
Departament of Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

State of the Art

for the Systematic Construction

and Analysis of i* Models for
assessing COTS-Based Systems

Development

Author:

Gemma Grau Colom

Barcelona, November 2006

Abstract

This document presents the state of the art related with the systematic construction and
analysis of i* models for assessing COTS-based systems development. The fist section
presents an overview of the Component-Based Systems (CBS) development processes.
As components are part of the architecture of the system, the second section introduces
the evaluation of software architectures. The i* framework has been proved useful on
the representation and evaluation of software architectures, including those containing
COTS, the third section presents the i* framework and some other requirements
engineering techniques. As the i* framework is agent-oriented, and so, the fourth
section presents an overview of agent-oriented paradigm. Finally, as CBS development
is an activity that seldom takes place from the scratch, we can tackle it as a process
reengineering activity, because of that, section 5 outline the main issues in business
process reengineering.

Table of Contents

1. Overview of the CBS Development Process.. 3

1.1. Introduction to the CBS development paradigm .. 3
1.2. The COTS Selection Process.. 4
1.3. Interoperability Issues .. 6
1.4. COTS Integration Support.. 7
1.5. Remarks .. 8

2. Evaluating Software Architectures... 9

2.1. The Importance of Software Architectures .. 9
2.2. Architecture Description Languages .. 10
2.3. Software Architecture Evaluation .. 11
2.4. Remarks .. 16

3. The i* Framework .. 17

3.1. Goal-Oriented Requirements Engineering ... 17
3.2. The i* Framework .. 18
3.3. i* Methodologies .. 20
3.4. Some i* and Goal-Oriented Evaluation Techniques 23
3.5. Applications of the i* Framework .. 23
3.6. Remarks .. 24

4. The Agent-Oriented Paradigm.. 25

4.1. Introduction to the Agent-Oriented Paradigm.. 25
4.2. Agent-Oriented Software Engineering ... 26
4.3. Agent-Oriented Methodologies .. 27
4.4. Comparing and Evaluating Agent-Oriented Methodologies 31
4.5. Remarks .. 31

5. Business Process Reengineering .. 32

5.1. What is Business Process Reengineering? ... 32
5.2. Modelling Business Process Reengineering Processes 33
5.3. Methodologies for Business Process Reengineering...................................... 35

5.3.1. Goal-Oriented Business Process Reengineering Methodologies 36
5.3.2. Generation and evaluation of alternatives .. 37
5.3.3. Formal specification and execution of processes 38

5.4. Remarks .. 38

6. References .. 40

1. State of the Art: Overview of the CBS Development Process

 3

1. Overview of the CBS Development Process

1.1. Introduction to the CBS development paradigm

The growing importance of the COTS-Based Systems (hereafter, CBS) development
paradigm is mainly due to the benefits it provides in terms of quality, development time
and cost; especially when delivering large, complex systems. However, CBS
development also implies some risks such as the ones related to complications in the
development or post-deployment situations [Abts-et-al. 2000]. Thus, development of
CBS requires the application of well-disciplined systematic methodologies, especially
in the activities of selection and evaluation.

Nowadays, software development processes for CBS are largely studied and there is a
significant body of knowledge that identifies issues and proposes frameworks for
improving them. For instance, in [Brownsword-et-al. 2000] the changes required to
address the CBS development are identified taking into account real-life lessons and a
framework is articulated for organizing the new and changed process elements. In
[Morisio-et-al. 2000] a report is done about adopted COTS-based processes and a new
one is proposed.

According to COCOTS (Constructive COTS integration cost model) [Abts-et-al. 2000]
the initial integration cost in the development of CBS is mainly due to the effort needed
to perform:

1. Candidate COTS component assessment, where COTS candidates are
determined based on the functional requirements (capability offered),
performance requirements (timing and sizing constraints) and non-functional
requirements (cost, training, installation, maintenance, reliability).

2. COTS component tailoring.
3. The development and testing of any integration or clue code needed to plug a

COTS component into a larger system, and
4. Increased system level programming and testing due to volatility in incorporated

COTS components.

From this list it can be observed that, in CBS development, early evaluation and
selection of candidate COTS components is a key aspect on the system development
lifecycle. As remarked in [Ncube-Maiden 1999], the selection of suitable COTS
products is often a non-trivial task and requires careful consideration of multiple
criteria. Additionally, COTS are not designed to operate isolated and, when selecting a
COTS, the dependencies and interactions with the other components of the system, has
also to be considered [Franch-Maiden 2003].

Because of that, integration cost has also to be taken into account when informing a
COTS selection process. More precisely, a good estimate of integration cost can inform
the decision of using or not an specific COTS solution, the selection of the best COTS

Gemma Grau Colom

 4

products, and to determine the amount and type of glueware that needs to be built
[Yakimovich-et-al. 1999].

1.2. The COTS Selection Process

According to [Kunda-Brooks 1999], there are three phases of COTS software selection:

� Evaluation criteria definition. This process essentially decomposes the

requirements for the COTS into a hierarchical criteria set. The criteria include
component functionality (what services are provided), other aspects of a
component’s interface (such as the use of standards) and quality aspects that are
more difficult to isolate, such as components reliability, predictability, and usability.

� Identification of candidate components. Also known as alternatives identification,
the identification of candidate components involves the search and screening for
candidate COTS that should be included for assessment in the evaluation phase.

� Evaluation of the criteria for these candidates. There are currently three
strategies to COTS evaluation:

 Progressive filtering is a strategy whereby a COTS product is selected from a
larger set of potential candidates, in which products that do not satisfy the
evaluation criteria are progressively eliminated from the products list.

 In keystone strategy, products are evaluated against a key characteristic such
as a vendor or type of technology.

 In the puzzle assembly model, a valid COTS solution will require fitting the
various components of the system together.

The evaluation criteria definition phases assume that the requirements for the COTS
have already been obtained. However, when doing CBS development, it is impossible to
find a single product that meets all the requirements obtained from the stakeholders, and
the requirements acquisition process has to take into account the capabilities offered by
the different vendors. To tackle this problem, quality models [Franch-Carvallo 2003]
are useful as: the attributes for a certain kind of component are described in a
hierarchical way; COTS products are evaluated according to that description;
requirements are stated using the attributes as a basis; and, then, the more appropriate
product is selected by matching.

Nevertheless, if the organization needs more capabilities than the ones offered by a
single COTS supplier, the CBS may have to integrate several COTS which have to
interoperate together to provide this functionality. The impact of using different COTS
components is expected to vary with the domain: for business applications a large,
pervasive COTS product may be used to deliver one or more requirements (e.g., MS
Office, Oracle, Netscape, etc.); when a de facto standard product is used, the COTS
capabilities determine the requirements [Abts-et-al. 2000]; finally, for embedded real
time of safety critical domains, the COTS components are expected to be smaller and
require large amounts of glue code to integrate the set of components [Chung-
Subramanian 2001].

As work has progressed in the area of COTS research, specific solutions have been
proposed to address some of these COTS selection issues. Table 3.1 presents a summary

1. State of the Art: Overview of the CBS Development Process

 5

with some of the most important proposals and the phases they mainly address, more
information about this methods can be found in:
� OTSO: Off-The-Shelf Option Method [Kontio 1996]
� STACE: Social-Technical Approach to COTS Evaluation framework [Kunda-

Brooks 1999]
� PORE: Procurement-Oriented Requirements Engineering technique [Maiden-Ncube

1998].
� COSTUME: COmposite SofTware system qUality Model dEvelopment [Carvallo-

Franch-Grau-Quer 2004]
� MATE: Middleware Architecture and Technology Evaluation [Gorton-Liu 2002]
� The CARE (COTS-Aware Requirements Engineering) process [Chung-Kooper

2004]

Table 3.1. Summary of methodologies dealing with COTS selection.

Methods Main Focus Requirements
Acquisition

Evaluation
Criteria

Definition

Candidate
Components
Identification

Evaluation
of

Candidates

OTSO
Hierarchical

evaluation criteria
definition

- 9 ~ 9

STACE Social and
organizational issues - 9 - -

PORE Iterative process
based on templates 9 9 ~ 9

MATE Selection of COTS
middleware products 9 9 9 9

COSTUME Non-functional
Requirements 9 9 9 9

CARE agent and goal-
oriented methodology 9 ~ 9 -

(9) addresses the issue fully (~) deals with the issue but not fully (-) does not deal with the issue

During the COTS selection processes, functional and non-functional requirements have
to be taken into account. Additionally, as COTS components are continually evolving in
response to the market, methodologies that cost-effectively manage the use of those
evolving components have to be adopted [Abts-et-al. 2000]. As pointed out in [Alves-
Castro 2001], COTS selection processes deals with the following 4 dimensions:

� Domain Coverage. The components have to provide all or part of the required

capabilities, which are necessary to meet core essential customer’s requirements.
� Time restriction. Software companies usually operate in a very rigid development

schedule, on which their competitiveness depends. Selection is a time consuming
activity, where a considerable amount of time is necessary to search and screen all
the potential COTS candidates.

� Cost rating. The available budget is a very important variable. The expenses when
selecting COTS products will be influenced by factors such as: license acquisition,
cost of support, adaptation expenses, and maintenance prices. [Boehm-et-al. 1998]
provides an economic model for estimating the cost of COTS-based system
development.

 Vendor guaranties. An important aspect to be considered in the selection activity is
to verify the technical support provided by the vendor. Some issues have to be taken
into account, for example: vendor reputation and maturity, number and kind of

Gemma Grau Colom

 6

applications that already use the COTS, clauses characteristics of the maintenance
licenses.

1.3. Interoperability Issues

In CBS development, COTS have to be integrated in order to provide its capabilities.
According to [Bao-Horowitz 1996] integrations approaches are:
� White Box: users must have access to the source code of third-party software in

order to modify it and add in whatever functionalities needed for the integration.
� Grey Box: requires that the third-party vendors foresee the integration requirements

and provide needed APIs or message interfaces when they build software for the
users.

� Black Box: relies on command-line options and it gets input and output only at the
starting and ending time of the application.

The usage of COTS software restricts somehow the use of this integration approaches
because, most of the times, COTS product source code is not available to the
application developer, and the future evolution of the COTS product is not under the
control of the application developer [Abts-et-al. 2000]. This fact constraints the
integration of COTS products onto a Black Box approach. However if in-house
developed software or open-code components are interacting with the COTS, other
approaches may be applied.

These lead to two different options to achieve interoperability, which are mentioned in
[Sauer-et-al. 2000]:
� Heterogeneous software is transformed into an agreed format in order to

interoperate in a common domain; or
� Interfaces of heterogeneous software are adopted into a common interoperable

ground, leaving the implementations in their original language, domain, and
bindings.

The first option applied to COTS means that only the products providing a certain
interoperability format are adopted (sometimes vendors may adapt its interfaces to
required software in a grey box approach). The second option is a pure black approach
where glue code and middleware products are used. However, these solutions cannot be
so easily tackled, as the major reasons that cause difficulty in COTS integration still
being, according to [Bao-Horowitz 1996]:
� Unique constraints of third-party software (inadequacy of integration interfaces,

closeness for the system architecture, lack of access to the source code…)
� Interactive nature of most of software applications today (graphical user interface,

incremental input and output, interpretative execution…)
� Increasing emphasized new integration requirements (broad framework

applicability, general encapsulation scheme, strong support for system evaluation,
component reusability, end-user programmability…)

1. State of the Art: Overview of the CBS Development Process

 7

1.4. COTS Integration Support

The difficulties in COTS integration make the integration phase of CBS development at
a high risk. Because of that, COTS integration support is needed. Some general
considerations about COTS interoperability can be found in [Yakimovich-et-al. 1999],
including a method for estimating its cost. More general foundations about
interoperability problems can be found in [Guo 2000]. Finally, case studies are also
useful [Balk-Kedia 2000; Warboys-et-al. 2005].

In order to solve interoperability issues, [Yakimovich-et-al. 1999] mentions the
interaction between components as the origin of the integration problem, which are
general for all kind of components (including COTS). Four types of interaction are
defined:
� Component-platform interactions. A component must be executed somewhere. It

can be either a real processor with an operating system for binary executables, or a
virtual one. If an executable program was compiled for one type of CPU, it will
need an emulator or a code converter in order to run it on another CPU.

� Component-hardware interactions. A component can interact directly with hardware
writing-reading from ports. If the port’s numbers are different from what is expected
by the component, the component must undergo some modification.

� Component-user interactions. A component’s user interface requirements may also
change. For example, a component can have its messages in one language, when the
system requires another language.

� Component-software interactions. A component almost always interacts with other
software components, and there can be mismatches between the components. A set
of possible mismatches between components: representation, communication,
packaging, synchronization, semantics, control, etc.

In the component-software interaction level, “every component is designed with
assumptions concerning its interactions, and the assumptions strongly depend on the
particular architecture” [Yakimovich-et-al. 1999]. Architectural assumptions that can
cause mismatches in component interaction are defined in [Garlan-et-al. 1995]. These
assumptions are about the nature of the components (infrastructure, control model and
data model), the nature of the connectors (protocols and data model), the global
architecture structure and the construction process.

In order to deal with these assumptions, [Yakimovich-et-al. 1999] proposes a set of
variables to represent inter-component interactions, which are: component packaging,
type of control, information flow, synchronization and component binding. Based on
them, the main architectural styles can be classified. Table 3.2 shows the results of this
classification.

Table 3.2. Common architectural styles and their classification according to a relevant set of variables.
Obtained from [Yakimovich-et-al. 1999].

 Packaging Control Information Flow Synchronization Binding
Pipes and Filters Not relevant Not relevant Data Not relevant Dynamic
Main program
and subroutine Not relevant Centralized Control Synchronous Static

Gemma Grau Colom

 8

OO Systems Not relevant Centralized Control Synchronous Dynamic
Communicating
processes Not relevant Decentralized Not relevant Not relevant Not

relevant
Event Systems Not relevant Decentralized Control Not relevant Dynamic
Blackboards Not relevant Not relevant Data Not relevant Static

Chiron-2 (C2)
Depends on
language
supported

All types Data (messages) All types Dynamic

CORBA
Depends on
languages
supported

Decentralized Control (RPC) All types Run-time
dynamic

COM
Depends on
languages
supported

Decentralized Control All types Run-time
dynamic

A similar evaluation of approaches to software interoperability can be found in [Guo
2000]. Despite this evaluated approaches are not explicitly focus on COTS (it evaluates
Wrappers, Data Mediators, Data Replicators, Data Translators, Messaging, ORBs and
JINI), the evaluation criteria can be applied to a COTS context (in terms of
Performance, Reliability, Speed to field, Extendibility, Maintainability, Security).

In order to deal with COTS integration, also published case studies are useful. For
instance [Balk-Kedia 2000] presents a COTS integration case study where the CBS was
composed by COTS already available in the organization. As a result, the selection of
COTS and the testing of the products are simplified, whilst the integration phase has
become the most costly. A proposal for flexible COTS integration is in [Warboys-et-al.
2005], and consist of a framework for adapting software in dynamic environments such
as the ones constructed with COTS products. The framework proposes an architecture
that allows interoperability between the different components by means of a specific
Architecture Description Language.

1.5. Remarks

The mentioned process and methodologies deal with to different phases of the CBS
development. Some of them tackle the evaluation of COTS components for choosing
the most suitable, whilst the others provide guidelines for the COTS integration process.
Despite some selection methods take into account COTS interoperability, as far as we
know, none of them takes into account the interoperability issues in a direct way.

However, we strongly believe that taking into account interoperability issues in the
COTS selection assessment phase, will certainly provide a better assessment of the
architecture of COTS and, as a result, the cost of the integration phase may be reduced.
For doing so, we need to take the COTS architecture into account and provide a way to
represent it and evaluate it. To address this issue, the next section provides some
considerations about architecture representation and evaluation.

2. State of the Art: Evaluating Software Architectures

 9

2. Evaluating Software Architectures

2.1. The Importance of Software Architectures

“Software architecture is a growing field of research and practice within software
engineering. This is mainly due to the fact that there is proof of evidence of causal
connections between design decisions made in the architecture and the qualities and
properties that result downstream in the system or systems that follow from it”
[Clements-et-al. 2002].

Although being widely studied, there is no standard definition about what is software
architecture. However, two definitions are commonly cited:

The software architecture of a program of computing system is
the structure of structures of the system, which comprises
software components, the externally visible properties of those
components, and the relationship among them.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, 1998. Page 279.

Abstractly, software architecture involves the description of
elements from which systems are built, interactions among those
elements, patterns that guide their composition, and constraints
on this patterns. In general, a particular system is defined in
terms of a collection of components and interactions among
those components.

M. Shaw and D. Garlan. Software Architecture – perspectives on an emerging
discipline. Prentice-Hall, Inc., 1996. Page 1.

Software architecture deals with the description of the structure of a software system’s
and, as pointed out in [Bass 1998], embodies the most fundamental and hardest to
change design decisions. Due to this fact and according to [Clements-et-al. 2002],
software architecture has a strong determining effect on: the system’s realization of
quality attributes (e.g., performance, modifiability, availability or security); the work
breakdown structure of the developments which is determined by the modules or
subsystems within the architecture; and the planning for a software product line which
is based upon a common architecture and a set of shared assets.

Another point to be taken into account is that early design decisions made in the
architecture result in constraints on an implementation. For example, [Clements-et-al.
2002] states that such constraint is the choice of commercial components that can be
easily integrated. Although interoperability protocols exist, choosing any commercial
component will affect the choice of the other components that will be employed.

Finally, in large, complex, software intensive systems, software architecture is
especially important as it provides a link between the different elements of the project.

Gemma Grau Colom

 10

For instance, [Clements-et-al. 2002] mentions that software architecture is a vehicle for
communication among stakeholders; the manifestation of the earliest design decisions;
and a reusable, transferable abstraction of a system.

Software architectures capture early design decisions that reflect major quality
concerns, including functionality. On the other hand, during system design quality
requirements has to be taken into account because early decisions have an impact on the
final qualities and properties of the system. According to [Clements-et-al. 2002],
architectural decisions can be analysed in the context of the goals and requirements that
are levied on systems that will be build from it.

In order to obtain the benefits of architecture analysis specification languages and
analysis techniques are needed [Medvidovic-Taylor 1997]. The following sections
introduce several issues for describing architectures and evaluate software architectures
are analysed.

2.2. Architecture Description Languages

According to [Clements-et-al. 2002], the main factors of software architecture’s success
are: improved communication from one stakeholder to another; assisted analysis by
describing the right information; and being build from the blueprints that the
architectural description represents. Consequently, specification languages are needed
to demonstrate properties of a system upstream, thus minimizing the costs of errors and
to provide abstractions adequate for modelling a large system, while ensuring sufficient
detail for establishing properties of interest [Medvidovic-Taylor 1997].

In order to answer to that need, a large number of architecture description languages
(ADLs) has been proposed. However, since it’s not the goal of this state of the art to
report and compare all the existing languages as this has already been done in [Clements
1996; Medvidovic-Taylor 1997; Medvidovic-Taylor 2000]. Instead, we provide an
enumeration of the elements of an ADL and some guidelines for distinguish ADLs from
other languages.

As stated in [Vestal 1993], “an ADL for software applications focuses on the high-level
structure of the overall application rather than the implementation details of any specific
source module”. Thus, according to [Medvidovic-Taylor 1997; Medvidovic-Taylor
2000], ADLs typically subsumes a formal semantic theory and provide both a concrete
syntax and a conceptual framework for modelling software system’s conceptual
architecture. Concretely, [Coyette 2003] proposes a state-of-the-art ontology that
contains the essential aspects of a system architecture that any ADL should be able to
specify. The proposed definitions are based on the most relevant architectural
characteristics and requirements in literature. The following concepts are defined:
� Components. Units of computation or data stores. A component in architecture may

be as small as a single procedure or as large as an entire application. It may require
its own data and/or execution space, or it may share it with other components.

� Interfaces. Set of interaction points among itself and the external world. All ADLs
support specification of component interfaces, although they differ in the
terminology and the kinds of information they specify.

2. State of the Art: Evaluating Software Architectures

 11

� Connectors. They are used to model interactions among components and the rules
that govern those interactions. The notion of connection varies among languages.

� Configurations. Connected graphs of components and connectors that describe
architectural structure. Configurations are needed to determine whether appropriate
components are connected, their interfaces match, and their combined semantics
result in desired behaviour. Descriptions of configurations enable assessment of
concurrent and distributed aspects of architecture, adherence to design heuristics and
style constraints.

� Constraints. Properties or assertions about a system, the violation of which will
render the system unacceptable to one or more stakeholders. Constraints ensure
adherence to intended component uses, enforce usage boundaries, and establish
intra-component dependencies.

� Hierarchical compositions. They represent architectures as single components in
other larger architectures.

In order to distinguish ADLs for other high-level design languages, [Medvidovic-Taylor
1997; Medvidovic-Taylor 2000] adds the requirement that ADLs have to model the
configurations explicitly. Hence, those languages where configurations are modelled
implicitly through interconnection information are not considered ADLs, and fall into
the category of implicit configuration languages. On the other hand, in-line and explicit
configuration languages are ADLs, and model configurations explicitly, with the
difference that in-line configuration languages specify connector information only as
part of the configuration whilst explicit configuration languages model both
components and connectors separately from configurations.

Using the requirement that configurations had to be modeled explicitly, high-level
design notations, programming languages, object-oriented modelling notations and
formal specification languages are not considered ADLs. However, they may serve as
useful tools when dealing with certain aspects of the architecture. For instance, this is
the case of Use Case Maps (UCM) and i*. In [deBruin-vanVliet 2002] UCM had been
used for generating alternative software architectures because they provide stubs where
the behaviour of a system can be varied statistically at construction time as well as
dynamically at run time. The i* framework has also been used as a modelling languages
to assess architecture evaluation in [Chung-Nixon-Yu 1999; Bastos-Castro 2003] as it
allows to focus more on the business process and non functional requirements of the
application.

As a conclusion, we mention the fact that each ADL focuses on different aspects of the
architectural description and analysis. Because of that, none of them has widely adopted
[Clements-et-al. 2002; Medvidovic-Taylor 2000].

2.3. Software Architecture Evaluation

According to [Clements-et-al. 2002], early design decisions of architecture allows or
preclude nearly all of the system’s quality attributes. Thus, architecture evaluation is
becoming an accepted engineering practice because of the enormous risks that
architecture represents in a development project.

Gemma Grau Colom

 12

The evaluation of software architectures may be done at any cycle of the architecture’s
lifetime. However, the more earlier it is performed, the more helpful is for dealing with
opportunities and risks. Because of that, the classical application of architecture
evaluation takes places after the specification of the architecture, but before beginning
its implementation. An early evaluation is done when the evaluation is made before the
architecture is fully specified; whilst a late evaluation takes place when the
implementation is complete (usually when an organization inherits some sort of legacy
system).

Depending on the stage of the architecture where the evaluation takes place, different
techniques can be applied. Questioning techniques are appropriate in every state of the
architecture lifecycle. On the other hand, measuring techniques require some artefact to
be measured. Finally, hybrid techniques combine elements of both approaches and their
application depends on the applicability conditions of the specific technique. Table 3.3
shows a classification and comparison table showing the main characteristics of each
approach, which have been obtained from [Clements-et-al. 2002]. Other works that
compare software architecture analysis methods are [Babar-Gorton 2004; Dobrica-
Niemelä 2002].

Table 3.3. Evaluation techniques compared. Obtained from [Clements-et-al. 2002].

Technique Quality Attribute(s) Covered Approach(es) Used When applied

Questioning
Techniques

Allow to investigate any area of
project in virtually any state of
readiness.

Questionnaires and
Checklists Various Predefined domain-specific

questions

Can be used to prompt
architect to take certain design
approaches, or any time
thereafter.

Scenario-based
methods

Various: either non-run-time
attributes such as modifiability or
run-time attributes such as security.

SAAM Modifiability,
Functionality

ARID Suitability of Design
SNA Security

System specific scenarios to
articulate specific quality attribute
requirements; scenario
walkthroughs to establish system
response

When architecture design is
complete enogh to allow
scenario walk-thoughts

Measuring
Techniques

Requires the existence of some
artifact to measure.

Metrics Various: often emphasize
modifiability and reliability Static analysis of structure After architecture has been

designed
Simulations,
Prototypes,
Experiments

Various: often emphasize
performance, functionality, usability

Measurement of the execution of an
artifact

After architecture has been
designed

RMA Performance oriented to real-time
systems Quantitative static analysis

After the process model has
been built and process-to-
processor allocations have
been done.

ADLs Various: tend to concentrate on
behaviour and performance Simulation, symbolic execution When architectural

specifications are complete

Hybrid Techniques Combine elements from questioning
and measuring techniques.

SPE Performance Scenarios and quantitative
statistical analysis

When performance constraints
have been assigned to
architectural components.

ATAM

Not oriented to any particular
quality attributes, but historically
emphasizes modifiability, security,
reliability and performance

Utility trees and brain-stormed
scenarios to articulate quality
attribute requirements; analysis of
architectural approaches to identify
sensitivities, trade-off points, and
risks.

After the architectural design
approaches has been chosen.

2. State of the Art: Evaluating Software Architectures

 13

Definitions of some of the attributes that can be evaluated in software architectures are
stated in table 3.4.

Table 3.4. Quality attributes for evaluation purposes. Definition from [Clements-et-al. 2002].

Availability
Availability is the proportion of time the system is up and running. It is measured by the length of time between
failures as well as how quickly the system is able to resume operation in the event of failure.
Conceptual Integrity
Conceptual integrity is the underlying theme or vision that unifies the design of the system at all levels. The
architecture should do similar things I similar ways. Conceptual integrity is exemplified in an architecture that
exhibits consistency, has a small number of data and control mechanisms, and uses a small number of patterns
throughout to get the job done.
Functionality
Functionality is the ability of the system to do the work for which it was intended. Performing a task requires that
many or most of the system’s components work in a coordinated manner to compete the job. It can be understood in
terms of how the architectural pieces interact and cooperate with each other to perform the system’s work.
Modifiability
Modifiability is the ability to make changes to a system quickly and cost effectively. It is measured by using specific
changes as benchmarks and recording how expensive those changes are to make.
Performance
Performance refers to the responsiveness of the system – the time required to respond to stimuli (events) or the
number of events processed in some interval of time. Performance qualities are often expressed by the number of
transactions per unit time or by the amount of time it takes to complete a transaction with the system. Performance
measures are often cited using benchmarks, which are specific transaction sets or workload conditions under which
the performance is measured.
Portability
Portability is the ability of the system to run under different computing environments. These environments can be
hardware, software, or a combination of the two. A system is portable to the extent that all of the assumptions about
any particular computing environment are confined to one component (or at worst, a small number of easily changed
components). If porting to a new system requires change, then portability is simply a special kind of modifiability.
Reliability
Reliability is the ability of the system to keep operating over time. Reliability is usually measured by mean time to
failure. If reliability is important, then the architecture needs to provide redundant components with warm or hot
restart protocols among them.
Security
Security is a measure of the system’s ability to resist unauthorized attempts at usage and denial of service while still
providing its services to legitimate users. Security is categorized in terms of the types of threats that might be made to
the system.
If Security is a consideration, then you need to pay attention to inter-component communication and data flow and
perhaps introduce special components (such as secure kernels or encrypt/decrypt functions) or impose authentication
protocols between processes.
Subsetability
Subsetability is the ability to support the production of a subset of the system. While this may seem like an odd
property of an architecture, it is actually one of the most useful and most overlooked. Subsetability can spell the
difference between being able to deliver nothing when schedules slip versus being able to deliver a substantial part of
the product. Subsetability also enables incremental development, a powerful development paradigm I which a
minimal system is made to run early on and functions are added to it over time until the whole system is ready.
Subsetability is a special kind of variability mentioned above.
Variability
Variability is how well the architecture can be expanded or modified to produce new architectures that differ in
specific, preplanned ways. Variability mechanisms may be run-time (such as negotiating on the fly protocols),
compile-time (such as setting compilation parameters to bind certain variables), build-time (such as including or
excluding various components or choosing different versions of a component), or code-time mechanisms (such as
coding a device driver for a new device). Variability is important when the architecture is going to serve as the
foundation for a whole family of related products, as in a product line.

As it is proved that evaluating architecture at the early phases is very effective to assess
system development, this work focus in evaluating architectures at an early stage. In this
situation, scenario-based architecture evaluation is the most adequate. There are several
kinds of scenarios that can be used to clarify different aspects of the architecture:

Gemma Grau Colom

 14

� Use case scenarios. Come up from the description of the interaction between the
user and the competed running system. They are used to obtain non-functional
requirements.

� Growth scenarios. Represent typical anticipated change to a system. “Thus, they
concern the present set of requirements as well as possible extensions or changes.
The latter are especially useful to assess the architecture with respect to structural
aspects such as flexibility or modifiability” [deBruin-vanVliet 2002].

� Exploratory scenarios. They expose the limits or boundary conditions of the
current design, exposing possibly implicit assumptions.

The goal of this thesis is not to describe all the scenario-based architecture evaluation
methods, but due to its relevance two of them are explained:
� SAAM (Software Architecture Analysis Method) [Kazman-et-al. 1994]; and
� ATAM (Architecture Trade-off Analysis Method) [Clements-et-al. 2002].

The Software Architecture Analysis Method (SAAM) [Kazman-et-al. 1994] evaluates
software architectures against the desired software attributes and permits the
comparison of different software architectures with respect to given properties. SAAM
has to be applied once a high-level design of the architecture has been made, so the
software architecture design, the business drivers and quality requirements are the main
inputs of the method. The six activities of SAAM are: 1) scenario development; 2)
software architecture description; 3) scenario classification and prioritization; 4)
individual scenario evaluation; 5) scenario interaction; and 6) overall evaluation. In the
case of comparing multiple software architectures, weightings are assigned to scenarios
in order to determine the overall ranking of the different software architectures. SAAM
evaluates scenarios by mapping each scenario onto the software architecture, and
checking if the software architecture supports or not the scenario. If the scenario is not
supported, the cost of accommodating this scenario is estimated by counting the number
of required changes. Scenario interaction analysis reveals if many indirect scenarios
affect the same component, a sign of poor separation of concern.

The Architecture Trade-off Analysis Method (ATAM) [Clements-et-al. 2002] has
superseded, in some aspects, SAAM. ATAM permits the analysis of software
architectures capabilities with respect to multiple quality attributes; and helps to make
trade-offs between competing attributes. Although ATAM is applicable during any
stage of the software development, it is most effective when applied to the final version
of software architecture. The inputs for applying ATAM are: business goals, software
specifications and software architecture description. ATAM provides a whole
framework for the application of the method. Table 3.5 contains the main steps of the
ATAM method and the actions performed, techniques used and main inputs and outputs
of each step. Notice that the nine activities of ATAM are repeated in two phases: in the
first one only selected stakeholders are involved, whilst in the second one a wide range
of stakeholders are requested.

2. State of the Art: Evaluating Software Architectures

 15

Table 3.5. The process model of ATAM.

Phase Step Actions Resources used Outputs
Phase 1: Initial Evaluation

Step 1

Present the ATAM
 ATAM presentation viewgraphs -

Step 2

Present the business
drivers

System overview presentation
documents, if available from
client

Business goals
Quality Attributes of Interest

Step 3 Present the
architecture

Sample quality attribute
characterization

Summary of architecture
presentation

Step 4
Identify the
architectural
approaches

Catalogue of architectural
approaches and architectural styles architectural approaches

Step 5 Generate the quality
attribute utility tree Sample utility tree Quality attributes and prioritized

scenarios

Step 6
Analyze the
architectural
approaches

Analysis of an architectural
approach template

Risks, nonrisks, sensitivity points
and tradeoff points

Phase 2: Complete Presentation

Step 1-6 Recapitulation of
phase I - Understanding of phase I outcomes

Step 7 Brainstorm and
prioritize scenarios

Scenarios and utility tree from
step 5.

Prioritized scenarios
Augmented quality tree

Step 8
Analyse the
architectural
approaches

Analysis on how architectural
components involved affect each
scenario

Risks, sensitivities and tradeoff
points

Step 9 Present Results Template for presentation results -

ATAM does not prescribe any specific evaluation techniques and uses various
theoretical models of the quality attribute communities, applies qualitative reasoning
heuristics, architectural patterns, and several kinds of scenarios.

One of the techniques used by ATAM is the application of architectural patterns and
styles, which are especially useful for generating alternative architectures. Architectural
patterns and styles represent partial design structures by grouping structural and
behavioural aspects with the quality properties provided. Architectural patterns are
described in terms of its components, connectors, topology, and constraints. This
situates them at a low lever of representation of the architecture than the one needed in
this document, some references about them may be found in [Klein-Kazman 1999].

In most of the evaluation methods, quality requirements are used as a basis for
evaluating the architecture. Consequently, as the requirements engineering community
is moving towards a goal-oriented approach [vanLamsweerde-et-al. 1992], there are
also some evaluation proposals that take into account, not only the requirements, but
also the goals and rationale behind them. An example of goal-oriented architecture
evaluation is [Chung-Nixon-Yu 1999]. The method proposes to take into account the
dependencies between quality goals and architectural styles. On the one hand,
organizational and stakeholders relationship is taken into account by using the i*
framework [Yu 1995] to model and reasoning about strategic relationships. On the other
hand, quality requirements are represented and addressed during architectural design by
applying the NFR framework [Chung-Nixon-Yu 2000].

Standing on a similar basis, [Kolp-et-al. 2001; Kolp-et-al. 2003; Bastos-Castro 2003]
also use the i* framework to describe the organizational relationships among the
different agents of a system, and the NFR framework [Chung-Nixon-Yu 2000] to

Gemma Grau Colom

 16

evaluate alternative architectures. The domain of application is different, as it is meant
to be applied to evaluate the organizational structure of multi-agent architectures.

In REACT [Franch-Maiden 2003] software architectures are also modelled with the i*
framework and a more formal treatment involving metrics is proposed to evaluate
system properties over the modelled system in order to inform multiple component
selection. The method proposed in [deBruin-vanVliet 2002] uses Use Case Maps
(UCM) to model scenario-based architecture descriptions. Candidate architectures are
generated, evaluated and refined if needed. This process is assessed by the achievement
of non-functional requirements.

2.4. Remarks

Software architecture is a consolidated discipline that has proven to be useful in
assessing application development, reducing costs and risks, and increasing
communication among the different parts involved. From the study of the different
evaluation techniques and architecture description languages, we can observe that most
of them concentrate on different facets of architectural description and analysis.

Scenario-based analysis of architectures appears a useful technique for analysing
architecture at an early stage. As architectures are evaluated against quality
requirements, some goal-oriented approaches are beginning to get used in order to
represent and evaluate architectures. This shows that not all the issues have been
addressed yet. As stated in [Chung-Nixon-Yu 1999], one key task that remains a
difficult challenge for practitioners is how to proceed form requirements to architectural
design. The use of a goal-oriented requirements approach by representing architectures
in the i* framework is beginning to get used [Chung-Nixon-Yu 1999, Franch-Maiden
2003, Bastos-Castro 2003].

The next section gives a deeper view on the i* framework.

3. State of the Art: The i* framework

 17

3. The i* Framework

3.1. Goal-Oriented Requirements Engineering

Requirements Engineering (hereafter, RE) research has increasingly recognized the
leading role played by goals in the RE process [vanLamsweerde 2001]. In early RE
approaches, the focus was on eliciting and documenting the requirements, but not the
rationale behind them. As understanding the reasons why a system is being developed is
a critical success factor in projects, goal driven approaches focus on this issues. So, in
Goal-Oriented RE the relationship between the requirements and their goals is
represented explicitly.

A goal is an objective to be achieved by the system under consideration. Goal
formulation refers to intended properties to be ensured and, as so, goals may be
formulated at different levels of abstraction, ranging from high-level, strategic concerns
to low-level, technical concerns.

There are many reasons why goals are so important in the RE process [vanLamsweerde
2001]. Their main benefits are concerned with aspects such as achieving requirements
completeness, avoiding irrelevant requirements, explaining requirements to
stakeholders, structuring requirements, detecting requirements conflicts, requirements
evolution and traceability, identifying requirements, and driving refinement and
abstraction.

As a result of their recognized benefits, goals have become the focus of a whole stream
of research on goal modelling, goal specification, and goal-based reasoning for multiple
purposes, such as requirements elaboration, requirements verification or conflict
management, and under multiple forms, from informal qualitative to formal.

Goal-based reasoning reviews how goals are used in basic activities such as
requirements elicitation, elaboration, verification, validation, explanation, and
negotiation; particularly for difficult aspects such as conflict management, requirements
deidealization, and alternative selection [vanLamsweerde-et-al. 1992].

A summary and comparison of several of the most widespread goal-oriented approaches
is already available in [Green 1994; Kavakli-Loucopolos 2004]. So, this section focus
on the i* framework. However, some aspects of the Inquire-Cycle [Potts-et-al. 1994]
and the KAOS Approach [Dardenne-et-al. 1993], are also mentioned, due to their
relevance in the goal-directed acquisition process.

The Inquire-Cycle model [Potts-et-al. 1994], provides an structure for describing and
supporting discussions about system requirements. The Inquiry-Cycle model has three
phases:
� Requirements documentation. The stakeholders write down proposed

requirements. For analyzing requirements interviews, technical documentation for
similar systems can be applied. At this stage, scenario analysis is a valuable

Gemma Grau Colom

 18

technique. Scenarios can be documented by means of use cases (a short description
with a number attached), scripts or action tables (tables or diagrams that identify
both the action and the agent of the action). To tackle complexity, sequences of
actions in scenarios can be represented at two levels of complexity: scenarios that
have subcases belong to complete scenarios of families of scenarios, whilst the
shared actions in the different cases are called episodes or phases.

� Requirements discussion. The stakeholders challenge proposes requirements by
attaching typed annotations. This is done by means of three elements: questions
about the requirements, answers to describe solutions and reasons that justify
answers.

� Requirements evolution. The stakeholders attach change requests and, if relevant,
they may be traced backwards to a discussion, which constitutes their rationale, and
forward to the changed requirements once they has been acted on.

The KAOS (Knowledge Acquisition in autOmated Specification) Approach [Dardenne-
et-al. 1993] focus on a goal-directed requirements acquisition task and is composed by
three components:
� a conceptual model for acquiring and structuring requirements models, with an

associated acquisition language;
� a set of acquisition strategies for elaborating requirements models in this

framework; and
� an acquisition assistant to provide automated guidance in the acquisition process

according to such strategies.
In KAOS, goals drive the identification of requirements to support them. In order to
support such guidance, a goal taxonomy is defined. Goals are classified according to
their pattern and their category. The pattern of a goal is based on the pattern of its
formal definition. Five patterns can be identified: achieve, cease, maintain, avoid and
optimize. These patterns have an impact on the set of possible behaviours of the system;
Achieve and Cease goals generate behaviours, Maintain and Avoid goals restrict
behaviours, and Optimize goals compare behaviours [Dardenne-et-al. 1993].
Goals can also be of different categories:
� SystemGoals are application-specific goals that must be achieved by the composite

system. They can be further specialized in:
 SatisfactionGoals concerned with satisfying agent requests,
 InformationGoals concerned with getting agents information about object

states,
 RobustnessGoals concerned with maintaining the consistency between the

automated and physical parts of the composite system.
 SafetyGoals and PrivacyGoals concerned with maintaining agents in states

which are safe and observable under restricted conditions, respectively
� PrivateGoals are agent specific goals that might be achieved by the composite

system.

3.2. The i* Framework

The i* framework is an agent-oriented language defined by Eric Yu [Yu 1995] with the
aim of modelling and reasoning about organizational environments and their
information systems. For doing so, it offers a formal representation of goals and their

3. State of the Art: The i* framework

 19

behaviours with a formal decomposition structure, allowing the consideration of non-
functional requirements.

The i* framework proposes the use of two types of models for modelling systems, each
one corresponding to a different abstraction level: a Strategic Dependency (SD) model
represents the intentional level and the Strategic Rationale (SR) model represents the
rational level.

The central concept in i* is the intentional actor. Organizational actors are viewed as
having intentional properties such as goals, beliefs, abilities, and commitments. Actors
depend on each other for goals to be achieved, tasks to be performed, and resources to
be furnished. By depending on others, an actor may be able to achieve goals that are
difficult or impossible to achieve on its own. On the other hand, an actor becomes
vulnerable if the depended-on actors do not deliver. Actors are strategic in the sense that
they are concerned about opportunities and vulnerabilities, and seek rearrangements of
their environments that would better serve their interests.

A SD model consists of a set of nodes that represent actors and a set of dependencies
that represent the relationships among them. Dependencies expresses that an actor
(depender) depends on some other (dependee) in order to obtain some objective
(dependum). Thus, the depender depends on the dependee to bring about a certain state
in the world (goal dependency), to attain a goal in a particular way (task dependency),
for the availability of a physical or informational entity (resource dependency) or to
meet some non-functional requirement (softgoal dependency).

Actors can be specialized into agents, roles and positions. A position covers roles. The
agents represent particular instances of people, machines or software within the
organization and they occupy positions (and as a consequence, they play the roles
covered by these positions). The actors and their specializations can be decomposed into
other actors using the is-part-of relationship.

A SR model allows visualizing the intentional elements into the boundary of an actor in
order to refine the SD model with reasoning capabilities. The dependencies of the SD
model are linked to intentional elements inside the actor boundary. The elements inside
the SR model are decomposed accordingly to two types of links:
� Means-end links establish that one or more intentional elements are the means that

contribute to the achievement of an end. The “end” can be a goal, task, resource, or
softgoal, whereas the “means” is usually a task. There is a relation OR when there
are many means, which indicate the different ways to obtain the end. The possible
relationships are: Goal-Task, Resource-Task, Task-Task, Softgoal-Task, Softgoal-
Softgoal and Goal-Goal.

� Contribution links are Means-end links with a softgoal as end it is possible to
specify if the contribution of the means towards the end is negative or positive.

� Task-decomposition links state the decomposition of a task into different intentional
elements. There is a relation AND when a task is decomposed into more than one
intentional element. It is also possible to define constraints to refine this
relationship. The importance of the intentional element in the accomplishment of the
task can also be marked in the same way that in dependencies of a SD model.

Gemma Grau Colom

 20

SR models have additional elements of reasoning such as routines, rules and beliefs. A
routine represents one particular course of action (one alternative) to attain the actor’s
goal among all alternatives. Rules and beliefs can be considered as conditions that have
to fulfil to apply routines.

The graphical notation is shown in figure 3.1 using an example about academic tutoring
of students. On the left-hand side, we show the SR model of a tutor and the hierarchical
relationships among their internal intentional elements. On the right-hand side, we show
the SD dependencies between a student and a tutor.

Fig. 3.1. Example of an i* model for an academic tutoring system.

These are the concepts as described in [Yu 1995]. However, a characteristic that is soon
discovered when starting to use i* is that there is not a single definition of the language.
Due to the strategic nature and objectives of i*, the language provides some degree of
freedom that results into the tendency of each research team to create its own
customized i*. That’s why they are multiple variants of the language, which are
identified in [Ayala-et-al. 2005]. Some of the i* variants in process of consolidation are
the Goal-oriented Requirement Language (GRL) [Amyot-Mussbacher 2002; GRL-web]
and the language of the TROPOS method [Bresciani-et-al. 2004; Tropos-web]. In
[Ayala-et-al. 2005] there is a definition of a reference framework, to be used in the
analysis and classification of the analyzed i* variants.

3.3. i* Methodologies

The i* framework is used in a wide variety of context. As key factors of its success are
the visual utility and the reasoning capabilities it provides, less attention have been
given to the construction of the models themselves. For instance, in the seminal
proposal of the i* framework [Yu 1995], the construction of the models is not addressed
as an issue on its own and only small guidance is provided (mainly the construction of
SR models by using strategic reasoning in order to obtain the SD dependencies). Most
of the proposals on i* already assume that the user already has a technique to build the
models which is not always true.

The organizational patterns provided in [Kolp-et-al. 2001; Kolp-et-al. 2003] are based
on organizational structures and can be used as a basis to generate i* models. Despite

3. State of the Art: The i* framework

 21

this approach is suitable when a specific organizational architecture is modelled, there is
no guidance on how to use the patterns and no description on how this patterns are
defined. Thus, as far as we know, the only detailed approaches on constructing i*
models are:
� the Tropos methodology [Bresciani-et-al. 2004] which is intended to support all

analysis and design activities in the software development process;
� the Goal-based Business Modelling oriented towards late requirements generation

method [Estrada-et-al. 2003];
� a methodology for building i* models based on activities theory [Neto-et-al. 2004];
� the RESCUE process [Jones-Maiden 2004].

The Tropos methodology [Bresciani-et-al. 2004] is intended to support all analysis and
design activities in the software development process. Tropos model information
systems as social structures by means of a collection of social actors, human or
software, which act as agents, positions, or roles and have social dependencies among
them.
The models produced by Tropos are based on the concepts of actor, goal, plan, resource,
dependency, capability and belief (see the language metamodel described in [Bresciani-
et-al. 2004], section 5). These concepts are associated to different modelling activities
that contribute to the requirements acquisition and its refinement and evolution into
subsequent models such as actor modelling, dependency modelling, goal modelling,
plan modelling and capability modelling.
In Tropos the requirements analysis is split in two phases: Early Requirements and Late
Requirements analysis, both sharing the same conceptual and methodological approach.
Thus, the five main development phases of the Tropos methodology are the following:
� Early Requirements

In that phase, the domain stakeholders are identified and modelled as social actors.
These actors depend on one another for goals to be achieved, plans to be performed,
and resources to be furnished. These dependencies between actors allow to state the
why behind the system functionalities and, as a last result, to verify how the final
implementation matches initial needs.

� Late Requirements
The conceptual model is extended including the system as a new actor, and its
dependencies with the other actors of the environment. These dependencies define
all the functional and non-functional requirements of the system-to-be.

� Architectural Design
The system’s global architecture is defined in terms of sub-systems (represented as
actors), interconnected through data and control flows (represented as
dependencies). A mapping of the system actors to a set of software agents, each
characterized by specific capabilities, is also provided.

� Detailed Design
Agent capabilities and interactions are specified. If the implementation platform has
already been chosen, it can be considered in order to perform a detailed design that
will map directly to the code.

� Implementation
The detailed design specification is used as a basis of the established mapping
between the implementation platform constructs and the detailed design notions.

The objective of the Goal-based Business Modelling oriented towards late requirements
generation method [Estrada-et-al. 2003] is to use a business model for constructing a

Gemma Grau Colom

 22

software requirements specification. The method uses a Goal-Based Elicitation Method
in order to capture the organizational context in a Goal-Refinement Tree. This tree is the
basis to create i* SD models, which can be used to perform business improvement
analysis. Finally, strategic models can be derive functional (use case) specifications
with their corresponding scenarios.

The methodology presented in [Neto-et-al. 2004], proposes to build i* models based on
activities theory. Taking the activity theory models as a starting point, the activities and
their actions are analysed to construct the model. The method provides concrete
guidelines for mapping this concepts to an SD i* models, focusing on the goals. SD
models are used to build the SR. This methodology covers Tropos Early Requirements
and Late Requirements analysis.

The RESCUE process [Jones-Maiden 2004] is applied in the requirements specification
stage of the project and uses four different techniques that are mutually supportive:
� human activity modelling is used to analysis the current work domain;
� i* goal modelling is used to perform the system goal modelling;
� use case modelling and specification is done by applying systematic scenario;

walkthroughs and scenario-driven impact analyses; finally,
� requirements management is done.
The RESCUE process provides some guidelines for constructing the i* model, however,
it is aimed at discovering/eliciting requirements through a bi-directional coupling of the
i* model elements and the use cases and scenarios, allowing movement from one model
to the other, and viceversa.

The method proposed in [Santander-Castro 2002] also addresses the construction of a
use case specification from an i* model. However, it cannot be considered an i*
methodology, because it assumes that the models are already build correctly before its
execution. Thus, its goal is to guide the mapping and the integration process of i*
organizational models and Use Cases. For doing so it provides some guidelines that
allows to discover the actors and the use cases for the actors from the SD model, and the
scenarios of the use cases from the SR model.

Table 3.6 summarizes the aspects addressed by the different methodologies.

Table 3.6. Summary of the issues addressed by the i* methodologies.

Methodology Developed models Technique use for
context analysis

Phases of the lifecycle
addressed Main output

TROPOS
[Bresciani-et-al. 2004] SD, SR Goal-Based Elicitation

Methods

From Early
Requirements to
Implementation

Support for all analysis
and design activities

[Estrada-et-al. 2003] SD, SR Goal-Based Elicitation
Methods

Requirements and
Specification

i* model to be used in
Specification

[Neto-et-al. 2004] SD, SR Activity Theory Early Requirements
Late Requirements

i* model to be used in
Specification

RESCUE
[Jones-Maiden 2004] SD, SR Human Activity Models Requirements Use Case specification

[Santander-Castro 2002] - Already build i* SD and
SR model Specification Use Cases Specification

3. State of the Art: The i* framework

 23

3.4. Some i* and Goal-Oriented Evaluation Techniques

The evaluation of i* models is addressed in the literature. The systematic evaluation of
process alternatives is already addressed in Yu's work [Yu 1995]: the SD model
supports the systematic identification of stakeholders and their interests and concerns,
whilst the SR model supports the systematic evaluation of alternatives through the
concepts of ability, workability, viability, and believability. The Tropos project
[Bresciani-et-al. 2004] uses the i* capabilities in a similar way in order to connect
strategic reasoning with information system development.

As i* is a goal-oriented technique, some goal-oriented analysis methods, such as the
NFR framework [Chung-Nixon-Yu 2000] and the AGORA method [Kaiya-et-al. 2002],
can be applied.

The NFR framework [Chung-Nixon-Yu 2000] uses non-functional requirements to
drive design, to support architectural design, and to deal with change. It is based on
making explicit the relationships between quality requirements and design decisions,
which it is done by applying the following tasks: 1) Develop the NFR goals and their
decomposition; 2) Develop architectural alternatives; 3) Develop design tradeoffs and
rationale; 4) Develop goal criticalities; and 5) Evaluation and Selection.

The AGORA method [Kaiya-et-al. 2002] provides a techniques for estimating the
quality of requirements specifications in a goal-oriented setting. Its execution is top-
down and supports the following aspects: selection of the goals to be decomposed;
priorization and stakeholders goal conflict solving, selection of a goal out of the
alternatives of the goals as a requirements specification; and analysis of the impacts
when requirements change.

The structural analysis of actor-dependency models is addressed in the REACT method
[Franch-Maiden 2003] by defining metrics over the models with respect some
properties considered of interest for the modelled system (such as security, accuracy or
efficiency). More details about this method are provided in section 1 and 5.

3.5. Applications of the i* Framework

In its thesis, Eric’s Yu [Yu 1995] proposes to apply the i* framework in the context of
requirements engineering, business process reengineering, organizational impacts
analysis and software process modelling. This broad scope gives rise to an extended
practice on the construction of i* models.

In [i*-web] Eric Yu has compiled all the publications on i*. As the community is
growing a more collaborative web page has been designed in the form of a wiki [i*-
wiki]. In the last, people on the community can add publications, case studies and
describe the i* tools they have develop. The publications on i* are related to the
following fields:
� Requirements engineering. The work on this area are related on how to use i* in

order to perform requirements engineering for system development. Related to that
category but focusing on security aspects and the human-user interface, some other

Gemma Grau Colom

 24

work is undertaken on security requirements engineering and variability and
personalization.

� Business Modelling. The work in this area explores how to model business in the i*
framework, software engineering processes and organizations and systems and
organizational architecture can also be model and several approaches can be
applied to perform process analysis and design and reengineering activities. The
REACT method [Franch-Maiden 2003] and the organizational analysis proposed by
[Kolp-et-al. 2001; Kolp-et-al. 2003; Bastos-Castro 2003] fall into this kind of work.

� Agent-Oriented Systems Development. The agent-oriented community uses the i*
approach to assess agent-based systems in all its development phases. A widespread
example of this work is the Tropos project [Bresciani-et-al. 2004; Tropos-web]. The
reasoning capabilities provided by i* evaluation, verification and validation of the
resulting systems and allows to explore general aspects on trust in Multi-Agent
Systems.

� Management issues. The i* framework is also used to investigate on data
management processes, knowledge management and intellectual property
management.

The link between strategic reasoning and information system development has been
widely addressed [Bresciani-et-al. 2004; Jones-Maiden 2004; Santander-Castro 2002].
This proposals provide guidelines for mapping an i* model to an UML use cases and
classes specification, among them we remark [Santander-Castro 2002].

3.6. Remarks

The i* framework is becoming a consolidated requirements engineering technique.
However, its use stills having some open issues such as the ambiguity of the modelling
language, the lack of prescriptive methodologies or the big size of the resulting models.

Despite of this, the i* framework as been successfully used in a wide variety of context
such as requirements engineering, business modelling, process analysis, agent-oriented
system development, process management or process reengineering. From the i*
publications, we can observe that every research group has adapted the framework for
its own purposes (i.e. by adding new model constructors and semantics) and defined its
own methods for constructing the models. However, the main concepts of the
framework remained unchanged.

On this basis, the i* framework is suitable for modeling and evaluating COTS
architectures. Although, traditional architectural techniques model architectures at the
technical level, the process level provided by i* links requirements and architectures
and allows a better communication with stakeholders. The evaluation of goal-oriented
approaches, using functional and non-functional techniques has already been addressed.
Actually, the use of structural metrics for evaluating the model architectures has been
applied in the REACT method [Franch-Maiden 2003].

As REACT is an on-going work, it has not addressed yet the lack of a methodology.
The agent-oriented paradigm has many points in common with the i* framework
(mainly the use of intentional agents) and that’s why this discipline is analyzed in the
next section.

4. State of the Art: The Agent-Oriented Paradigm

 25

4. The Agent-Oriented Paradigm

4.1. Introduction to the Agent-Oriented Paradigm

The origin of agents is located in the artificial intelligence discipline. At the beginning,
the concept of agents was used to refer to special programs without a detailed nature
and implementation. However, since the 1980s, the research in software agents and
multi-agent systems has increased, not only in the artificial intelligence field, but also in
other computing areas such as distributed computing, object-oriented systems, software
engineering, economics, sociology, and organisational science. In order to understand
the success of agents in those fields, basic concepts definitions are needed.

The knowledge level hypothesis [Newell 1982] states that there exists a distinct
computer level, characterized by having the knowledge as the medium and the principle
of rationality as the law of behaviour. At this level, the system is an agent that processes
its knowledge to determine the actions to take for attaining its goals. Although there is
no official definition of what constitutes an agent, the following characterization is
increasingly being used:

“An agent is an encapsulated computer system that is situated in
some environment and that is capable of flexible, autonomous
action in that environment in order to meet its design
objectives”

Michael Wooldridge (1997) [Wooldridge 1997]

In the knowledge level, agents are considered alone, without taking into account
interactions between them. The social level hypothesis [Newell 1982] states that there
exists a computer level immediately above the knowledge level, called the social level,
which is concerned with the inherently social aspects of multiple agent systems. In
[Jennings-Campos 1997] this social level is empathised as it provides an abstract
characterisation of those aspects of multi-agent system behaviour that are inherently
social in nature such as those concerned with representing phenomena such as co-
operation, co-ordination, conflicts and competition.

When the key abstraction of a system is an agent, we have agent-based systems.
Although agent-based systems may have only a single agent, many problems involve
multiple agents. Thus, Multi-Agent Systems (also called MAS) exhibit a greater
potential and present the following characteristics [Jennings 1998]:
� each agent has incomplete information, or capabilities for solving the problem, thus

each agent has a limited viewpoint;
� there is no global system control;
� data is decentralized; and
� computation is asynchronous.

Because of that, the agents involved exhibits properties such of autonomy, reactivity,
pro-activeness and social ability [Wooldridge-et-al. 2000], and Multi-Agent Systems

Gemma Grau Colom

 26

contributes to an increased processing speed-up, reduced communication bandwidth,
increased reliability [O’Malley-DeLoach 2001].

This conceptual framework is based on the concept of autonomous agents interacting
with one another for their individual and/or collective good and so, it offers a natural
and powerful means of analysing, designing, and implementing a diverse range of
software solutions in a range of closing related disciplines [Jennings 1998]. This gives
leads to the agent-oriented software paradigm, and gives rise to a considerable amount
of applications in the form of frameworks and methodologies.

4.2. Agent-Oriented Software Engineering

The difficulty involved in the design and development of a software system increases
with the complexity of such a system. To solve this problem, several software
engineering paradigms are proposed, each one claiming to solve more problems than the
one before. Despite of this, researchers continually look for new software engineering
techniques [Jennings-Wooldridge 99] to improve the process.

Agents and multi-agents systems are seen as an important new direction in software
engineering for the following reasons [Wooldridge-et-al. 2000]:
� Natural metaphor. Software participants in scenario transactions can be view as

(semi-autonomous) agents.
� Distribution of data or control. In many software systems, the overall control of

the systems is distributed across a number computing nodes that must be capable of
autonomously interacting with each other. These nodes can be agents.

� Legacy systems. A natural way of incorporating legacy systems into modern
distributed information systems is to “wrap” them with an agent layer, which will
enable them to interact with other agents.

� Open Systems. To operate effectively in the systems where it is impossible to know
all the components and interactions at design time (open systems), the ability to
engage in flexible autonomous decision-making is critical.

In the development of complex and distributed systems, contemporary methods tend to
fail because the interactions between the various computational entities are too rigorous
defined; and there are insufficient mechanisms available for representing the system’s
inherent organizational structure [Jennings 2000]. The agent-oriented paradigm solves
these aspects because, as mentioned in [Jennings-Wooldridge 99; Jennings 2000]:
� Agent-oriented decompositions are an effective way of partitioning the problem

space of a complex system,
� The key abstractions of the agent-oriented mindset are a natural means of modelling

complex systems.
� The agent-oriented philosophy for dealing with organisational relationships is

appropriate for complex systems.

The appropriateness of the agent-oriented paradigm can be compared to other software
engineering practices. Specifically:
� Knowledge Engineering. Knowledge-based systems are developed using

knowledge engineering methodologies that allow to model agents cognitive
characteristics. Although these techniques address multi-agents systems main

4. State of the Art: The Agent-Oriented Paradigm

 27

concerns (knowledge acquisition, modelling and reuse) they do not address the
distributed or social aspects of the agents, or their reflective and goal-oriented
attitudes [Iglesias-et-al 1999].

� Object-Oriented Paradigm. Objects are defined as computational entities that
encapsulate some state, are able to perform actions, or methods on this state, and
communicate by message passing [Wooldridge-et-al. 2000]. Both object-oriented
and agent-oriented views of the system emphasise the importance of interactions
between entities, thus some agent-oriented methodologies come from the object-
oriented field. However, as pointed out in [Wooldridge-et-al. 2000; Iglesias-et-al
1999] there are several distinctions between the two, mainly:

 Agents embody stronger notion of autonomy than objects, and in particular,
they decide for themselves whether or not to perform an action on request
from another agent;

 Agents are capable of flexible (reactive, pro-active, social) behaviour,
whether the standard object model has nothing to say about such types of
behaviour;

 A multi-agent system is inherently multi-threaded, in that each agent is
assumed to have at least one thread of control.

� Component-Based Software Engineering. Components are self-contained
computational entities, which functionality is described, encapsulated and requested.
Both components and agents can be considered as a single unit of deployment
because they are typically self-contained computational entities that do not need to
be deployed along with other components in order to realise the services they
provide, and they are able to respond requests for information about the services
they provide. However, components are not autonomous in the way that we
understand agents to be and there is no corresponding notion of reactive, proactive,
or social behaviour in component software.

However, while agent technology represents a potentially novel and important new way
of conceptualising and implementing software, it is important to understand its
limitations [Jennings-Wooldridge 99]. The agent-oriented approach implies the use of
software, and thus it presents the same fundamental limitations as more conventional
software solutions. For instance, agent technology is limited by the capabilities of
artificial intelligence techniques.

4.3. Agent-Oriented Methodologies

The success in the development of agent and multi-agent systems is often conditioned to
the use of a methodology. According to [Sturm-Shehory 2003], a methodology is the set
of guidelines for covering the whole lifecycle of system development both technically
and managerially.

Agent-oriented methodologies are composed by the analysis, design, and
implementation phases, which are done at a level of abstraction more adequate to the
problem to be solved. According to [Burmeister 1996], during the analysis phase the
acting entities of the problem domain are identified and modelled as agents. Agents and
their actions (or behaviour) are refined and specified in the design phase. Finally, at the
implementation phase, agents are programmed with the aid of an agent-oriented
programming language or using a multi-agent development environment. In [Jennings-

Gemma Grau Colom

 28

Wooldridge 99] an agent-oriented software life-cycle also proposes a verification phase,
where verification can be done either by using axiomatic approaches or semantic
approaches.

There are many agent-oriented methodologies available and none of them is suitable for
all purposes. As pointed out in [Sturm-Shehory 2003] this has implications in the
following fields:
� Industrial problem: industrial developers must select one of the methodologies,

which can become a non-trivial task.
� Standard problem: with no standard available, potential industrial adopters of

agent technology refrain form using it.
� Research problem: excessive efforts are spent on developing agent-oriented

methodologies, sometimes producing overlapping results.
Because of that, the analysis and comparison of agent-oriented methodologies has been
widely studied [Iglesias-et-al 1999; Wooldridge-et-al. 2000; Sturm-Shehory 2003; Tveit
2001; Cernuzzi-Rossi 2002; Sabas-et-al. 02; Dam-Wnikoff 2003; Sturm-Shehory 2003;
Yu-Cysneiros 2002; Sudeikat-et-al. 2004].
Agent-Oriented methodologies are generally built by extending other existing
methodologies, mainly object-oriented methodologies and knowledge engineering
methodologies, in order to include the relevant aspects of the agents [Iglesias-et-al
1999]. Some other methodologies follow formal approaches or come from the scratch.
Figure 3.2, shows a genealogy of agent-oriented methodologies. This genealogy is an
excerpt of the one proposed in [Sudeikat-et-al. 2004], containing only the most cited
methodologies.

Fig. 3.2. Excerpt of [Sudeikat-et-al. 2004] agent-oriented genealogy.

An alternative classification of the methodologies is presented in [Wooldridge-et-al.
2000] depending on how the models are constructed:
� Top-down approaches, which are based on progressive decomposition of behaviour,

for instance the Agent Modelling Techniques for Systems of BDI Agents [Kinny-et-
al. 2006] employs an iterative top-down approach to develop its models.

� Bottom-up approaches, which begin by identifying elementary agent behaviours
such as Cassiopeia [Collinot-et-al. 1996].

4. State of the Art: The Agent-Oriented Paradigm

 29

� Mixed approaches, such as Gaia [Wooldridge-et-al. 2000] employs fine-grained
models (bottom-up obtained) and more generic models (top-down obtained) to
capture the result of the analysis and design process.

Due to the vast amount of agent-oriented methodologies, a detailed description of each
of them is not be given. Instead, only representative methodologies on each category are
presented: the CommonKADS as a knowledge engineering methodology, the GAIA
Methodology as an extended object methodology, and CASSIOPEIA as coming from
other methodologies. Due to the relevance of the TROPOS methodology in the i*
framework, it is detailed in section 3.3.

Analysis and Design of multiagent systems using MAS-CommonKADS
The MAS-CommonKADS methodology [Iglesias-et-al. 1998] extends the knowledge
engineering methodology CommonKADS [Schreiber-et-al. 1994] by adding techniques
from object-oriented methodologies and from protocol engineering for describing the
agent protocols. In this methodology, the analysis and design of the system are made by
developing several models. For each model, the methodology provides a textual
template for describing the entities to be modelled (named constituents) and a set of
activities for building every model, based on the development state of every constituent
(empty, identified, described or validated).
The models defined in the phases of the methodology, which are:
1. Conceptualization Phase. In this first informal phase, user requirements are collected

by following a user-centred approach that determines some use cases (scenarios) in
order to understand informal requirements and to test the system.

2. Analysis Phase. In the analysis phase the following steps are undertaken:
 Agent modelling describes the main characteristics of the agents, including

reasoning capabilities, skills (sensors/effectors), services, or goals.
 Task modelling describes agent’s goals, tasks and task decomposition by

using textual templates and diagrams.
 Coordination modelling describes interactions, protocols and required

capabilities of the conversations between agents.
 Knowledge modelling describes both the agents knowledge and the

environment knowledge.
 Organisation model describes both the organisation in which the MAS is

going to be introduced and the organisation of the agent society
3. Design Phase. During the analysis, the following models are developed based on the

previous models:
 Agent design composes or decomposes the agents according to pragmatic

criteria and selection of the most suitable agent architecture for each agent.
 Agent network design determines the relevant aspects of the infrastructure of

the MAS-System.
 platform design consist of the selection of the software and hardware that is

needed or available for the system.

The Gaia Methodology for Agent-Oriented Analysis and Design
GAIA [Wooldridge-et-al. 2000] is an agent-based methodology intended to provide a
systematic way to go from a statement of requirements to a detailed design that could be
implemented directly. The methodology proposes the development of a set of models,
which move from abstract to increasingly concrete concepts (see figure 3.3):

Gemma Grau Colom

 30

Analysis Design

Requirements
Statement

Roles Model

Interaction
Model

Agent Model

Services Model

Acquaintance
Model

Fig. 3.3. Relationships between the GAIAs Models.

1. Requirements Statement. Independent of the paradigm used for analysis and design.
2. Analysis Stage. During the analysis stage, the roles of the system are identified and

documented in the roles model, whilst the identification of the recurring patterns of
interaction that occur in the system between the various roles are represented in the
interaction model.

3. The Design Stage. The abstract models derived during the analysis phase are used to
build to more concrete models. Thus, in the agent model, roles are aggregated into
agent types, and refined to form an agent type hierarchy. The service model
identifies the services associated to each agent and its main properties. Finally, the
interaction model and agent model are used to develop the acquaintance model,
which is a directed graph that defines the communication links between kinds of
agent.

CASSIOPEIA: a Methodology for Agent Oriented Design.
Cassiopeia [Collinot-et-al. 1996] is a methodological framework that has essentially
been developed for the design of systems where collective behaviours are put into
operation through a set of agents. Cassiopeia proposes to design MAS in terms of
agents; which are provided with three levels of behaviour: elementary, relational,
organizational. Due to the dynamic behaviour of the agents, the designer only takes into
account the organizational structures between agents, which will be instantiated within
the problem-solving context. Cassiopeia is considered as a bottom-up approach
[Wooldridge-et-al. 2000] as it proposes to start from the behaviours required to carry
out some task and performing three steps that reconcile both local and global views
(figure 3.4):

Viewpoint

local

global

1 2 3

Study of the
structure of the

organization

Study of the
dynamics of the

organization

Distribution of
functionalities

Elementary
behaviours

Descentralization
of the organization

Relational
behaviours

Descentralization of the
dynamics of the organization

Organizational behaviours

Fig. 3.4. The Cassiopeia method overview.

4. State of the Art: The Agent-Oriented Paradigm

 31

Following this approach, the methodology proposes three steps:
1. Identify the elementary behaviours. The different types of agents are defined based

on the elementary behaviours that are required for the achievement of a considered
collective task. These behaviours are identified on a previous functional or object-
oriented step.

2. Identify the relational behaviour. The organization structure is analysed by means
of the dependencies between the elementary behaviours identified in the previous
step. This dependencies are represented in a coupling graph that is analysed in order
to (a) remove inconsistent dependencies; (b) ignore dependencies according to the
available heuristics of the application domain. The result is the influence graph,
which contains only those dependencies supposed relevant to the achievement of the
task; and can be used to analyse how agents identify and handle different elementary
behaviours.

3. Identify the organisational behaviours. The behaviours that will enable the agents’
management of formation, durability and dissolution of groups are specified. A
description of the organization dynamics is obtained by (a) identifying the trigger
agents by using the influence graph; (2) determine, for each of them, the selection
methods allowing controlling the formation of groups.

4.4. Comparing and Evaluating Agent-Oriented Methodologies

The relevance and growing importance of the agent-oriented methodologies, results into
a big amount of literature on comparing and evaluating agent-oriented methodologies.
For instance, [Iglesias-et-al 1999] provides a classification of methodologies, and
describes and compare them. In [Sabas-et-al. 02; Dam-Wnikoff 2003; Sturm-Shehory
2003; Sudeikat-et-al. 2004] several methodologies are evaluated and compared
according to a set of established criteria, different in each case. [Cernuzzi-Rossi 2002]
proposes to compare methodologies by using an attribute tree and a questionnaire that is
filled for each methodology. An evaluation formula is then provided to obtain a
numerical evaluation of the methodology according to the information in the
questionnaire. Finally, [Yu-Cysneiros 2002] proposes the use of an exemplar for
evaluating the methodologies, providing a proposal of which could be these exemplar.

4.5. Remarks

As it is mentioned in these section, both components and agents gave similarities in the
way that they are self-contained computational entities deployed independently, but able
to provide some services. Despite components are not as autonomous as agents, they
interact with other components to achieve or provide certain functionalities as agents
do. On the other hand, humans that interact with the components exhibit the
characteristics of agents (just because agents are inspired in human knowledge and
behaviour). Thus, most of the concepts identified in the agent-oriented methodologies
such as roles and agents, or interaction mechanisms, can also be applied to a COTS-
Based System.

Gemma Grau Colom

 32

5. Business Process Reengineering

5.1. What is Business Process Reengineering?

The term business process reengineering has been used in the business milieu since the
beginning of the XX century, but is in the 1990’s with the inclusion of the new
information technologies that it begins to get applied consciously in the companies.
The reengineering of a business process consists in changing that process in order to
improve its competitiveness. This improvement can be performed by adding an
information system to the process or making some organizational changes such as
incorporating outsourcing of services, changing its structure by empowerment, or
applying just-in-time strategies.

The definition of what involves business process reengineering and in what contexts it
applies, is not clearly defined, and often the terms business process redesign and
business process reengineering are used indistinctly without clearly stating the
difference between them. To understand the scope of business process reengineering it
is necessary to analyse its definition:

The fundamental rethinking and radical redesign of business
processes to achieve dramatic improvements in critical,
contemporary measures of performance, such as cost, quality,
service and speed.

Michael Hammer and James Champy [Hammer-Champy 93]

Although this definition is very accepted and used in the community, some authors
disagree with some of the terms. On the one hand, some authors disagree with the fact
that the improvements on the process have to be dramatic and radical. For instance,
[Jarzabek-Tok 1996] argues that while some companies require radical re-thinking of
business process others may benefit from improvement or innovation; and [Katzenstein-
Lerch 2000] considers that the simple fact of installing an information system, explicitly
or implicitly redesigns the organizational process in which it is embedded. On the other
hand, some authors claim a broader context for redesign, for example [Grant 2002]
states that focusing only on the business process, other important aspects of the
organizations are ignored (e.g. organizational structure, people, communication, or
technology).

Traditionally, the major activities in a typical reengineering effort would include [Yu
1995]:
� Identify, delineating, and modelling the existing process.
� Analyzing it for deficiencies.
� Proposing new solutions (process design).
� Implementing the new design, in terms of new technical systems and new

organizational (people) structures (roles and responsibilities).

5. State of the Art: Business Process Reengineering

 33

There are also controversies about modelling the current process in order to analyse its
deficiencies. Michael Hammer and James Champy, for instance, propose the philosophy
of beginning from a ‘clean slate’ [Hammer-Champy 93], which defends the redesign of
the new process without taking into account the existing one. In [Davenport-Stoddard
1994] this point is addressed as the myth of the clean slate, with the argument that
beginning from the scratch is not always possible, because it is difficult and expensive
to replace the equipments, technology, people skills, and knowledge that an
organization currently has. Thus, the myth of the clean slate differentiates clean slate
design than clean slate implementation in order to get the innovation benefits of
designing from the scratch, but implement them taking into account the existing
resources.

Actually, there is a positive correlation between dramatical changes and perceived
success [Teng-et-al. 98]. However, many authors and practitioners argue for the
previous analysis of the existing process and the generation of alternatives from that
analysis [Jarzabek-Tok 1996; Katzenstein-Lerch 2000; Anton-et-al. 1994; Giaglis 2001;
Grant 2002]. According to [Anton-et-al. 1994], a previous analysis allows the
identification of local inefficiencies in business processes, and recommends
interventions to remove or mitigate them.

Taking these different aspects into account, the term of process reengineering is used
from its wider point of view in order to consider both radical and minor changes in
process redesign; and both the possibility of studying the current process or beginning
from a clean slate.

5.2. Modelling Business Process Reengineering Processes

Organisations are complex in nature because they usually involve different people,
business units, resources and systems which interact via many different processes.
Consequently, carefully developed models are necessary for understanding their
behaviour in order to design new systems or improve the operation of existing ones
[Giagli 2001]. Because business process reengineering can be applied from different
disciplines, it is possible to use many different modelling tools and languages to
represent the process. However, not all the existent models cover the same aspects, and
the choice of a business process modelling technique depends on the discipline
viewpoint adopted.

There are several studies that prove that the representation of the problem affects its
resolution [Katzenstein-Lerch 2000]. However, in spite of the large number of process
representations available for process redesign, no criteria exist for what constitutes a
good process model for redesign. There are, indeed, some classification criteria (e.g.,
[Curtis-et-al. 1992; Eertink-et-al. 1999; Katzenstein-Lerch 2000; Giaglis 2001) and
evaluation frameworks that can support this task (e.g., [Curtis-et-al. 1992; Janssen-et-al.
1997; Katzenstein-Lerch 2000]).

In the context of this work, the most appropriate of these frameworks is the one
proposed by [Katzenstein-Lerch 2000], which establishes the following classification of
modelling languages:

Gemma Grau Colom

 34

� Traditional systems techniques: commonly used for developing information
systems, these models capture process activities and the flow of items and
information (e.g., Flowchart and Data flow diagramming, IDEF1x techniques and
UML)

� Coordination models: provide a generally organizational view and highlight what
conditions (for instance, resources, circumstances or states of the system) must be
met at each stage in a process before the process can continue (e.g., Role interaction
nets, role activity diagram)

� Sociotechnical qualitative systems: provide many useful concepts such as personal
and organizational goals, variances, rich information, and causal and structural
relationships (e.g., ETHICS, Soft Systems Methodology, Multiview and i* models).

The classified languages are evaluated in [Katzenstein-Lerch 2000], according to the
following evaluation criteria:
� Content criterion. Evaluates how the languages capture the social context, mainly

the modelling elements and its nature (logistic, psychological or sociological).
� Process status criteria. Evaluates how the language captures the current state of

the process: process emergence, multiple operations routines and missing resources
or information flows.

� Presentation and use criteria. Involves the ability needed to use the model’s
elements productively, including the representation of the elements (visual utility),
the support for qualitative reasoning and the heuristics for process redesign.

Several languages are evaluated in [Katzenstein-Lerch 2000] following these criteria,
table 3.7 presents the results obtained.

Table 3.7. Features of Process Models. Obtained from [Katzenstein-Lerch 2000].

IDEF Dataflow

Diagrams

Role
Activity
Diagrams

Rummler
-Brache

Action
Work-
flows

i* Ethics Multi-
view

GED
frame-
work

I. Process Content Criteria
 1. Capture social

context - - - - ~ ~ 9 9 9

II. Process Status Criteria
2.
Capture exceptions - - - - ~ - 9 - 9

2a. Multiple
Operational Routines - - - - - ~ - 9 9

2b) Unfulfilled
Dependencies - - - - 9 - ~ - 9

III. Presentation and Use
Criteria

3. Visual Utility - - - - - - - 9 9
4. Qualitative
Reasoning - - - - - 9 - 9 9

5. Heuristics for
Redesign - - - ~ - - 9 9 9

Model Elements
Roles 9 - 9 9 9 9 9 9 9

Goals - - ~ ~ ~ 9 9 9 9
Dependencies 9 9 9 9 9 9 9 9 9

Seqüencial Flow 9 9 9 9 9 - - 9 -
(9) addresses the issue fully (~) deals with the issue but not fully (-) does not deal with the issue

5. State of the Art: Business Process Reengineering

 35

5.3. Methodologies for Business Process Reengineering

The use of methodologies to guide Business Process Reengineering is a common fact.
But, as most of them are used in consulting firms (Andersen consulting, CSC/Index,
Ernst and Young, McKinsey, SRI), many of them are not available do to intellectual
property rights.
There is no formal classification for process reengineering methodologies but it is
possible to identify those that begin from a clean slate [Hammer-Champy 93] in order
to plan a radical change; from those that take the existing process as a departing point
for a simpler redesign. It is also possible to distinguish those methodologies that
explicitly use goal-oriented approaches [Lee 1993; Anton-et-al. 1994; Grover-Malhotra
1997; Jarzabek-Tok 1996 ; Yu-et-al. 1996; Brynjolfsson-et-al. 1997; Kueng-Kawalek
97; Katzenstein-Lerch 2000; Koubarakis-Plexousakis 2000] from those that do not
[Kettinger-et-al. 1993; Grover-et-al 1994; Klein 1994].

Most of the proposed methodologies are designed to focus on a particular kind of
problem and usually enclose their own business process modelling language. Hence, we
have different methodologies and modelling languages depending on the reengineering
aspect that is focused. As it is shown latter on, some methodologies focus on how to
take the strategic goals of the organization into account while others centre on how to
explore different alternatives for the process or how to evaluate them.

Figure 3.5 shows a generic overview of all possible stages in a BPR process. The stages
and activities have been obtained from [Teng-et-al. 98].

Fig. 3.5. Stages and tasks from rengineering projects. From [Teng-et-al. 98].

These stages can be considered generic, as the different methodological approaches
usually undertake different stages depending on their particular orientation [Grover-

Gemma Grau Colom

 36

Malhotra 1997]. Hence, some business process reengineering methodologies focus on
obtaining the strategic goals, whilst some others may focus on the generation or the
evaluation of alternatives. Some of these specific methodologies are described in the
following sections, grouped by its focus:
� goal-oriented strategy acquisition;
� generation and evaluation of alternatives; and
� formal specification and execution process.
Some other methodologies, tools and techniques, following a more general approach,
can be found in [Klein 1994; Kettinger-et-al. 1993; Kettinger-et-al. 1997; Kueng-
Kawalek 97; Grover-Malhotra 1997].

5.3.1. Goal-Oriented Business Process Reengineering Methodologies

A process consist as a set of sub-processes and each sub-process exists for the purpose
of satisfying some functions or goals [Lee 1993], consequently an enterprise has a goal
structure that has to be compatible with its physical structure in order to achieve
efficiency [Anton-et-al. 1994]. Based on this idea, several authors [Lee 1993; Anton-et-
al. 1994; Grover-Malhotra 1997; Jarzabek-Tok 1996; Yu-et-al. 1996; Brynjolfsson-et-
al. 1997; Kueng-Kawalek 97; Katzenstein-Lerch 2000; Koubarakis-Plexousakis 2000]
use goal-oriented process reengineering methodologies. There are some of these
methods that specifically focus on the business goals acquisition.

[Lee 1993] models the process as a hierarchy of goals to achieve based in the
identification of goals and its relations. The steps it proposes are:
� Enumerating goals. Goals are identified in data-driven process. Thus the data of

the existent process is collected and converted into goals. If non-implemented goals
arise, they are recorded in order to be taken into account in the new process.

� Relating goals. The identified goals are related in the hierarchy by using a provided
algorism. This identification may partially be done during the first stage.

� Checking completeness. Completeness make sure that there is no missing goal and
that all goals are accounted for the process.

� Identify non-functional processes. The organization may have some processes or
sub-processes that are not used into the organization, if a certain sub-process doesn’t
have a goal associated with its parent goals means that either it is a non-functional
process or that a goal has not been made explicit at the present level”

� Exploring alternatives. Finally, the goal hierarchy can be analysed and completed
in order to explore and evaluate the different alternatives.

From a more information systems point of view, [Anton-et-al. 1994] obtains the goals
from scenario analysis. The approach distinguishes two semantic categories of goals:
descriptive and prescriptive goals. Descriptive goals appear on current process analysis
as an operationalization of them, whereas descriptive goals come from strategic
management and account for organizational structures and processes that should be
observed. In the proposed process, a first hierarchy of goals is defined by taking a first
set of prescriptive goals and analyse them using a top-down approach. More concrete
goals are obtained bottom-up by acquiring the descriptive goals from the explanatory
scenarios of the current process. Although the hierarchies of prescriptive and descriptive
goals lack in levels of correspondence, the approach supports the identification of goals

5. State of the Art: Business Process Reengineering

 37

and the determination of the scenarios that describe the activities that support the
attainment of those goals.

5.3.2. Generation and evaluation of alternatives

One of the reasons why goal-oriented business process reengineering methodologies are
popular is how they support the generation and evaluation of alternatives.

In [Lee 1993] new alternatives for a process can be explored by analysing the goals
related with that process. As mentioned in section 3.4., one of the applications of the i*
approach [Yu-et-al. 1996] is to model the current process and to support the generation
and evaluation of alternatives by means of the qualitative reasoning it provides.

The GED framework described in [Katzenstein-Lerch 2000] provides specific
guidelines for analysing and redesigning process. Following a goal-oriented approach, it
uses two different models in order to find the weaknesses of the process, define new
strengths and generate solutions according to that. The GED framework is composed by
two different models that are obtained from the existent process:
� Goal/Exception diagrams are used to recognize those goals that are unmet or that

present conflicts, as well as to identify lose-lose situations.
� Based on the first analysis, new alternatives can be generated by means of taking

those exceptions of the Goal/Exception diagram that help to achieve major goals,
and convert them into a rule. Exceptions can also be used to questioning the need of
a certain goal and then, finding an alternative. Finally, win-win exceptions may be
taken as a base for generating new procedures.

� Dependency diagrams are analysed and problematic dependencies are redesigned by
applying one of the following actions:
� Alter the dependency by means of shifting the dependency to another agent

or changing its nature.
� Satisfy the dependency by means of providing the action or resources needed

to accomplish it, one way to achieve that is to add information technology.
� Balance the web of dependencies by means of reassigning the responsibilities

between the process participants taking into account that a dependency is
more enforced if there exist obligation from both parts.

For evaluating the process alternatives, the GED framework considers the impact of the
new process dependencies on the goals and exceptions in the goal/exception diagram by
means of: evaluate the influence of the new solution on achieving individual goals and
process-level goals; study how the new solution alters the likelihood or frequency of
any exceptions occurring; and observe how the new solution directly affects process-
level goals without reasoning.

The matrix of change [Brynjolfsson-et-al. 1997] is an example of evaluation of
alternatives in non goal-oriented process reengineering. This method identifies the
critical interactions between processes and also allows capturing the interaction between
the different practices. The matrix of change is composed by three different matrixes:
� An horizontal triangular matrix containing the current collection of organizational

practices and which of those practices are complementary or competitive.
� A vertical triangular matrix containing the desired collection of organizational

practices and which of those practices are complementary or competitive.

Gemma Grau Colom

 38

� A matrix interaction that bridge the other two matrixes in a transitional state that
reveals the difficulty to pass from the current processes to the new ones.

As a result, the matrix of change systematizes the change management and selects those
practices that better fulfil the business goals and its interpretation helps to advise change
management in terms of feasibility, sequence of execution, location, pace and nature of
change and, as stakeholder’s are surveyed for the impact of change, the strategic
coherence and value added aspects of the process can be also observed.

In goal-oriented process reengineering approaches the generation or evaluation of
alternatives can also be performed by adapting reasoning techniques from other
disciplines, such as AGORA [Kaiya-et-al. 2002] or KAOS [Dardenne-et-al. 1993] (see
section 3.3.4)

5.3.3. Formal specification and execution of processes

Another goal-oriented methodology for business process design is the one proposed in
[Koubarakis-Plexousakis 2000], which focuses on the production of detailed and formal
specifications of business processes. This formal specification can be represented in a
formal language and, then, verified in terms of correctness properties such as fulfilment
of responsibilities assigned to roles and maintainability of constraints. The first steps of
the proposed process are similar to those of the goal-oriented approaches: first,
organizational objectives and goals are identified, goal reduction is performed by using
different techniques some of them, such as KAOS [Dardenne-et-al. 1993] obtained from
the requirements engineering field. In a second step, roles and responsibilities are
identified and a match between them is established. The third step consists in specifying
the primitive actions, the conditions to be noticed and their interaction with other roles.
Thus, for each role, a ConGolog procedure is specified in order to discharge each role
responsibilities in the fourth step. Finally, a formal verification is undertaken in order to
check that ConGolog procedures local to each roles are sufficient for discharging its
responsibilities.

Another proposal that focus on formalisation of process with analysis purposes is
detailed in [Eertink-et-al. 1999]. In order to analyse certain behavioural properties, an
operational semantics is defined and a stepwise simulation can be executed in their
specific tool. Quantitative properties can also be evaluated by using queuing theory,
graph models and hybrid models, as well as analysis of completion times, critical paths,
resource utilisation and cost analysis.

5.4. Remarks

Business process reengineering is applied in different contexts and situations. Its
success reside in the fact that, once a decision is taken it is difficult to evaluate the ‘what
if’ other decisions had been taken. However, the level of failure of business process
reengineering projects is high, approximately 70% [Grant 2002], and this leads to the
continuous study of methodologies and processes in order to find key failure and
success factors.

5. State of the Art: Business Process Reengineering

 39

From the study of the methodologies we can observe that some of them propose to
analyse the existing process and some of them don’t. In some situations this is due to
the adoption of a clean slate approach, but in other situations the authors argue that the
average effort involved in analysing the current process is too high for the improvement
it produces. This conclusion is presented in [Teng-et-al. 98], where the correlation of
average effort with perceived success is stated based on the responses to a questionnaire
filled by the industry.

In the results of the study we can notice that phases such as process evaluation, process
transformation and social design are more correlated to perceived success, although the
average effort to execute them is not as high as the invested in analysing the existing
process.

In spite of this, in the context of the subject of this thesis proposal, we argue for a
previous analysis of the existing process, as it facilitates shared process perspectives and
knowledge among the process members. This reduces the impact of organizational
change, and, in the specific case of COTS-Based Systems, it helps to understand what
the end user is expecting from the system.

Gemma Grau Colom

 40

6. References

[Abts-et-al. 2000] Abst, C.; Boehm, B.; Clark, E.: “COCOTS: A COTS Software Integration Lifecycle
Cost Model - Model Overview and Preliminary Data Collection Findings”. Technical Report USC-CSE-
2000-501, USC Center for Software Engineering, 2000.

[Alves-Castro 2001] Alves, C.; Castro, J.: “CRE: A Systematic Method for COTS Selection”. In
Proceedings of the XV Brazilian Symposium on Software Engineering, 2001.

[Amyot-Mussbacher 2002] D. Amyot, G. Mussbacher. “URN: Towards a New Standard for the Visual
Description of Requirements”. Proceedings of the Third International Workshop on Telecommunications
and beyond: The Broader Applicability of SDL and MSC., Aberystwyth, UK, June 24-26, 2002. Pages:
21-37.

[Anton-et-al. 1994] Anton, A.I.; McCracken, M. W.; Potts, C.: “Goal Decomposition and Scenario
Analysis in Business Process Reengeeniering”. In Proceedings of the 6th CAiSE Conference, CAISE
1994. Pages: 94-104.

[Ayala-Botella-Franch 2005] Ayala, C.P; Botella, P.; Franch, X.: “On Goal-Oriented COTS Taxonomies
Construction”. In Proceedings 4th International Conference on COTS-Based Software Systems, ICCBSS
2005. Springer-Verlag, LNCS 3412. Pages: 90-100.

[Babar-Gorton 2004] Babar, M.A.; Gorton, I.: “Comparison of scenario-based software architecture
evaluation methods”. In Proceedings of the 11th Asia-Pacific Software Engineering Conference, APSEC
2004. Pages: 600-607.

[Balk-Kedia 2000] Balk, L.D.; & Kedia, A.: “PPT: A COTS integration case study”. In Proceedings of
the 22nd International Conference on Software Engineering, ICSE 2000. Pages: 42-49.

[Bao-Horowitz 1996] Bao, Y.; Horowitz, E.: “Integrating through user interface: A flexible integration
framework for thirdparty software”. In Proceedings of COMPSAC 1996. Pages: 336-342.

[Bass 1998] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley,
1998.

[Bastos-Castro 2004] Bastos, L.R.D.; Castro, J.F.B.: “Enhancing Requirements to derive Multi-Agent
Architectures”. In Anais do Workshop em Engenharia de Requisitos, WER 2004.
[Bastos-Castro 2003] Bastos, L.R.D.; Castro, J.F.B.: “Integration between Organizational Requirements
and Architecture” In Anais do Workshop em Engenharia de Requisitos, WER 2003. Pages: 124-139.

[Bleinstein-et-al. 2005] Bleistein, S.J.; Cox, K.; Verner, J.: “Strategic alignment in requirements analysis
for organizational IT: an integrated approach”. In Proceedings of the 2005 ACM symposium on Applied
computing, SAC 2005. Pages: 1300-1307.

[Boehm-et-al. 1998] Boehm, B.; Abts, C.; Bailey, E.: “COCOTS Software Integration Cost Model: an
Overview”. In Proceedings of the California Software Symposium, 1998.

[Boehm-Abts 1999] Boehm, B.; Abts, C.: “COTS Integration: Plug and Pray?” IEEE Computer, Vol. 32,
No. 1; January 1999. Pages: 135-138.

[Bresciani-et-al. 2004] Bresciani, P.; Perini, A.; Giorgini, P.; Giunchiglia, F.; Mylopoulos, J.: “Tropos:
An Agent-Oriented Software Development Methodology”. In Journal of Autonomous Agents and Multi-
Agent Systems. Kluwer Academic Publishers, Vol. 8, Issue 3, 2004. Pages: 203-236.

[Briand 1998] Briand, L.C.: “COTS Evaluation and Selection”. In Proceedings International Conference
on Software Maintenance, 1998. Pages: 222-223

6. References

 41

[Brownsword-et-al. 2000] Brownsword, L.; Oberndorf, T.; Sledge C.A. “Developing New Processes for
COTS-Based Systems”. IEEE Software , Vol. 17, No. 4; July-August 2000. Pages: 48-55.

[deBruin-vanVliet 2002] de Bruin, H. ; van Vliet, H. : “Top-Down Composition of Software
Architectures”. In Proceeding of the 9th IEEE International Conference on Engineering of Computer-
Based Systems, ICCBSS 2002. Springer Verlag, LNCS 2255. Pages: 147-158.

[Brynjolfsson-et-al. 1997] Brynjolfsson, E.; Renshaw, A.A.; van Alstyne, M.: “The Matrix of Change: A
Tool for Business Process Reengineering”. Sloan Management Review, Winter 1997. btrconsulting.net

[Burmeister 1996] Burmeister, B.: “Models and Methodology for Agent-Oriented Analysis and design”.
Working Notes of the KI’96 Workshop on Agent-Oriented Programming and Distributed Systems, 1996.
DFKI Document D-96-06.

[Carney-Long 2000] Carney D.; Long F.: “What Do You Mean by COTS? Finally a Useful Answer”.
IEEE Software, Vol. 17, No. 2, March/April 2000.

[Cernuzzi-Rossi 2002] Cernuzzi, L.; Rossi. G.: “On the evaluation of agent oriented modeling methods”.
In Proceedings of Agent Oriented Methodology Workshop, 2002.

[Chung-Nixon-Yu 1999] Chung, L.; Gross, D.; Yu, E.: “Architectural Design to Meet Stakeholder
Requirements”. In Proceedings of the First Working IFIP Conference on Software Architecture, WICSA
1999. Pages: 545-564.

[Chung-Nixon-Yu 2000] Chung, L.; Nixon, B.; Yu, E.; Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, 2000.

[Chung-Subramanian 2001] Chung, L.; Subramanian, N.: “Process-Oriented Metrics for Software
Architecture Adaptability”. In Proceedings of 9th IEEE International Conference on Requirements
Engineering, RE 2001. Pages: 310-311.

[Chung-Cooper 2004] Chung, L.; Cooper, K. “Defining Goals in a COTS-Aware Requirements
Engineering Approach”. System Engineering, Vol. 7, No.1, 2004.

[Clements 1996] Clements, P.C.: “A Survey of Architecture Description Languages”. In Procedings of
theEighth International Workshop on Software Specification and Design,1996.

[Clements-et-al. 2002] Clements, P. ; Kazman, R.; Klein, M. : Evaluating Software Architectures.
Methods and Case Studies. ISBN 0-01-70482-X. Addison-Wesley, 2002.

[Collinot-et-al. 1996] A. Collinot, A. Drogoul, P. Benhamou. “Agent oriented design of a soccer robot
team”. In Proceedings of the Second International Conference on Multi-Agent Systems, ICMAS-96).
Pages: 41-47.

[Coyette 2003] Coyette, A.: The SkwyRL-Agent Architectural Framework: Developping An E-Business
Application.
http://www.isys.ucl.ac.be/skwyrl/emedia/Files/report.pdf

[Curtis-et-al. 1992] B. Curtis, B.; Kellner, M.I.; Over, J.: “Process Modelling”. Communications of the
ACM, Vol. 35, No. 9, September 1992.

[Dam-Wnikoff 2003] Dam, K.H.; Wnikoff, M.; “Comparing Agent-Oriented Methodologies”. In
Proceedings of the Fifth International Bi-Conference Workshop on Agent-Oriented Information Systems,
AAMAS 2003.

[Dardenne-et-al. 1993] Dardenne, A.; vam Lamswerde, A.; Fickas, S.: “Goal-Directed Requirements
Acquisition”. Science of Computer Programming, Vol. 20, 1993. Pages: 3-50.

[Davenport-Stoddard 1994] Davenport, T.H.; Stoddard, D.B.: “Reengineering: business change of mythic
proportions?”. MIS Quaterly, Vol. 18, Issue 2, June 1994. Pages: 121 - 127.

Gemma Grau Colom

 42

[Dobrica-Niemelä 2002] Dobrica, L.; Niemelä, E.; “A survey on software architecture analysis methods”.
IEEE Transactions on Software Engineering, Vol. 28 , Issue 7, July 2002. Pages: 638 – 653.

[Eertink-et-al. 1999] Eertink, H.; Janssen, W.; Luttighuis P.O.; Teeuw, W.; Vissers, C.: “A Business
Process Design Language”. In Proceedings of the Wold Congress on Formal Methods in the Development
of Computing Systems -Volume I, 1999. Springer Verlag, LNCS 1708. Pages: 76-95.

[Estrada-et-al. 2003] Estrada, H., A. Martínez, A., Pastor, O.: “Goal-based business modeling oriented
towards late requirements generation”. In Proceedings of the 22nd International Conference on
Conceptual Modeling, 2003. Springer-Verlag, LNCS 2813. pp. 277-290.

[Franch-Carvallo 2003] Franch, X.; Pablo Carvallo, J.; “Using quality models in software package
selection” IEEE Software, Volume 20, Issue 1, Jan-Feb 2003. Page(s):34-41.

[Franch-Maiden 2003] Franch, X.; Maiden, N. “Modelling Component Dependencies to Inform their
Selection”. In Proceedings 2nd International Conference on COTS-Based Software Systems, ICCBSS
2003.

[Franch 2005] Franch, X.: “On the Lightweight Use of Goal-Oriented Models for Software Package
Selection”. In Proceedings of the 17th International Conference on Advanced Information Systems
Engineering, CAISE 2005. Springer-Verlag, LNCS 3520. Pages: 551-566.

[Fuentes-et-al. 2004] Fuentes, R.; Gómez, J.J.; Pavón, J.: “Social Analysis of Multi-agent Systems with
Activity Theory”. In Current Topics in Artificial Intelligence: 10th Conference of the Spanish Association
for Artificial Intelligence, CAEPIA 2003, and 5th Conference on Technology Transfer, TTIA 2003.
Springer-Verlag, LNCS 3040.

[Garlan-et-al. 1995] Garlan, D.; Allen, R.; Ockerbloom, J.: “Architectural Mismatch: Why Reuse Is So
Hard”. IEEE Software, Vol. 12, No. 6, 1995. Pages: 17-26.

[Garlan-et-al. 1995] Garlan, D.; Allen, R.; Ockerbloom, J.: “Architectural Mismatch or Why it’s hard to
build systems out of existing parts”. In Proceedings of International Conference on Software
Engineering, ICSE 1995. Pages: 179-185.

[Garlan-et-al. 97] Garlan, D.; Monroe, R.; Wile, D.: “Acme: An Architecture Description Interchange
Language”. In Proceedings of CASCON 97. Pages: 169-183.

[Giaglis 2001] Giaglis, G.M.: “A taxonomy of business process modelling and information systems
modelling techniques”. International Journal of Flexible Manufacturing Systems, Vol. 13, No. 2, 2001.
Page(s):209-228.

[Goguen-Linde 1993] Goguen, J.A.; Linde, C. “Techniques for Requirements Elicitation” Proceedings
IEEE Symposium on Requirements Engineering, San Diego, California (IEEE Computer Society Press
1993) Pages: 152-164.

[Goetz-Rupp 2003] Goetz, R., Rupp, C.: “Psychotherapy for System Requirements”. In Proceedings of
the 2nd IEEE International Conference on Cognitive Informatics, 2003. pp. 75-80.

[Gorton-Liu 2002] Gorton, I. & Liu, A.: “Streamlining the acquisition process for large-scale COTS
middleware components”. In Proceedings of the 1st International Conference on COTS-Based Software
Systems, ICCBSS 2002, LNCS 2255. Pages: 122-131.

[Grant 2002] Grant, D.: “A Wider View of Business Process Redesign”. Communications of the ACM.
February 2002/Vol. 45, No. 2. Page(s) 85-90.

[Green 1994] Green, S.: “Goal-Driven Approaches to Requirements Engineering” Technical Report DoC
TR-93-42 1994, Imperial College of Science, Technology and Medicine, Department of Computing
Technical Report, London, UK, 1994.

[GRL-web] GRL web page, http://www.cs.toronto.edu/km/GRL/, last accessed April 2005.

6. References

 43

[Grover-et-al 1994] Grover, V.; Fiedler, K.D.; Teng, J.T.C.: “Exploring the success of information
technology enabled business process reengineering”. IEEE Transactions on Engineering Management,
Vol. 41, No 3, August 1994.

[Grover-Malhotra 1997] V. Grover, M.K. Malhotra. “Business process reengineering: A tutorial on the
concept, evalution, method, technology and aplication”. Journal of Operations Management, Vol. 15,
1997. Elsevier. Pages: 193-213.

[Gunasekaran-Nath 1997] Gunasekaran A.; Nath B.: “The role of information technology in business
process reengineering”. International Journal of Production Economics, Vol. 50, No. 2, June 1997.
Elsevier Science. Pages: 91-104.

[Guo 2000] Guo, J.: “Interoperability technology assessment”. Elsevier Science, Electronic Notes in
Theoretical Computer Science, Vol. 65, No. 4, 2000.
[Hammer-Champy 93] Hammer, M.; Champy, J.A. Reengineering the Corporation: a Manifesto for
Business Revolution. Harper Business, New York, 1993.

[Iglesias-et-al. 1998] C.A. Iglesias, M. Garijo, J.C. González, J.R. Velasco. “Analysis and design of
multiagent systems using MAS-CommonKADS”. INTELLIGENT AGENTS IV: Agent Theories,
Architectures, and Languages, Springer Verlag, 1998.

[Iglesias-et-al 1999] C.A. Iglesias , M. Garijo, J.C. González. “A Survey of Agent-Oriented
Methodologies”. In Proceedings of the 5th International Workshop on Intelligent Agents V. Agent
Theories, Architectures, and Languages, ATAL 1998. Springer-Verlag. Pages: 317 – 330.

[ISO/IEC 9126-1] ISO/IEC Standard 9126-1 Software Engineering – Part 1: Quality Model, 2001.

[i*-web] i* web page, http://www.cs.toronto.edu/km/istar/, last accessed January 2006.

[i*-wiki] i* web page, http://istar.rwth-aachen.de/, last accessed January 2006

[Janssen-et-al. 1997] Janssen, W.; Jonkers, H.; Verhoosel, J.P.C.: “What makes business processes
special? An evaluation framework for modelling languages and tools in Business Process Redesign”. In
Proceedings 2nd CAiSE/IFIP 8.1 international workshop onevaluation of modelling methods in systems
analysis and design, Barcelona, June 1997.

[Jarzabek-Tok 1996] Jarzabek S.; Tok W.L.: “Model-based support for business re-engineering”.
Information and Software Technology, Volume 38, Number 5, May 1996. Elsevier Science. Pages: 355-
374.

[Jennings-Campos 1997] Jennings, N.R., Campos, J.R.: “Towards a social level characterisation of
socially responsible agents.” In IEEE proceedings on software engineering, 1997. Page(s) 144:11—25.

[Jennings 1998] Jennings, N.R.: “A Roadmap of Agent Research and Development”. Autonomous
Agents and Multi-Agent Systems. Volume 1 , Issue 1, 1998. Pages: 7 – 38.

[Jennings-Wooldridge 99] Jennings, N.R.; Wooldridge, M: “Agent-Oriented Software Engineering”.

[Jennings 2000] Jennings, N.R.: “On Agent-Based Software Engineering”. Artificial Intelligence, Vol.
117, No. 2, 2000. Pages: 277–296.

[Jones-Maiden 2004] Jones, S., Maiden, N.A.M.: “RESCUE: An Integrated Method for Specifying
Requirements for Complex Socio-Technical Systems”. Book chapter in Requirements Engineering for
Sociotechnical Systems, Idea Group Inc., 2004.

[Kaiya-et-al. 2002] H. Kaiya. H. Horai. M. Saeki. “AGORA: Attributed Goal-Oriented Requirements
Analysis Method”. In Proceedings of the IEEE Joint International Conference on Requirements
Engineering, RE 2002. Pages: 13-22

Gemma Grau Colom

 44

[Katzenstein-Lerch 2000] G. Katzenstein, F.J. Lerch: “Beneath the surface of organizational processes: a
social representation framework for business process redesign”. ACM Transactions on Information
Systems, Vol. 18, No. 4, 2000. Pages: 383-422.

[Kavakli-Loucopolos 2004] Kavakli, E.; Loucopoulos, P.: “Goal Modeling in Requirements Engineering:
Analysis and Critique of Current Methods”. Information Modeling Methods and Methodologies. Idea
Group, 2005.

[Kazman-et-al. 94] R. Kazman, L.J. Bass, M. Webb, G.D. Abowd: “SAAM: A Method for Analyzing the
Properties of Software Architectures”. Proceedings of the 16th International Conference on Software
Engineering, ICSE 1994. Pages: 81-90.

[Kazman 1996] Kazman, R.; Abowd, G.; Bass, L.; Clements, P.: “Scenario-based analysis of software
architecture”. IEEE Software 13(6), 1996. Pages: 47-55.

[Kettinger-et-al. 1993] Kettinger, W.J.; Guha, S.; and Teng, J.T.C.: “Business process reengineering:
Building the foundation for a comprehensive methodology”. Journal of Management Information
Systems, Vol. 10, No. 1, Summer 1993. Pages: 13-22.

[Kettinger-et-al. 1997] Kettinger, W.J.; and Teng, J.T.C.; Guha, S.; “Business Process Change: A Study
of Methodologies, Techniques, and Tools”. MIS Quarterly, 1997.

[Kinny-et-al. 2006] David Kinny, Michael Georgeff, and Anand Rao. “A methodology and modelling
technique for systems of BDI agents.” In W. van der Velde and J. Perram, editors, Agents Breaking. In
Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, MAAMAW 1996. Springer-Verlag, LNCS 1038.

[Klein 1994] M.M. Klein: “Reengineering methodologies and tools”. Information Systems Management,
11(2), 1994.

[Klein-Kazman 1999] Klein, M. and R. Kazman, "Attribute-Based Architectural Styles," Technical
Report CMU/SEI-99-TR-022, Soft Engineering Institute, Carnegie Mellon University, 1999

[Kolp-et-al. 2001] Manuel Kolp, Paolo Giorgini, John Mylopoulos: “A Goal-Based Organizational
Perspective on Multi-agent Architectures”. ATAL 2001. Pages: 128-140.

[Kolp-et-al. 2003] Manuel Kolp, Paolo Giorgini, John Mylopoulos: “Organizational Patterns for Early
Requirements Analysis”. CAiSE 2003. Pages: 617-632.

[Kontio 1996] Kontio, J.: “A Case Study in Applying a Systematic Method for COTS Selection”. In
Proceedings 18th International Conference on Software Engineering, IEEE Computer Society Press.

[Koubarakis-Plexousakis 2000] Manolis Koubarakis, Dimitris Plexousakis. “A Formal Model for
Business Process Modeling and Design”. In Proceedings of the 22nd Conference on Advanced
Information Systems Engineering, CAISE 2000. Pages: 142-156.

[Kueng-Kawalek 1997] Kueng P.; Kawalek P.: “Goal-based business process models: creation and
evaluation”. Business Process Management Journal, Volume 3, Number 1, January 1997. Emerald Group
Publishing Limited. Pages: 17-38.

[Kunda-Brooks 1999] Kunda, D.; Brooks, L. “Applying Socio-Technical Approach for COTS Selection”.
In Proceedings UK Academic Information Systems Conference, 7-9 April 1999, University of York.
Pages: 552-565

[Kozaczynski 2002] Kozaczynski, W.: “Requirements, Architectures and Risks”. In Proceedings of the
10th IEEE International Requirements Engineering Conference, RE 2002. Pages: 6-7.

[vanLamsweerde-et-al. 1992] van Lamsweerde, A.; Darimont, R.; Massonet, P.: “The Meeting Scheduler
Sytem – Problem Statement”. 1992.
http://www.lore.ua.ac.be/Teaching/SSPEC2LIC/MeetingScheduler.pdf.

6. References

 45

[vanLamsweerde 2001] van Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour”
Proceedings 5th IEEE International Symposium on Requirements Engineering, Toronto, August 2001.
Pages: 249-263.

[Lauesen 2004] Lauesen, S.: “COTS Tenders and Integration Requirements”. In Proceedings of the 12th
IEEE International Requirements Engineering Conference (RE’04). Pages: 166-175.

[Lee 1993] Lee, J.: “Goal Based Process Analysis: A Method for Systematic Process Redesign”. In
Proceedings of the Conference on Organizational Computing Systems, COOCS 1993. Pages: 196-201.

[Maiden-Ncube 1998] Maiden, N.; Ncube, C.; “Acquiring Requirements for COTS Selection”. IEEE
Software Vol. 15, No. 2, March/April 1998.

[Medvidovic-Taylor 1997] N. Medvidovic, R.N. Taylor. “A Framework for Classifying and Comparing
Architecture Description Languages”. In Proceedings of the Sixth European Software Engineering
Conference, 1997. Springer-Verlag, LNCS 1301. Pages: 60-76.

[Medvidovic-Taylor 2000] Medvidovic, N.; Taylor, R.N.; “A classification and comparison framework
for software architecture description languages”. IEEE Transactions on Software Engineering. Volume
26, Issue 1, January 2000. Pages: 70-93.

[Meyers-Oberndorf 2002] Meyers, C.B.; Oberndorf, P. “Managing Software Acquisition”. SEI Series in
Software Engineering, 2002

[Morisio-Tsoukias 1997] Morisio, M.; and Tsoukias, A. “IusWare: A Methodology for the Evaluation
and Selection of Software Products”, IEEE Software Engineering Vol. 144, No. 3, 1997, Pages: 162-174

[Morisio-et-al. 2000] Morisio, M.; Seaman, C.B.; Parra, A.; Basili, V.; Kraft, S.; and Condon, S.
“Investigating and Improving a COTS-Based Software Development Process”. Proceedings of the 22nd
International Conference on Software Engineering, ICSE 2000. Pages: 32-41.

[Ncube-Maiden 1999] Ncube, C.; Maiden, N. “Guiding Parallel Requirements Acquisition and COTS
Software Selection”. In Proceedings of the Fourth IEEE International Symposium on Requirements
Engineering, RE 1999, Pages: 133-140

[Neto-et-al. 2004] Neto, G.C., Gomes, A.S., Castro, J.B.: “Mapeando Diagramas da Teoria da Atividade
em Modelos Organizacionais Baseados em i*”. In Proceedings of the 7th Workshop em Engenharia de
Requisitos, 2004, pp 39-50.

[Newell 1982] A. Newell. The knowledge level. Artificial Intelligence, Vol. 18, 1982. Pages: 87-127.

[Oberndorf-Brownsword 1997] Oberndorf, P.; Brownsword, L. “Are You Ready for COTS?” Software
Institute Engineering. August 1997.

 [O’Malley-DeLoach 2001] S. A. O'Malley and S. A. DeLoach. “Determining when to use an agent-
oriented software engineering”. In Proceedings of the Second International Workshop On Agent-Oriented
Software Engineering, AOSE-2001. Springer-Verlag 2222/2002. Page(s) 188-205.

[Pavan-et-al. 2003] P. Pavan, N.A.M. Maiden, X. Zhu. “Towards a Systems Engineering Pattern
Language: Applying i* to Model Requirements-Architecture Patterns”. In Proceedings of STRAW 2003.

[Potts-et-al. 1994] Potts, C.; Takanashi, K.; Antón, A. “Inquiry-Based Requirements Analysis”. IEEE
Software, Vol. 11, No. 2, March 1994.

[Rolland-et-al. 2004] C. Rolland, C. Salinesi, A. Etien: “Eliciting gaps in requirements change”.
Requirements Engineering. Vol. 9, No. 1, February 2004. Pages: 1-15.
[Rugg-et-al. 1992] Rugg, G, Corbrigge, C. Major, N.P.; Burton, A.M.; Shadbolt, N.R. “A Comparison of
Sorting Techniques in Knowledge Elicitation” Knowledge Acquisition, Vol. 4, No. 3, 1992. Pages: 279-
291.

Gemma Grau Colom

 46

[Rugg-McGeorge 1997] Rugg, G, McGeorge, P. “The Sorting Techniques: a Tutorial Paper on Card Sort,
Picture Sorts and Item Sorts”, Expert Systems, Vol 14, No.2. May 1997.

[RUP] Jacobson, I.; Booch, G.; Rumbaugh, J. “ The Unified Software Development Process”. Addison
Wesley Longman, Reading, MA, 1999.

[Sabas-et-al. 02] A. Sabas, S. Delisle, M. Badri. “A Comparative Analysis of Multiagent System
Development Methodologies: Towards a Unified Approach", Third International Symposium "From
Agent Theory to Agent Implementation" (AT2AI-3), Sixteenth European Meeting on Cybernetics and
Systems Research, Vienne (Autriche), 2-5 avril 2002.

[Santander-Castro 2002] Santander, V.F.A.; Castro, J.F.B.: “Deriving Use Cases from Organizational
Modeling”. In Proceedings of the 10th IEEE Requirements Engineering Conference, 2002. Pages: 32-39.

[Saur-et-al. 2000] Saur, L.D.; Clay, R.L. & Armstrong, R.: “Meta-component architecture for software
interoperability”. IEEE Computer, November, 2000, Pages: 75-84.

[Sai-Franch-Maiden 2004] V. Sai, X. Franch, N.A.M. Maiden: “Driving Component Selection through
Actor-Oriented Models and Use Cases”. Proceedings of the Third International Conference on COTS-
Based Software Systems, ICCBSS 2004. Springer Verlag, LNCS 2959. Pages: 63-73.

[Schreiber-et-al. 1994] A. Th. Schreiber, B. J. Wielinga, J. M. Akkermans, andW. Van de Velde.
“CommonKADS: A comprehensive methodology for KBS development. Deliverable DM1.2a
KADSII/M1/RR/UvA/70/1.1, University of Amsterdam, Netherlands Energy Research Foundation ECN
and Free University of Brussels, 1994.”

[SEI] Software Engineering Institute. COTS-Based System Initiative (CBS) http://www.sei.cmu.edu/cbs/

[SEI-a] Software Engineering Institute. COTS-Based System Initiative (CBS)
http://www.sei.cmu.edu/cbs/overview2.html

[SEI-b] Software Engineering Institute. COTS-Based System Initiative (CBS)
http://www.sei.cmu.edu/cbs/overview.html

[Shaw 1991] Shaw M.; 1991, ‘Heterogeneous Design Idioms for Software Architecture’, In Proceedings
of the Sixth International Workshop on Software Specification and Design. IEEE Computer Society Press,
Pages: 158-165.

[Söderström-et-al. 2002] E. Söderström, B. Andersson, P. Johannesson, E. Perjons, B. Wangler1.
“Towards A Framework for Comparing Process Modelling Languages” In Proceedings of the 14th
International Conference on Advanced Information Systems Engineering, CAISE 2002. Springer Verlag,
LNCS 2348.
Pages: 600 – 611.

[Sturm-Shehory 2003] A. Sturm, O. Shehory. “A Framework for Evaluating Agent-Oriented
Methodologies”. In Proceedings of the Agent-Oriented Information Systems, 5th International Bi-
Conference Workshop, AOIS 2003. Pages: 94-109.

[Sudeikat-et-al. 2004] J. Sudeikat, L. Braubach, A. Pokahr, W. Lamersdorf. “Evaluation of Agent -
Oriented Software Methodologies - Examination of the Gap Between Modeling and Platform”. In
Proceedings of the Fifth International Agent-Oriented Software Engineering Workshop, AOSE 2004.
Pages: 126—141

[Teng-et-al. 98] J.T.C. Teng, S.R. Jeong, V. Grover. “Profiling successful reengineering projects”.
Communications of the ACM. Volume 41, Issue 6, June 1998. Pages: 96 – 102.

[Tveit 2001] Tveit, A.: "A Survey of Agent-Oriented Software Engineering". In Proceedings of the First
NTNU CSGS Conference, 2001.

[Tropos-web] TROPOS web page, http://www.troposproject.org/, last accessed April 2005.

6. References

 47

[UML] UML 2.0 Specifications http://www.uml.org/, last accesed February 2005

[Vestal 1993] S. Vestal. A Cursory Overview and Comparison of Four Architecture Description
Languages. Technical Report, Honeywell Technology Center, February 1993.

[Voas 1998] Voas, J. “The Challenges of Using COTS Software in Component-Based Development”.
IEEE Computer, Vol. 31 No.6, June 1998. Pages: 44-45.

[Warboys-et-al. 2005] B. Warboys, B. Snowdon, R.M. Greenwood, W. Seet, I. Robertson, R. Morrison,
D. Balasubramaniam, G. Kirby, K. Mickan. “An Active-Architecture Approach to COTS Integration”.
IEEE Software, Volume 22, Issue 4, July-Aug. 2005 Pages: 20-27.

[Wooldridge 1997] Wooldridge, M.: “Agent-based software engineering”. IEEE Proceedings – Software,
Vol. 144, No. 1, 1997 Pages: 26-37.

[Wooldridge-et-al. 2000] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia methodology for
agent-oriented analysis and design”. Journal on Autonomous Agents Multi-Agents Systems.; vol. 3, no. 3,
2000.

[Yakimovich-et-al. 1999] Yakimovich, D.; Bieman, J.M. & Basili, V.R.: “Software architecture
classification for estimating the cost of COTS integration”. In Proceedings of the 21st International
Conference on Software Engineering, ICSE '99, ACM, Pages: 296-302.

[Yu-et-al. 1996] ESK Yu, J Mylopoulos, Y Lesperance. “AI Models for Business Process
Reengineering”. IEEE Expert: Intelligent Systems and Their Applications, 1996.

[Yu-Cysneiros 2002] Eric S. K. Yu, Luiz Marcio Cysneiros: “Agent-Oriented Methodologies - Towards a
Challenge Exemplar”. In Proceedings of the Fourth International Bi-Conference Workshop on Agent-
Oriented Information Systems, AOIS 2002.

[Yu-Cysneiros 2002] E. Yu, L.M. Cysneiros, “Agent-Oriented Methodologies – Towards A Challenge
Exemplar”. Third International Symposium "From Agent Theory to Agent Implementation" (AT2AI-3),
Sixteenth European Meeting on Cybernetics and Systems Research, Vienne (Autriche), 2-5 avril 2002.

[Yu-Mylopoulos 1994] Yu, E.; Mylopoulos, J. “Using Goals, Rules, and Methods to Support Reasoning
in Business Process Reengineering”. In Proceedings of the 27th Hawaii International Conference on
System Sciences, Vol. IV: Information Systems: Collaboration Technology Organizational Systems and
Technology, January 1994.

[Yu 1995] Yu, E.: Modelling Strategic Relationships for Process Reengineering, PhD. thesis, University
of Toronto, 1995.

Gemma Grau Colom

 48

