
 1

iStarML.

The i* Mark-up Language

REFERENCE’S GUIDE

Carlos Cares
1,2

ccares@lsi.upc.edu

Xavier Franch
1
 franch@lsi.upc.edu

Anna Perini
3
 perini@itc.it

Angelo Susi
3
 susi@itc.it

1
 Technical University of Catalonia, C/Jordi Girona, 1-3, 08034

Barcelona, Spain

2
 University of La Frontera, Avenida Francisco Salazar 01145,

Temuco, Chile

3
 ITC-irst, Trentine Culture Institute, Scientific and Technological

Research Centre, 38050 Povo, Trento, Italy

September 2007

 2

Contents

1 Introduction... 3

2 Syntax Expression... 5

4 Representing Actors .. 7

5 Representing Intentional Elements ... 8

6 Representing Actor’s boundaries .. 9

7 Representing Actor’s Rationale .. 10

8 Representing Dependencies .. 14

9 Representing actor’s relationships .. 19

10 iStarML’s Graphic specification ... 22

Conclusions.. 28

Appendix A. Complete code of example 10.6 ... 29

References.. 36

 3

1 Introduction

iStarML is an XML compliant format [1] to represent i* diagrams [2]. Therefore it is

a textual specification. It is not the aim of this document neither to standardize the

semantic of i* nor its graphic expression. Besides, the syntax specification could

generate structures which do not have any particular semantic interpretation.

Different methodologies have been created based on i* concepts and modelling

techniques. In particular the i* framework has been exploited in different areas such

as organizational modelling, business process reengineering and requirements

engineering. Moreover, some proposals have been made to incorporate i* modelling

concepts to deal with software systems requirements representation and design. An

example of these proposals is Tropos [3, 4], an agent-oriented software development

methodology. The contribution of Tropos at the requirements stage and in agent-

oriented design has been acknowledged by different comparative studies [5-7]. Also

relevant is GRL [8], an i* variation which has been added as part of the industrial

Telecommunications Standard Z150 [9] for systems specification. Besides these three

proposals: i*, Tropos and GRL, there are also other ones that have introduced several

constructs in the language with different research aims, such as security and trust

concerns [10-12], temporal operators [13], and traceability constructs [14], among

others.

Therefore, the goal of iStarML is to have a common format where the common

conceptual framework of the main i* language variations is made explicit and, in

addition, the differences could be expressed using open options using the same

specification.

Consequently a common representation of i* diagrams allow:

1. To have a file format for diagrams interchanging among different type of

specific i* software tools such as goal-analysis, designing, editors, metric

calculation, etc.

2. To have a common way of representing the differences and similarities

among the existing i* variations.

3. To have a common representation for repository of i* patterns

4. To take advantages of the XML format for Internet communication and

also the use of general XML tools.

The main iStarML set of tags corresponds to the abstract set of core concepts which

are part of the seminal proposal [2, 15] and also they are present on a broad set of

related proposals [4, 8, 10-13, 16-18]. The defined core concepts and its tags are

showed on table 1.1. In order to provide additional features there are especial tags

which are not part of any related proposal of i*. It has been included with topics

related the use of XML in a context of storing and recovering i* diagrams. These are

presented on table 1.2

 4

Table 1.1 Core concepts of i*-based modelling languages and the corresponding iStarML tags

Abstract core

concept
Meanings and examples of core

specializations
Tag

Actor An actor represents an entity which may be

an organization, a unit of an organization, a

single human or an autonomous piece of

software. Also it can represent abstractions

over actors such as roles and positions.

<actor>

Intentional element An intentional element is an entity which

allows to relate different actors conforming a

social network or, also, to express the internal

rationality of an actor. Broadly used types of

intentional elements are: goal, softgoal,

resource, and task.

<ielement>

Dependency A dependency is a relationship which

represents the explicit dependency of an actor

(depender) respect to the other actor

(dependee). The dependency is expressed

with respect to an intentional element.

<dependency>
<dependee>
<depender>

Boundary A boundary represents a group of intentional

elements. The common type of boundary is

the actor’s boundary which represents the

vision of an omnipresent objective observer

with respect to the actor’s scope. However

other boundary types can also be used.

<boundary>

Intentional element

link
An intentional element link represents an n-

ary relationship among intentional elements

(either in the actor’s boundary or outside).

Broadly used types of intentional element

link are decomposition, means-end and

contribution. Related concepts such as

routines or capabilities can be also

represented using this relationship

<ielementLink>

Actor association

link
An actor relationship is a relationship

between two actors. Broadly used types of

actor relationships are is_a, is_part_of,

instance_of (INS), plays, occupies and

covers.

<actorLink>

 5

Table 1.2 Complementary iStarML tags

Additional

Concept

Tag Meaning

i* markup

language file
<istarml> The main tag of the iStarML

Diagram <diagram> A diagram is a particular i* diagram

Graphic

expression
<graphic> Represent some graphic properties of a particular

diagram or diagram element.

The extensibility of the iSTarML proposal is provided by allowing additional XML

attributes on the static set of iStarML tags. This option seems to be the best one in

order to keep a closed core set of fundamental concepts, which would allow managing

the attribute-based extensionality because the corresponding semantic is mainly

associated to the core concept in place of their attributes.

2 Syntax Expression

In order to express the syntactical options we will use the traditional extended BNF

meta language [19]. However, given the characters “<“ and “>“ are part of the

language, it is not possible for them to be part of the meta language. We have omitted

them but we have marked the defined elements using the color blue and the italic

style. The meta symbols definition is showed in table 2.1

Table 2.1 Used extended BNF symbols

Italic blue string
means a language concept (in place of the traditional

BNF symbols “<“ and “>“)

::= means a language definition

[] means an optional language structure, 0 or 1 time

{ }
means that a language structure could be repeated 0 or

more times

() group of language structures

| means options’ separation

Some italic blue symbols are considered terminal symbols when they are referred to

traditional data types such as integer, real or string. Another non-defined data type is

the hexrgbcolor type, which is used to represent a RGB hexadecimal colour e.g.

0000FF to represent a pure blue.

 6

A BNF can not express some specific language features like the requirements that a

reference exists in some place of the same file. In iStarML we use two attributes

which require a string value which appears like the unique value assigned to the xml’s

tag identifier, i.e. the id attribute. These values are iref and aref. The first one requires

a string value which has been used only one time like the id attribute value of an

ielement tag (defined in section 5). The second one, the aref value, requires a string

value which has been used only one time like the id attribute value of an actor tag

(defined in section 4). Given that these values have an especial the described especial

meaning in the BNF specification it is used also the blue color, but they have the

above definition. Also it is used some blue color for describing another known data

types likes integer and string which have the traditional definitions.

3 Basic Structure of the iStarML format

The tag <istarml> is the main tag of iStarML. It can content only the <diagram> tag.

In the table 3.1 we show the options of this tag. Under this structure it is possible to

store on the same file a set of different i* diagrams.

Table 3.1 <istarml> syntax

istarmlFile ::= <istarml version=“1.0”> diagramTag {diagramTag}

</istarml>

diagramTag ::=

<diagram basicAtts [author=string] {extraAtt} >

[graphic-diagram] { [actorTag] | [ielementExTag]}

</diagram>

extraAtt ::= attributeName = attributeValue

basicAtts ::= [id=“string”] name=“string” | id=“string” [name=“ string”]

Example 3.1 Basic structure of an iStarlML file

<istarml version=“1.0”>
<diagram>
</diagram>
<diagram>
</diagram>

</istarml>

 7

4 Representing Actors

For representing actors it has been defined the actor tag. The BNF of table 4.1 shows

the syntactic alternatives of this tag. Mainly the different types of actor can be

handled by using the type attribute. The example 4.1 illustrates a basic use of the tag

for representing two actors. The use of additional options of the actor tag is explained

in the context of the boundary tag (section 6) and the representations of intentional

relationships (section 7).

Table 4.1 <actor> syntax.

actorTag ::= <actor basicAtts [typeAtt] {extraAtt} >

[graphic-node] {actorLinkTag} [boundaryTag]

</actor> |

<actor basicAtts [typeAtt] {extraAtt} /> |

<actor aref=“string” /> |

<actor aref=“string”> [graphic-node] </actor>

typeAtt ::= type=“actorType”

actorType ::= basicActorType | string

basicActorType ::= agent | role | position

Example 4.1 Basic representation of two actors

 8

5 Representing Intentional Elements

An intentional element is an abstraction over a set of different i*’s constructs such as

goal, softgoal, resource or task. Some i*’s variations considers additional types of

intentional elements such as belief [8]or constraint [18]. The iStarML proposal

considers all these kind of intentional elements which can be represented using the

ielement tag. The syntax is specified in table 5.1.

 Table 5.1 <ielement> syntax

ielementTag ::= <ielement ieAtts> [graphic-node]

{ielementLinkTag} </ielement> |

<ielement ieAtts/> |

<ielement iref=“string”/> |

<ielement iref=“string”> [graphic-node] </ielement>

ielementExTag ::= <ielement ieAtts>

[graphic-node] [dependencyTag]

{ielementLinkTag} </ielement> |

ielementTag

ieAtts ::= basicAtts type=“itype“ [state=“istate“] {extraAtt}

itype ::= basic-itype | string

basic-itype ::= goal | softgoal | task | resource

istate ::= undecided | satisfied | weakly satisfied | denied |

weakly denied | string

Example 5.1 Basic representation of intentional elements

 9

The use of the other options of intentional’s representation is explained in the context

of the boundary tag (section 6) and intentional link representations (section 7).

6 Representing Actor’s boundaries

A boundary tag represents the internal state of an actor, thus this state is represented

in a nested structure inside the scope of an actor which has been also named

boundary. The defined syntax is showed in table 6.1.

Table 6.1 <boundary> syntax.

boundaryTag ::= <boundary [type=“string”]>

[graphic-path] {[ielementTag] | [actorTag]}

</boundary>

Example 6.1 A basic representation of an actor’s boundary

 10

Example 6.2 Differencing internal and external ielements, example taken from [18, 20].

7 Representing Actor’s Rationale

The actor’s rationale is given by the multiple relationships which are established

among intentional elements either belonging to its boundary or outside of it.

Therefore the way of representing this “rationality” is by setting the relationships

which involves the intentional elements in the scope of its boundary. The tag for

stating these relationships is the ielementLink tag. Its syntax is specified in table 7.1.

 11

Table 7.1 <ielementLink> syntax

ielementLinkTag ::= <ielementLink linkAtts>

[graphic-path] ielementTag {ielementTag}

</ielementLink>

linkAtts ::= type = “decomposition” [value=(“and” | “or”)] |

type=“means-end” [value=“string”] |

type=“contribution” [value=“contribution-value“] |

type=“string” [value=“string”]

contribution-value ::= + | - | sup | sub | ++ | -- | break | hurt | some- | some+ |

unknown | equal | help | make | and | or

Example 7.1 Tropos’s task decomposition [21]

 12

Example 7.2 Implementing “why“ as intentional relationship

Example 7.3 Representing elements from Secure Tropos [10, 22]

 13

 14

8 Representing Dependencies

Dependencies is one of the classical i*’s constructs and its aim is representing

intentional relationships between two (or occasionally more) actors. To feature this

relationship a specific intentional element makes the link among the involved actors

which are named dependers or dependees. It represents that some actors hazard the

accomplishment of its intentions (dependers) on third actors (dependees). For

representing this especial kind of relationships iStarML provides the tags dependency,

depender and dependee. The specific syntax is showed in table 8.1.

This language construct is designated to consider the intentional element that gives

the meaning to the dependency and thus it plays the central role in the dependency

specification. Therefore the dependency is built like a nested structure from an

intentional element. This situation means that actors are specified only by referencing

actors, either they have been already created or will appear next on the iStarML file.

All the examples of this section illustrate the case.

Table 8.1 <dependency> syntax.

dependencyTag ::= <dependency>

dependerTag {dependerTag}

{dependeeTag}

</dependency >

dependerTag ::= <depender [iref=“string”] aref=“string”

[value=“dep-type“] /> |

<depender [iref=“ string”] aref=“string”

[value=“dep-type“] > [graphic-path] </depender>

dependeeTag ::= <dependee [iref=“string”] aref=“string”

[value=“dep-type“] /> |

<dependee [iref=“string”] aref=“string”

[value=“dep-type“] > [graphic-path] </dependee>

Dep-type ::= open | committed | critical | delegation | permission | trust

| owner | string

 15

Example 8.1 Basic representation of dependency

Example 8.2 Dependency from an internal intentional element

 16

Example 8.3 Dependency from a nested actor to multiple dependees

Example 8.4 Extended dependencies from Secure Tropos [10, 22]

 17

Example 8.5 Abstract self dependency taken from Tropos-PL [23]

 18

Example 8.6 Representing the owner relationship from Secure Tropos [22]

 19

9 Representing actor’s relationships

Actors’ relationships are present in most of the i* variations and, in all cases, they are

asymmetric relationships, i.e., if A and B are related actors under the relationship R,

then generally, B is not related with A under R. Traditional actors’ relationships are:

is_part_of, is_a, plays, occupies and covers. However these do not constitute a

complete set. In order to get an abstraction of all these relationships the tag actorLink,

is the construct designed for specifying these actors’ relationships, the attribute type

can be used to specify the relationship. The syntax is specified in table 9.1.

Table 9.1 <actorLink> syntax

actorLinkTag ::= <actorLink type=“actorLink-type“ aref=“string”>

[graphic-path] </actorLink> |

<actorLink type=“actorLink-type“ aref=“string”/>

actorLink-type ::= is_part_of | is_a | instance_of | plays | covers | occupies |

string

Example 9.1 Representing instance_of (INS) and is_a relationships

Ag2

Ag1

W

is_a

instance_of

 20

Example 9.2 The two representations for is_part_of relationship

University

Engineering

Faculty
Dept. of

Computer
Science

is_part_of

is_part_of

a) Using <actorLink>

 21

b) Using nested structures

 22

10 iStarML’s Graphic specification

The possibility of a graphic specification of i* elements is provided. The aim is to offer the

graphic information which allows having a general map of the distribution of the graphic

elements on the plane. Therefore we have defined a basic syntax for a graphic specification

where, the specific shapes of the intentional elements and actors are not specified. However the

shape of the actors’ boundary and the path of the link connections could be declared using a set

of graphic options.

Additionally, we are also consider the XML-based graphic proposal namely Scalar Vector

Graphic (SVG) [24]. This proposal constitutes a contemporary way of representing graphic

information and, moreover, there are several initiatives which provides of end-user applications

and software development tools, such as editors, parsers and browsers among others [25] .

Therefore, we account with two alternative ways of specifying graphic expressions. Both are

present in our EBNF specification showed at table 10.1.

Table 10.1 <graphic> syntax

graphic-diagram ::= <graphic content=“SVG”> svg-content </graphic> |

<graphic content=“basic” g-options-diagram /> |

g-options-diagram ::= xpos=“number” “ypos=“number” width=“number“

height=“number“

[unit=“unit”] [bgcolor=“hexrgbcolor”]

graphic-node ::= <graphic content=“SVG”> svg-content </graphic> |

<graphic content=“basic” g-options-node /> |

g-options-node ::=

xpos=“number” ypos=“number” width=“number“

height=“number“

[unit=“unit”] [bgcolor=“hexrgbcolor”]

[fontcolor=“hexrgbcolor”]

[fontfamily=“string”] [fontsize=“number“]

unit ::= cm | in | pt

 23

graphic-path ::= <graphic content=“SVG”> svg-content </graphic> |

<graphic content=“basic” g-options-path>

<point xpos=“number” ypos=“number” />

<point xpos=“number” ypos=“number” />

{<point xpos=“number” ypos=“number”/>}

</graphic> |

<graphic content=“basic” g-options-shape/>

g-options-shape ::=

xpos=“number” “ypos=“number”

width=“number“ height=“number“

shape=“shape” [unit=“unit”]

[bgcolor=“hexrgbcolor”] [fontcolor=“hexrgbcolor”]

[fontfamily=“string”] [fontsize=“number“]

g-options-path ::=

shape=“irregular” [unit=“unit”]

[bgcolor=“hexrgbcolor”]

[fontcolor=“hexrgbcolor”]

[fontfamily=“string”] [fontsize=“number“]

irregular ::= polyline | spline

shape ::= ellipse | rect

Example 10.1 Basic coordinates in graphic representations

 24

Example 10.2 Combining graphic tags to represent a complete diagram

 25

The way of using SVG in an istarml file is by embedding the istarml’s graphic tag <graphic>

and, inside it, using proper SVG tags. Thus it is possible to keep the i* semantic information

just omitting all the graphic tags and their content. On the other hand, it is possible to have a

graphic representation putting together the different graphic contents of the istarml file.

To keep this specification as simple as possible, we do not go deep in to the SVG specification;

however we illustrate its use by showing some basic examples.

Example 10.3 Basic graphic properties of an i* diagram

<diagram name=“My i* diagram“>

<graphic content=“SVG”>

<svg width="14cm" height="4cm" viewBox="0 0 1200 500">

</svg>

</graphic>

Example 10.4 Graphic display of the title of an i* diagram using SVG

<diagram name=“My i* diagram“>

<graphic content=“SVG”>

<svg width="14cm" height="4cm" viewBox="0 0 1200 500">

<text x="20" y="30" font-family="Verdana" font-size="22" fill="blue" >

 My i* diagram

 </text>

</svg>

</graphic>

Example 10.5 Intentional element with an SVG graphic representation

<ielement name=“Protect my privacy“ type=“softgoal“>

<graphic content=“SVG”>

 <g>

<text x="100" y="210" font-family="Verdana" font-size="30" fill="blue" >

Protect my privacy

 26

</text>

<path fill="none" stroke="#3344FF" stroke-width="2"

 d="M130,100 C210,140 290,140 380,100 S450,350 370,300

 S210,260 120,300 S50,60 130,100"/>

</g>

</graphic>

</ielement>

Figure 10.1 SVG display of the code portion from the example 10.5

Example 10.6 A portion of the diagram extracted from [26] and its iStarML code

 27

 28

Conclusions

iStarML is a XML-based specification which has been presented using the traditional

meta-language in Computer Science named EBNF. This specification has been built

taking in consideration different meta models of the i* constructs. The derivation of

the iStarML tags from the i* core concepts has allowed keeping the language simple

and, at the same time, to consider different language variations using the same

language constructs. For this reason we often open the original set of i* options

adding any string value such a possible well formed value. However, this choice also

allows making strict derivations of iStarML in order to accept only specific variation

of i*.

To implement some parsing services it is possible to use different technologies such

XSD, DTD or even XMI. However, the idea of implementing a non-heavy and fast

specific parser also can be considered.

Moreover, there are some specific situations on the language which are new or

implicit in the context of the defined i* constructs. iStarML adds and implements the

concept of diagram and also it deals with the graphic distribution of the elements in a

diagram. Moreover it is possible to have common elements among different diagrams,

although these common elements, in this version, are restricted to the actor and

ielement tags.

We really hope that this work will be a contribution to the interoperability of the i*

scientific and industrial community. Therefore we are very open to push new

initiatives to walk for the way of improving this approach or developing some

iStarML supporting tool. Any comment, ask for or suggestion will be very welcome.

 29

Appendix A. Complete code of example 10.6

 30

 31

 32

 33

 34

 35

 36

References

[1] D. C. Fallside and P. Walmsley, "XML Schema Part 0: Primer",

http://www.w3.org/TR/xmlschema-0/ last accessed (2004)

[2] E. Yu, "Modelling Strategic Relationships for Process Reengineering", in Computer

Science, vol. PhD. Toronto: University of Toronto, 1995.

[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, "Tropos: An

agent-oriented software development methodology", Autonomous Agents And Multi-

Agent Systems, vol. 8, pp. 203-236, 2004.

[4] J. Castro, M. Kolp, and J. Mylopoulos, "A Requirements-Driven Development

Methodology", Advanced Information Systems Engineering: 13th International

Conference, CAiSE 2001,Interlaken, Switzerland, pp. 108-123, 2001.

[5] L. Cernuzzi, M. Cossentino, and F. Zambonelli, "Process models for agent-based

development", Engineering Applications of Artificial Intelligence, vol. 18, pp. 205–

222, 2005.

[6] K. H. Dam and M. Winikoff, "Comparing agent-oriented methodologies", in Agent-

Oriented Information Systems, vol. 3030, Lecture Notes In Computer Science. Berlin:

Springer-Verlag Berlin, 2003, pp. 78-93.

[7] J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf, "Evaluation of Agent–

Oriented Software Methodologies – Examination of the Gap Between Modeling and

Platform", AOSE 2004. Lecture Notes in Computer Science, vol. 3382, pp. 126-141,

2005.

[8] "GRL - Goal Oriented Requirement Language", http://www.cs.toronto.edu/km/GRL/

last accessed September 20, 2005 (n.d.)

[9] "Z.150: User Requirements Notation (URN) - Language requirements and framework

", http://www.itu.int/rec/ recommendation.asp?type =folders&lang =e&parent= T-

REC-Z.150 last accessed Sept)

[10] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, "Requirements

Engineering Meets Trust Management, Model, Methodology, and Reasoning",

Lecture Notes in Computer Science, vol. 2995, pp. 176-190, 2004.

[11] L. Liu, E. Yu, and J. Mylopoulos, "Security and Privacy Requirements Analysis

within a Social Setting", presented at International Conference on Requirements

Engineering (RE’03), Monterey, California, USA, 2003.

[12] H. Mouratidis, M. Weiss, and P. Giorgini, "Security Patterns Meet Agent Oriented

Software Engineering: A Complementary Solution for Developing Secure

Information Systems ", in Conceptual Modeling – ER 2005: 24th International

Conference on Conceptual Modeling, vol. 3716, Lecture Notes in Computer Science,

L. Delcambre, C. Kop, H. C. Mayr, J. Mylopoulos, and O. Pastor, Eds.: Springer

Verlag, 2005, pp. 225 - 240.

[13] A. Fuxman, L. Liu, J. Mylopoulos, and M. Pistore, "Specifying and analyzing early

requirements in Tropos", Requirements Engineering, vol. 9, pp. 132-150, 2004.

[14] G. Grau, X. Franch, E. Mayol, C. Ayala, C. Cares, J. P. Carvallo, M. Haya, F. J.

Navarrete, P. Botella, and C. Quer, "RiSD: A Methodology for Building i* Strategic

Dependency Models", presented at Proc. of the 17th Int. Conf. on Software

Engineering and Knowledge Engineering (SEKE’05), Taipei, Taiwan; China, 2005.

[15] E. Yu, "Modeling organizations for information systems requirements engineering",

Proceedings of IEEE International Symposium on Requirements Engineering. San

Diego, CA, USA, pp. 34-41, 1993.

 37

[16] G. Grau, C. Cares, X. Franch, and F. Navarrete, "A Comparative Analysis of i*

Agent-Oriented Modelling Techniques", presented at 18th International Conference

on Software Engineering and Knowledge Engineering (SEKE'06), San Francisco,

California, USA, 2006.

[17] M. Kolp, P. Giorgini, and J. Mylopoulos, "Organizational Patterns for Early

Requirements Analysis ", Lecture Notes in Computer Science, vol. 2681, pp. 617-

632, 2003.

[18] P. Donzelli, "A goal-driven and agent-based requirements engineering framework",

Requirements Engineering, vol. 9, 2004.

[19] R. Sethi, Programming Languages: Concepts and Constructs (2nd edition). Addison

Wesley, 1996.

[20] P. Donzelli and R. Setola, "Handling the knowledge acquired during the requirements

engineering process - a case study -", presented at Proceedings of the 14th Software

Engineering and Knowledge Engineering Conference, SEKE'02, Ischia, Italy, 2002.

[21] F. Sannicolo, A. Perini, and F. Giunchiglia, "The Tropos Modeling Language. A User

Guide", Informatica e Telecomunicazioni, University of Trento., Technical Report

DIT-02-061, 2002.

[22] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, "Modeling Social and

Individual Trust in Requirements Engineering Methodologies", Lecture Notes in

Computer Science, vol. 3477, pp. 161–176, 2005.

[23] C. Cares, X. Franch, and E. Mayol, "Extending Tropos for a Prolog Implementation:

A Case Study Using the Food Collecting Agent Problem (Award)", presented at Sixth

International Workshop Computational Logic in Multi-Agent Systems, London, UK,

2005.

[24] "Scalable Vectors Graphics, SVG", http://www.w3.org/TR/SVG11/ last accessed

July 1, 2007 (2003)

[25] "SVGI, Scalable Vector Graphics Implementations", http://www.svgi.org/ last

accessed July 1, 2007

[26] C. Cares, X. Franch, and E. Mayol, "Using Antimodels to Define Agents' Strategy",

Lecture Notes in Computer Science, vol. 4371, pp. 284-293, 2006.

