extended positive program (PM∗

×)∗ as
M∗ = {rest(ita,), info(mex,), info(ita,)} is answer set of

(PM∗

×)∗:
rest(ita,)← info(ita,).
rest(ita,)← info(mex,).
info(ita,).
info(mex,).

Hence in order to prove that M is a possibilistic answer set of P , we have to
verify that PM∗

× `PL M . This means that, for each possibilistic atom p ∈ M ,
PM∗

× `PL p. It is straightforward to see that

PM∗

× `PL {(rest(ita,), 0.3), (info(mex,), 0.6), (info(ita,), 0.9)}

Let us prove (rest(ita),0.3) from PM∗

× .

Premises from PM∗

×
1. info(ita,)→ rest(ita,) 0.3
2. info(mex,)→ rest(ita,) 0.1
3. info(ita,) 0.9
4. info(mex,) 0.6
From 4 and 2 by GMP
5. rest(ita,) 0.1
From 3 and 1 by GMP
6. rest(ita,) 0.3
From 5 and 6 by S
7. rest(ita,) 0.3

The inference of the possibilistic atoms (info(mex,),0.6) and (info(ita,),0.9) is
trivial. Therefore, we can say that PM∗

× `PL M is true. Notice that it does not

exist a possibilistic set M ′ such that M ′ 6= M , P (M ′)∗

× `PL M ′ and M v M ′,
hence we can conclude that M is a possibilistic answer set of P .

From Definition 9, we can observe that there is an important condition w.r.t.
the definition of a possibilistic answer set of a possibilistic ordered disjunction
program: a possibilistic set S cannot be a possibilistic answer set of a possibilis-
tic ordered disjunction program P , if S∗ is not an answer set of the positive
extended program (PM∗

×)∗. The following proposition shows that our semantics
is a generalization of the semantics of ordered disjunction programs introduced
by Brewka in [3].

Proposition 1. Let P = 〈(Q,≤), N〉 be a possibilistic ordered disjunction pro-
gram and M be a set of possibilistic atoms. If M is a possibilistic answer set of
P then M∗ is a answer set of P ∗.

10

Proof. (Sketch)
First of all we can observe that if M is a possibilistic answer set of P then, by
Definition 9, M∗ is answer set of (PM∗

×)∗. By Proposition 1 of Brewka4, we can
prove that M∗ is answer set of P ∗ if the following conditions are satisfied:

1. M∗ = Cn((PM∗

×)∗)
2. M∗ is consistent, i.e. if a ∈M∗ then ¬a 6∈M∗

3. M∗ satisfies every rule r ∈ P ∗

Condition (1) is satisfied if we can show that the possibilistic reduction we defined
in Defintion 7 and 8 is equivalent to the reduction of Brewka, i.e. (PM

×) =
(PM∗

×)∗. This is straightforward to see observing that our reduction is based on
the reduction of Brewka and that the possibilistic value of the rule does not
affect the reduction itself.
Condition (2) is verified by the way we manage the strong negation ¬ in our
logic programs (see Section 2.1). Basically, each atom ¬a is replaced by a new
atom symbol a′ which does not appear in the language of the program and we
add the constraint to the program ← a, a′. In this way M∗ is consistent.
Condition (3) follows from the definition of answer set of M∗. M∗ in fact satisfies
every rule r∗ ∈ (PM∗

×)∗ and thus satisfies every rule r∗ ∈ P ∗ as well.
ut

4 Possibilistic Preferred Answer Sets

To distinguish between preferred possibilistic answer sets, we take the definition
and the notation of the satisfaction degree of M w.r.t. a rule r as degM (r) (see
Section 2.5). In the following we define three comparison criteria (as in [3]),
adapted to possibilistic answer sets. We prove how the three relations maintain
their implication property and we show how sometimes possibilistic ordered dis-
junction programs can reach a single preferred solution, when ordered disjunction
program could not. We first define the set of possibilistic atoms M satisfying a
degree i as follows:

Definition 10. Let M be a set of possibilistic atoms and P be a possibilistic
ordered disjunction logic program. Then M i,α(P) = {r ∈ P | degM (r) = i and
n(r) ≥ α}.

Given a set of possibilistic atomsM , n(M) is defined asmin{α | (a, α) ∈M}.
We can now define the three preference relations. The possibilistic version of
cardinality-based preference can be defined as follows:

Definition 11. Let M1 and M2 be possibilistic answer sets of a possibilistic
ordered disjunction logic program P . M1 is possibilistic cardinality-preferred to
M2, (M1 >pc M2) iff ∃ i such that | M i,α

1 (P) |>| M i,α
2 (P) | and ∀j < i,

|M j,α
1 (P) |=|M j,α

2 (P) |, where α = min{n(M1), n(M2)}.
4 Let P be an LPOD and M a set of atoms. Then, M is answer set of P iff the following

three conditions hold: (a) M = Cn(P M
×); (b) M is consistent; (c) M satisfies every

rule r ∈ P [3].

11

We define the inclusion-based preference as:

Definition 12. Let M1 and M2 be possibilistic answer sets of a possibilistic
ordered disjunction logic program P . M1 is possibilistic inclusion-preferred to
M2, (M1 >pi M2) iff ∃ k such that Mk,α

2 (P) ⊂Mk,α
1 (P) and ∀ j < k, M j,α

1 (P) =
M j,α

2 (P), where α = min{n(M1), n(M2)}.

Lastly, the possibilistic Pareto-based preference is:

Definition 13. Let M1 and M2 be possibilistic answer sets of a possibilistic
ordered disjunction logic program P . M1 is possibilistic pareto-preferred to M2,
(M1 >pp M2) iff ∃ r ∈ P such that degM1(r) < degM2(r), and @r′ ∈ P such that
degM1(r

′) > degM2(r
′), and n(r) ≥ max{n(M1), n(M2)}.

Although we adapted the three relations to possibilitic answer sets, the three
relations maintain their inclusion property.

Proposition 2. Let M1 and M2 be possibilistic answer sets of a possibilistic
ordered disjunction logic program P . Then (M1 >pp M2) implies (M1 >pi M2)
and (M1 >pi M2) implies (M1 >pc M2).

Proof. (M1 >pp M2) ⇒ (M1 >pi M2). If (M1 >pp M2) holds then the set of
rules with degree i of M1 contains at least one element more than the set of
rules with degree i of M2. Thus (M1 >pi M2) follows.
(M1 >pi M2) ⇒ (M1 >pc M2). If (M1 >pi M2) holds, then the number of the
elements of the set of rules with degree i of M1 is bigger than the number of the
element of the set of rules with degree i of M2. Thus (M1 >pc M2) follows.

ut

In Section 2.5, we have presented (by means of Example 3) a situation where
two preferred answer set are generated by an ordered disjunction program. Using
the above comparison criteria, now we want to show how a possibilistic ordered
disjunction program can manage to select one single preferred answer set.

Example 7. Let P be the possibilistic ordered disjunction program of Example
4. We have seen in the previous section that P has two possibilistic answer sets:

M1 = {(rest(mex,), 0.3), (info(mex,), 0.6), (info(ita,), 0.9)}
M2 = {(rest(ita,), 0.3), (info(mex,), 0.6), (info(ita,), 0.9)}

We can see that n(M1) = 0.3 and n(M2) = 0.3. Let us define now the M i,0.3
1 (P)

and M i,0.3
2 (P), i.e. we consider only the rules of program P where n(r) ≥ 0.3.

In this way we obtain:
M1,0.3

1 (P) = {r1, r4, r5, r6} M1,0.3
2 (P) = {r1, r2, r4, r5, r6}

We can now conclude that (M2 >pc M1), (M2 >pi M1) and (M2 >pp M1)
applying the possibilistic version of the comparison criteria one by one.

In this case we have obtained an order between the answer set of the possi-
bilistic ordered disjunction program P , cutting one of the conflicting preference

12

rules. However, generally speaking, we have been able to cover only some cases.
Particularly only the cases where the uncertainty values of the conflicting pref-
erence rules are lower than the value of the uncertain information added.

Nevertheless, we can observe that there is an important property w.r.t. the
comparison criteria for possibilistic answer sets of a possibilistic ordered dis-
junction program: a possibilistic set M is comparable if M∗ is comparable in the
ordered disjunction program P ∗. Therefore our extension maintains the prefer-
ence relation between answer sets of ordered disjunction programs.

Proposition 3. Let M1 and M2 be possibilistic answer sets of a possibilistic
ordered disjunction logic program P . Then

If M∗
1 >c M

∗
2 then M1 >pc M2 (1)

If M∗
1 >i M

∗
2 then M1 >pi M2 (2)

If M∗
1 >p M

∗
2 then M1 >pp M2 (3)

Proof. (Sketch) We will prove (1). The proofs for (2) and (3) are similar. To
start let us observe that:

(a) M∗
1 >c M∗

2 iff ∃ i such that | M∗i

1 (P ∗) |>| M∗i

2 (P ∗) | and ∀j < i,
|M∗j

1 (P ∗) |=|M∗j

2 (P ∗) | by Definition 9 in [3]
(b) if M1 and M2 are possibilistic answer sets of P , then by Proposition 1, M∗

1

and M∗
2 are answer sets of P ∗

(c) ∀r ∈ P , degM∗
1
(r∗) = degM1(r) and degM∗

2
(r∗) = degM2(r)

Let us assume that (1) is false. Then by contradiction, we have two cases: either
(i) M1 ≯pc M2 or (ii) M2 >pc M1.

Case 1. M1 ≯pc M2. If M1 ≯pc M2 holds then it means that ∃ i such that
| M i,α

1 (P) |=| M i,α
2 (P) | and ∀j < i, | M j,α

1 (P) |=| M j,α
2 (P) | where α =

min{n(M1), n(M2)}. By (a) this can only happen if ∃r′ ∈ P and r′ 6∈ Pα, i.e.
a rule has been cut. But this it would mean that degM1(r

′) < degM2(r
′) and

n(r′) < min{n(M1), n(M2)} . But for observation (c) it is absurde.

Case 2. M2 >pc M1. If M2 >pc M1 holds then it means that ∃ i such that
| M i,α

1 (P) |<| M i,α
2 (P) | and ∀j < i, | M j,α

1 (P) |=| M j,α
2 (P) | where α =

min{n(M1), n(M2)}. By (a) this can only happen only if ∃r′, r′′ ∈ P and r′, r′′ 6∈
Pα, i.e. two rules have been cut. But this it would mean that degM1(r

′) <
degM2(r

′), degM1(r
′′) < degM2(r

′′) and n(r′), n(r′′) < min{n(M1), n(M2)}. We
have already shown in the former case that we can reach an absurde. Then (1)
is true.

ut

5 An Application Scenario

Although logic programs with ordered disjunction are a flexible specification
language able to capture common users preferences, in some realistic scenarios
the preferences should be linked in some way to the evidence of the information

13

in order to cope with uncertainty when trying to reach a single preferred solu-
tion. In this section we describe an application scenario of possibilistic ordered
disjunction logic programs which can be incorporated to the user recommender
system described in [10]. We show how the scenario can benefit of possibilistic
ordered disjunction programs presented in this paper. Though the scenario is set-
tled in the context of user recommendation, it can be generalized as the problem
of viewing the impact the evidence has about agent preferences or beliefs.

5.1 Architecture

Figure 1 shows a simple multi-agent system supporting our scenario. The system
consists essentially of three types of agents.

Personal Assistant Agents (PAAs) assist users, interpreting their preferences
and generating LPODs. They are responsible of user preference elicitation. In our
system, we represent only one PAA which communicates with a Broker Agent.
In the following we assume to have already the user’s preferences encoded as a
LPOD.

Broker Agents are responsible of processing user preference received from
PAAs and retrieving information from Crawler Agents. They are cognitive agents
with a possibilistic program generator module and their decision making is ex-
tended to reason about possibilistic ordered disjunction logic programs. We con-
sider only one instance of this type of agent.

Crawler Agents are basically information gatherers. They can be assigned
to recommendation services in the Web and respond to Broker Agents queries,
retrieving recommendation lists. In this scenario we consider only one Crawler
Agent assigned to a recommendation service such as TripAdvisor5.

TripAdvisor.comPAA

PERSONAL ASSISTANT
AGENT BROKER AGENT CRAWLER AGENT

user preferences

recommendation list

recommendation gathering

preferences
elicitation

possibilistic
reasoning

PAA

recommendation list
B

B C

C

Figure 1. General Architecture

The actors of the system interact as follows:

5 http://www.tripadvisor.com/

14

http://www.tripadvisor.com/

1. The Personal Assistant Agent builds the Ordered Disjunction Logic Program
representing the user preferences and sends it to the Broker Agent.

2. The Broker Agent receives ordered disjunction programs and queries the
Crawler agent according to the user preference list obtained.

3. The Crawler Agent processes queries and retrieves a list of recommendations.
4. The Broker Agent interprets the result of the Crawler, generates a possibilis-

tic ordered disjunction program, executes it and sends the recommendation
to the Personal Assistant Agent.

5. The User Agent processes the result and presents the recommendation to
the user.

6. Restart the process from 1 if the end-user decides to specify another recom-
mendation search.

The components of this multi-agent system can be deployed in distributed het-
erogeneous environments and integrated with distributed technologies, such as
Web Services [11,10]. We assume that the Broker, the Personal Assistant and
the Crawler agents share some domain knowledge and ontology. The agents
communicate using a well defined communication FIPA-based specification [7]
composed of performatives and protocols.

5.2 Possibilistic Ordered Disjunction Reasoning

Until now we have presented the generic architecture of the scenario, saying
that the Broker Agent is able to create and to process possibilistic ordered logic
programs. We show now how we intend to generate a possibilistic ordered dis-
junction program and exploit the possibilistic semantics we defined in Section
3.2.

Figure 2 shows the meta-architecture of the Broker. The Broker internally
consists of four components: a LPOD Reasoner, a Recommendation Gatherer, a
Possibilistic LPOD Generator, and a Possibilistic LPOD Reasoner. In the follow-
ing we describe the functionality of each components referring to the examples
defined in the paper. Let us consider the LPOD representing user preferences
about restaurants in Example 2.

The LPOD Reasoner executes the program (using psmodels6 for instance),
infers the answer sets and applies the Pareto comparison. In this way M1 =
{rest(mex,)} and M2 = {rest(ita,)}, where M1 >p M2 are obtained. This
preference order is kept when searching for restaurant information.

The Recommendation Gatherer component processes the preference list ac-
cording to the order relation they have. First it tries to fulfil the most preferred
ones and then the less preferred. For each answer set, the Recommendation
Gatherer queries the Crawler Agent, where each query is made using the literals
which compound the answer set as parameter list. For each query, a result about
recommendation of restaurant places is returned, such that every record is asso-
ciated with a recommendation value. The recommendation value spans between

6 http://www.tcs.hut.fi/Software/smodels/priority/

15

http://www.tcs.hut.fi/Software/smodels/priority/

Possibilistic
LPOD Reasoner

Possibilistic
LPOD Generator

Recommendation
Gatherer

query

possibilistic LPOD program

C

PAA

user preferences
LPOD program

possibilistic evidence

recommendation list
after evidence influence

recommendation list

LPOD Reasoner

answer sets

BROKER

Figure 2. The Possibilistic Broker conceptual architecture and interaction with
other component in the system

0 and 10, and represents the computed mean reputation value of the restaurant
according to other users votes.

The Possibilistic LPOD Generator interprets this value as the evidence that
a given restaurant is goodly or badly reputated. It takes the maximum value of
each of the result set (each set is about a restaurant type), and represents it as
a possibilistic logic program. According to the syntax in Section 3.1, we obtain
as result:

0.6 : info(mexican,′ LaCoronela′).
0.9 : info(italian,′ LaBellaNapoli′).

where the uncertainty values are normalized to the interval to which α belongs,
i.e. {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The Possibilistic LPOD generator
builds then the possibilistic version of the LPOD which looks like the possibilistic
ordered disjunction program of Example 4. The uncertainty degree associated to
the preference rules can be the value computed by some reinforcement learning
algorithms in which previous executions are considered.

The Possibilistic LPOD Reasoner computes the answer sets of the Possi-
bilistic LPOD program. According to the semantics defined in Section 3.2 and
applying the possibilistic version of the Pareto-based criteria, the reasoning infers
that

M1 = {(rest(mex,‘La Coronela‘), 0.3), info(mex,’La Coronela’), 0.6), (info(ita,’La
Bella Napoli’), 0.9)}

16

M2 = {(rest(ita,’La Bella Napoli’), 0.3), info(mex,’La Coronela’), 0.6), (info(ita,’La
Bella Napoli’), 0.9)}

where (M2 >pp M1), as shown in Example 7.
This result is returned as output of the possibilistic reasoning to the PAA,

which shows the recommendation result to the user.

6 Conclusions

In this paper we have introduced possibilistic ordered disjunction programs as an
extension of ordered disjunction programs [3]. This approach is able to capture
incomplete information and incomplete states of a knowledge base at the same
time. We have shown how realistic scenarios require to cope with the degree of
uncertain knowledge and how it is possible to handle it with a combination of
possibilistic logic with answer set semantics. We have described an application
scenario as an example where such uncertainty is present and have shown how
the scenario can benefit from our approach.

We have formulated some important definitions and propositions for possi-
bilistic ordered disjunction programs. In particular, we guarantee by Proposition
1 that valid models of our extended version are valid solutions for no possibilistic
programs as well, showing how our semantics is a generalization of the original
semantics of ordered disjunction programs. We have generalized the comparison
criteria presented in [3] for preferred possibilistic answer sets (Definition 11, 12,
and 13), taking into account the cut determined by the uncertainty degree of
the possibilistic answer sets according to the possibilistic answer set semantics,
our extension is based on. By considering the minimum uncertainty values of
possibilistic answer sets in the comparison criteria, we have been able to show
how in some cases excluding possibilistic rules behind this cut, we are able to
reach a single preferred possibilistic answer set, whereas the ordered disjunction
program cannot.

However, as we already said, we have not reached a general solution. In
fact it can happen that the uncertainty degree of possibilistic answer sets does
not produce any significant cut. Applying different well-studied semantics for
possibilistic logic programs such as, possibilistic pstable model semantics [14],
we aim to produce a different cut and explore its impacts. Moreover we think
that a recursive cut algorithm which considers the influence the uncertainty has
on preference rules to apply recursive cuts, can eventually reach a global order
between valid answer sets. Therefore we are especially interested to work out the
influence the uncertainty degree of the new information can play in the preference
order establishment. In fact our intuition tells us that the uncertainty value of
the information added should affect the uncertainty value of the preference rules
where such information appears in rules heads.

17

Acknowledgements

This work has been funded mainly by the European Commission Framework 7
funded project ALIVE (FP7-215890). Javier Vázquez-Salceda’s work has been
also partially funded by the Ramón y Cajal program of the Spanish Ministry of
Education and Science. The opinions of the authors do not reflect the opinions
of the European Commission.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge, 2003.

2. R. Brafman and C. Domshlak. Preference Handling - An Introductory Tutorial.
AI Magazine, 30(1), 2009.

3. G. Brewka, I. Niemelä, and T. Syrjänen. Logic Programs with Ordered Disjunction.
Computational Intelligence, 20(2):333–357, 2004.

4. G. Brewka, I. Niemelä, and M. Truszczyński. Preferences and Nonmonotonic Rea-
soning. AI Magazine, 29(4):69–78, 2008.

5. B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge
University Press, second edition, 2002.

6. D. Dubois, J. Lang, and H. Prade. Possibilistic Logic. In D. Gabbay, C. J. Hog-
ger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, Volume 3: Nonmonotonic Reasoning and Uncertain Reason-
ing, pages 439–513. Oxford University Press, Oxford, 1994.

7. FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org.
8. A. V. Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for

General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.
9. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Comput., 9(3/4):365–386, 1991.
10. I. Gómez-Sebastià, M. Palau, J. C. Nieves, J. Vázquez-Salceda, and L. Cecca-

roni. Dynamic Orchestration of Distributed Services on Interactive Community
Displays: The ALIVE approach. In 7th International Conference on Practical
Applications of Agents and Multi-Agent Systems (PAAMS 2009), volume 55 of
Advances in Intelligent and Soft Computing, 2009.

11. M. N. Huhns. Agents as Web Services. IEEE Internet Computing, 6(4):93–95,
2002.

12. P. Nicolas, L. Garcia, I. Stéphan, and C. Lafèvre. Possibilistic Uncertainty Han-
dling for Answer Set Programming. Annal of Mathematics and Artificial Intelli-
gence, 47(1-2):139–181, June 2006.

13. J. C. Nieves, M. Osorio, and U. Cortés. Semantics for Possibilistic Disjunctive
Programs. In S. Costantini and R. Watson, editors, Answer Set Programming:
Advances in Theory and Implementation (ICLP-07 Workshop), pages 271–284,
2007.

14. M. Osorio and J. C. Nieves. Pstable semantics for possibilistic logic programs. In
MICAI 2007: Advances in Artificial Intelligence, 6th Mexican International Con-
ference on Artificial Intelligence, number 4827 in LNAI, pages 294–304. Springer-
Verlag, 2007.

18

	Logic Programs with Possibilistic Ordered Disjunction

