On the Mismatch Between Multidimensionality
and SQL

Oscar Romero and Alberto Abelld

Universitat Politécnica de Catalunya

Abstract. ROLAP tools are intended to ease information analysis and
navigation through the whole Data Warehouse. These tools automat-
ically generate a query according to the multidimensional operations
performed by the end-user, using the relational database technology to
implement multidimensionality and consequently, automatically trans-
lating multidimensional operations to SQL. In this paper, we consider
this automatic translation process in detail and to do so, we present
an exhaustive comparative (both theoretical and practical) between the
multidimensional algebra and the relational one. Firstly, we discuss about
the necessity of a multidimensional algebra with regard to the relational
one and later, we thoroughly study those considerations to be made to
guarantee the correctness of a cube-query (an SQL query making mul-
tidimensional sense). With this aim, we analyze the multidimensional
algebra expressiveness with regard to SQL pointing out the features a
query must satisfy to make multidimensional sense and we also focus
on those problems that can arise in a cube-query due to SQL intrinsic
restrictions. The SQL translation of an isolated operation does not rep-
resent a problem, but when mixing up the modifications brought about
by a set of operations in a single cube-query, some conflicts derived from
SQL could emerge depending on the operations involved. Therefore, if
these problems are not detected and treated appropriately, the automatic
translation can retrieve unexpected results.

1 Introduction

OLAP (On-line Analytical Processing) tools are intended to ease information
analysis and navigation all through the organizational data previously integrated
(homogenized, cleaned and filtered) in a huge repository of data, the Data Ware-
house, used to extract relevant knowledge of the organization. Specifically, OLAP
tools are conceived to exploit the Data Warehouse for analysis tasks based on
multidimensionality, the main feature of these tools. The multidimensional con-
ceptual view of data is distinguished by the fact/dimension dichotomy and it
is characterized by representing data as if placed in an n-dimensional space, al-
lowing us to easily understand and analyze data in terms of facts (the subjects
of analysis) and dimensions showing the different points of view where a sub-
ject can be analyzed from. These characteristics are desirable since OLAP tools
are aimed to enable analysts, managers, executives and in general those people

involved in decision making, to gain insight into data through fast queries and
analytical tasks, allowing them to make better decisions and, in short, be more
competitive.

More precisely, OLAP functionality is characterized by dynamic multidimen-
sional analysis of consolidated enterprise data supporting end user analytical and
navigational activities. “Navigation” means to interactively explore a data cube
by drilling, rotating and screening, and as presented in [FBSV00] we consider
“roll-up” (increase the aggregation level), “drill-down” (decrease the aggregation
level), “screening and scoping” (select by means of a criterion evaluated against
the data of a dimension), “slicing” (specify a single value for one or more mem-
bers of a dimension) and “pivot” (reorient the multidimensional view), as the
typical end user operations performed on data cubes. Some works, like [PJO1]
and [ASS06], add “drill-across” (combine data from cubes sharing one or more
dimensions) to these basic operations.

In general, building up a Data Warehousing System (a Data Warehouse all
together with its exploitation tools) is never an easy job, raising up some interest-
ing challenges. Data must be gathered and assembled from various and possibly
heterogeneous sources in order to gain a single and detailed view of the organiza-
tion (the Data Warehouse) that later, must be properly managed and exploited.
One of these challenges focus on modeling multidimensionality. Despite lacking
of an standard multidimensional model like in the relational model, lots of efforts
have been devoted to multidimensional modeling and several models have been
developed. Consequently, we can nowadays design a multidimensional concep-
tual schema, create it physically and later, exploit it through the model algebra
or calculus (implemented in the exploitation tools).

When implementing (i.e. creating it physically) our conceptual schema, and
in general, the Data Warehousing System, over a DBMS (Database Manage-
ment System) there are two main trends: to use the relational technology or an
adhoc one, giving rise, respectively, to what are known as ROLAP (Relational
On-line Analytical Processing) and MOLAP (Multidimensional On-line Analyt-
ical Processing) tools. ROLAP tools map the multidimensional model over the
relational one, allowing them to make profit of a well-known and established
technology and being, nowadays, the most frequent way to implement a Data
Warehousing System. Specifically, [KRTR98| presents how a Data Warehouse
should be implemented over a RDBMS (Relational Database Management Sys-
tem) and how to retrieve data from it. But, unfortunately, because of the lack of
a multidimensional algebra accepted as reference point, there is not yet a widely
accepted trend to translate the multidimensional algebra operators to SQL.

In the last years several algebras have already been proposed but some of
them do not directly map to SQL and, in general, none of them offers the trans-
lation of its operators to SQL (rather they propose alternatives to SQL and the
relational algebra). In fact, there are some models proposing alternatives to SQL
arguing that RDBMS are not well suited for multidimensional purposes. One of
this alternatives proposed is the MDX (Multidimensional Expressions) language
([Mic]). Developed by Microsoft for multidimensional tasks, MDX provides a

rich and powerful language to handle multidimensional data based on the SQL
syntax, even though it is not an extension of SQL. However, MDX queries are
static and therefore, we can not navigate all over the multidimensional data con-
catenating operators like an algebra does. MDX does not fit multidimensionality
necessities better than SQL either, since these kind of tools aim for a language
easing the user navigation and analysis of data from a user friendly perspective,
and MDX, like SQL, are not easy to understand for a non-expert user. More-
over, it is also a declarative language and therefore, it needs to be translated to
a procedural language; like SQL must be translated to the relational algebra.
Nevertheless, MDX could be used as an intermediate language where to trans-
late the end-user multidimensional operators to, but in that case, SQL (used in
ROLAP tools, nowadays, the most extended way to implement a data warehouse
system) may fit better since it is standard, well-known and its importance in the
market is unquestionable.

In this paper, we focus on the automatic translation of the multidimen-
sional algebra to SQL, and eventually to the relational algebra, that a ROLAP
tool must implicitly perform. To do so, we present an exhaustive comparative
(both theoretical and practical) between the multidimensional algebra and the
relational one. However, since, unfortunately, we can not benefit from an stan-
dard multidimensional model, section 2 presents YAM? as the multidimensional
framework to be used as reference all over this paper, allowing us to compare
both approaches.

Section 3 starts our discussion justifying why the relational algebra does not
directly fit properly to multidimensionality by means of a conceptual comparison
between both algebras. Later, we present a comparative between those multidi-
mensional algebras introduced in the literature in the last ten years with regard
to our framework. We conclude this section discussing about the necessity of
a multidimensional algebra, the current state of the art and the suitability of
YAM? as our multidimensional framework along this paper.

Next, we present a thorough (practical) comparison between both models
according to the automatic translation a ROLAP tool would perform. Thus, we
go one step beyond presenting a logical comparative where the multidimensional
algebra faces SQL as performed in a ROLAP tool translation process. Section
4 presents, in general terms, how to translate our framework (focusing on the
multidimensional algebra) to SQL, and for each multidimensional operator we
present its isolated translation to SQL. Section 5 studies in detail those addi-
tional considerations to be made to also guarantee the semantic correctness of
a cube-query (an SQL following the multidimensional SQL pattern). With this
aim, we first analyze the multidimensional algebra expressiveness with regard to
SQL pointing out the features a query must satisfy to make multidimensional
sense (i.e. to be a valid cube-query). Furthermore, we introduce a detailed algo-
rithm based on those features spotted in this section to automatically infer if a
correct SQL query is a valid cube-query. Finally, section 6 focus on those prob-
lems that can arise in a cube-query due to SQL intrinsic restrictions. ROLAP
tools automatically generate a cube-query according to the multidimensional op-

erations performed by the user. The SQL translation of an isolated operation
does not represent a problem and can be easily obtained as presented in section
4, but when mixing up the modifications brought about by a set of operations
in a single cube-query, some conflicts derived from SQL could emerge depending
on the operations involved. Therefore, if these problems are not detected and
treated appropriately, the automatic translation can retrieve unexpected results.
Consequently, we also analyze how to solve or minimize their impact. Finally,
we present our conclusions and future work in section 7.

2 Our Framework: YAM?

Due to the lack of an standard multidimensional model, and hence, the lack
of a common notation, to carry out our work we need a reference framework
in which to translate and compare the multidimensional algebras presented in
the literature. Moreover, we will also need to compare that framework to the
relational algebra since, nowadays, ROLAP tools are the most widely spread ap-
proach to model multidimensionality and therefore, multidimensional queries are
being translated to SQL and (eventually) to the relational algebra. Conversely,
a comparison among all those different algebras would be rather difficult.

In this section we present YAM? (Yet Another Multidimensional Model)
[ASS06], to be used as our reference multidimensional framework along this
paper. Therefore, we present YAM? data structure, its algebra and its integrity
constraints to define concisely and univocally the multidimensional concepts as
well as to provide a common notation all through this paper. From here on,
YAM? concepts will be bold faced for the sake of comprehension.

2.1 Data Structure

YAM? data structure was introduced in [ASS06| as an extension of UML. On
one hand, a Dimension (subclass of UML Classifier) contains a hierarchy of
Levels (subclass of UML Class) representing different granularities (or levels
of detail) to study data, and a Level contains Descriptors (subclass of UML
Attribute). We differentiate between identifier Descriptors and non-identifier.
The first univocally identify each instance of a Level, in a role similar to the
“primary key” in the relational model. On the other hand, a Fact (subclass of
UML Classifier) contains Cells (subclass of UML Class) which contain Mea-
sures (subclass of UML Attribute). One Cell represents those individual cells
of the same granularity that show data regarding the same Fact (i.e. a Cell is a
“Class” and cells are its instances). Specifically, a Cell of data is related to one
Level for each of its associated Dimension of analysis. We call a Base to those
minimal set of Levels identifying univocally a Cell, similar to the “primary key”
concept in the relational model. Therefore, Dimension Levels determine the
multidimensional space where each cell is placed. A set of cells placed in the
multidimensional space with regard to the Base is called a Cube. Finally, one
Fact and several Dimensions to analyze it give rise to a Star. As discussed in

[ASS06], we consider quite important to be able to relate different Stars not only
sharing dimensions but defining semantic relationships at design time between
them like UML Generalization, Association, Derivation or Flow; some of them
already considered in other conceptual models as [TPGS01] and [TBC99].

i)
Customer
1 1 5
. 0
I %
F e vy
Trofit +
* T Dail T
1 aily ‘* b 1 ([T Tally L
+_Profit I - Stock *
[g L |
1] Product [

Fig. 1. Example of a multi-star schema

For instance, in figure 1 we find two Facts containing two Cells each one
(the Fact profit containing the Daily Profit and Monthly Profit Cells,
and the Fact stock containing the Daily Stock and Weekly Stock Cells).
Both Facts are related to its Dimensions of analysis, and in this case, they
are sharing two of them; the Time (showing explicitly its Levels hierarchy)
and Product Dimension. Note the special A11 Level depicted in the Time
Dimension hierarchy. This Level contains a unique instance representing the
whole elementary instances of the Dimension; that is, represents the whole
Dimension, and it must always placed in the top of the hierarchy. Also notice
the importance of consolidation of data in the multidimensional model, where a
value in a single cell may represent an aggregated measure computed from more
specific data at some lower Level of the same Dimension. For instance, the
Monthly profit data may have been consolidated as the sum of each month
Daily profit disaggregated data.

Once we have presented our framework data structure notation, we can em-
phasize how these concepts should be implemented over a RDBMS. [KRTRIS|
shows how a Star should be implemented on RDBMS through a star or a
snowflake schema. The star schema consists of one table for the Fact and one de-
normalized table for every Dimension with the latter being pointed by “foreign
keys” (FK) from the “fact table”, which compose its “primary key” (PK). The
normalized version of a star schema is a snowflake schema, getting a table for
each Level with a FK pointing to each of its parents in the Dimension hierar-
chy. Nevertheless, both approaches can be conceptually generalized into a more
generic one consisting in partially normalizing the Dimension tables accord-
ing to our needs. Completely normalizing each Dimension we get a snowflake
schema and not normalizing them at all results in a star schema. We choose this
generic approach as we consider, like in [MKO00], a Fact can contain not just one
but several materialized Cells (“Cell tables”). So that, each Level related to a
materialized Cell must also be materialized as a table since a FK (each FK in

the Cell pointing to Levels related to it) must be related to a PK, or at least,
to a “unique” table field. If a certain Level is only related to non materialized
Cells we can denormalize it. Semantic relationships are always translated as FK
pointing to a “candidate key” (CK) without considering its semantics. In figure 1,
we have decided to materialize the four Cells stated explicitly (i.e. Daily Stock,
Weekly Stock, Daily Profit and Monthly Profit). Hence, those Levels di-
rectly related to them will be materialized, but, for instance, Year Level will
not since no materialized Cell points to it.

2.2 Multidimensional Algebra

In this section we present YAM? operations introduced in detail in [ASS03],
intended to manipulate Cubes.

Selection: By means of a logic clause C' over a Descriptor, this opera-
tion allows to choose the subset of points of interest out of the whole n-
dimensional space.

Roll-up: It groups cells in the Cube based on an aggregation hierarchy.
This operation modifies the granularity of data by means of a many-to-one
relationship which relates instances of two Levels in the same Dimension,
corresponding to a part-whole relationship.

ChangeBase: This operation reallocates exactly the same instances of a
Cube into a new n-dimensional space with exactly the same number of
points, by means of a one-to-one relationship. Actually, it allows two differ-
ent kinds of changes in the space Base. We can just rearrange the multidi-
mensional space by reordering the Levels (this would be equivalent to the
“pivot” operation), or, if exists more than one set of Dimensions identifying
the cells (i.e. there are alternative Bases), by replacing the current Base
by one of the alternatives ones.

Drill-across: This operation changes the subject of analysis of the Cube
by means of a one-to-one relationship. The n-dimensional space remains
exactly the same, only the cells placed in it change. Like in the ChangeBase
operation, semantic relations rise new possibilities as presented in [ASS03].
Projection: It selects a subset of Measures from those available in the
Cube.

Union: It unites two Cubes containing the same Cells if both are de-
fined over the same n-dimensional space. Same considerations could be done
to define Difference and Intersection, just changing the logical operator
applied between Cubes (the “OR”, “AND NOT” an “AND” operators re-
spectively). Notice, however, Intersection can be derived from Difference
and therefore, it is not necessary in a minimal set of operations. From here
on, we will just talk about Union for the sake of briefness, despite any
consideration related to it can also be easily extended to Difference and
Intersection as presented.

The algebra composed by these operations is “closed” (applied to a Cube,

the result of all operations is another Cube), “complete” (any valid Cube can

be computed as the combination of a finite set of operations applied to the
appropriate Cell) and “minimal” (none can be expressed in terms of others, nor
can any operation be dropped without affecting its functionality). Therefore,
other operations can be derived by sequences of these operations. This is the
case of Slice (which reduces the dimensionality of the original Cube by fixing
a point in a Dimension) by means of Selection and ChangeBase operations.
For instance, referring to figure 1, we can Slice Weekly Stock fixing Place
Dimension to a concrete value (i.e. Barcelona) by means of a Selection, and
being Time X Product X 1 the current space Base. At this time, we can change
the space base to Time X Product through a ChangeBase without losing cells.
About Drill-down (i.e. the inverse of Roll-up), as argued in [HS97], it can
only be applied if we previously performed a Roll-up and did not lose the
correspondences between cells. Losing correspondences can happen due to extra
navigation between Cubes (through Drill-across or ChangeBase) resulting
that we do not have data in a lower aggregation Level for the target Cube.

2.3 Integrity Constraints

This section presents the multidimensional model integrity restrictions to be
guaranteed at every moment. Integrity constraints pay attention to two impor-
tant multidimensional aspects; placement of data in a multidimensional space
and summarizability of data.

In one hand, first integrity constraint enforces us to identify each Cell in-
stance by means of those Levels related to it. Cells (i.e. data) is placed in a
n-multidimensional space conformed by its n Dimensions of analysis. For each
one of its Dimensions, a Cell will be related to one Level of the Dimension
hierarchy. Therefore:

— Every minimal set of Levels completely identifying a Cell is called a Base.

Notice the Base concept is similar to the “key” concept in the relational
model, and it enforces us to keep, in every Cube, a functional dependency be-
tween cells and Levels. On the other hand, we present here the three necessary
conditions (intuitively also sufficient) introduced in [LS97] to warrant a correct
data summarization:

— Disjointness: Sets of cells at an specific Level to be aggregated must be
disjoint.

— Completeness: Fvery cell at a certain Level must be aggregated in some
parent Level.

— Compatibility: Dimension, kind of measure aggregated and the aggre-
gation function must be compatible. Compatibility must be satisfied since
certain functions are incompatible with some Dimensions and kind of mea-
sures. For instance, we can not aggregate Stock over Time Dimension by
means of sum, as some repeated values would be counted.

i B +N ‘N
Tear Honth I

+ 1 W ‘
Country
D N
- L _Product

Citvy

Fig. 2. Schema of a multidimensional Cube

When aggregating data we have to assure these conditions to avoid sum-
marizability anomalies. If not, we will face duplicated values or find that some
measurements at an aggregation Level cannot be used to obtain data at higher
aggregation Levels, forcing us to go to finer granularities, maybe to the “atomic
Level” (lowest Level in a Dimension hierarchy which is always materialized),
to obtain the source data for the calculation.

3 Comparison of Algebras

In this section we have two main objectives. On one hand, we justify the necessity
of a multidimensional algebra and why the relational one does not directly fit to
multidimensionality needs. On the other hand, we justify our framework choice
comparing it with all the multidimensional algebras presented up to now in the
literature. Consequently, it also reveals the current state of the art. Finally, we
discuss about the results presented along this section.

3.1 Multidimensional Algebra Vs. Relational Algebra

This section aims to justify the necessity of a semantic layer (the multidimen-
sional algebra) on the top of the RDBMS (i.e. the relational algebra). Despite
we believe ROLAP tools are the best choice to implement multidimensionality,
we present, by means of a conceptual comparative between the multidimensional
and the relational algebra operators, why the relational algebra (and therefore
SQL) does not directly fit properly to multidimensionality. Furthermore, we em-
phasize in those restrictions and considerations needed to be made over the
relational algebra with regard to multidimensionality.

In this comparative we consider the relational algebra presented in [Cod72].
Thus, we consider “Selection” (o), “Projection” (), “Union” (U), “Difference”
(—) and “Natural Join” (<) as the relational algebra operators. As remark, we
talk about “Natural Join”, or simply “Join”, instead of the “Cartesian Product”
(the one presented in [Cod72] and where “Join” can be derived from) since a
“Cartesian Product” without restrictions is meaningless in the multidimensional
model, as discussed in [RA05]. Moreover, we do not include the “rename” oper-
ator, not included in [Cod72] but widely accepted later. This is because we are

focusing on handling and manipulating data and ‘“rename” can be considered a
meta-operator more than an operator by itself.

For the sake of comprehension, since we focus on a conceptual comparison,
and to avoid messing results with considerations about the Data Warehouse im-
plementation, we will consider, without loss of generality, that each multidimen-
sional Cube is implemented as a single relation (i.e. a denormalized relational
table). So that, considering the Cube depicted in figure 2 (extracted from fig-
ure 1) we would get the following relation: {City, Day, Product, Daily Stock,
Country, Month, Year}. Being the underlined fields the multidimensional Base
and therefore, the relation “primary key”. Along this section, we will refer to this
kind of denormalized relation as the multidimensional table.

Prior to present our results, just remind section 4 presents how each multi-
dimensional operator should be translated to SQL, helping the reader to better
understand this section.

Table 1 summarizes the mapping between both algebras operators. Notice
we are considering the “group by” and “aggregation” as relational operators, and
both will be justified consequently below. Since multidimensional tables contain
(1) identifier fields (i.e. identifier Descriptors -see section 2.1-) identifying data
-for instance: City, Day and Product in the above example-; (2) numerical fields:
-Daily Stock-, representing multidimensional data (i.e. Measures) and (3) de-
scriptive fields: -Country, Month and Year- (i.e. non-identifier Descriptors), we
use the following notation in the table: v/ pseqsures if the multidimensional oper-
ator is equivalent to the relational one but it can be only applied over relation
fields representing Measures, v peses if the multidimensional operator must be
applied over Descriptors fields and finally, v’ pescs,, if it can be only applied
over identifier Descriptors fields. Consequently, a v* without restrictions means
both operators are equivalent, without additional restrictions. If the translation
of a multidimensional operator combines more than one relational operator, the
subscript + is added.

YAM?Z Operator “Selection” | “Projection” “Join” “Union”| “Group by” | “Aggregation”
Selection v Descs
Projection V Measur
Roll-up Y Descs g+ |Y Measures+
Drill-across . V Descsyg+ |¥ Descs gt
Add Dim. ‘/Descsid
changeBase[Remove Dim. JDescs-d
25CS4
Alt. Base ‘/Desnsid+ ‘/Descsid+
Union v

Table 1. Comparative table between the relational and the multidimensional algebras.

— The multidimensional Selection operator is equivalent to a restricted rela-
tional “Selection”. It can be only applied over Descriptors and then, it is
equivalent to restrict the relational “Selection” just over Level data. Accord-
ing to our notation, we express the multidimensional Selection in terms of
the relational algebra as o pescriptors-

10

— Similarly, the multidimensional Projection operator is equivalent to the
relational one restricted to Measures; that is, specific Cell data. In terms
of the relational algebra we could express it as Taseasures-

— OLAP tools emphasize on flexible data grouping and efficient aggregation

evaluation over groups and it is the multidimensional Roll-up operator the
one aimed to provide us with powerful grouping and aggregation of data.
In order to support it, we need to extend the relational algebra to provide
grouping and aggregation mechanisms. This topic have already been studied
and previous works like [Klu82|, [LW96] and [Lar99] have already presented
extensions of the relational algebra to what is also called the grouping al-
gebra. All of them introduce two new operators, and following the [Lar99|
grouping algebra, we will refer to them as the “group by” and the “aggrega-
tion” operators.
The “group by” operator presented allows us to group data and apply a
simple addition, counting or maximization of a collection of domain values
(like it has been typically introduced, tightly connected to aggregation), and
it also allows to perform relational computations on groups, even without
applying aggregation. Moreover, it supports nested groupings, extending it
with respect to more than one relational argument, fulfilling the OLAP ne-
cessities about grouping. The syntaxis introduced is the following: group
71,...,7n By X do e. Where 71, ...,7, are relational names, X a subset of
attribute names and e is a relational expression (even another “group by”
expression). For instance, if we would like to group data by the Product
field in the multidimensional table depicted in table 2 we would obtain:
{{[Scarf, Spain, Barcelona, 10, 1, 1, 2006],[Scarf, Italy, Rome, 9, 1, 1, 2006]},{[T-
shirt, Spain, Barcelona, 7, 1, 1, 2006], [T-shirt, Italy, Rome, 50, 1, 1, 2006]}, {[Socks,
Spain, Barcelona, 30, 1, 1, 2006]}}.

lCountry[City [Product[Sales[Day[Month[Year‘

Spain |Barcelona| Scarf | 10 | 1 1 |2006
Italy Rome Scarf 9 1 1 |2006
Spain |Barcelona| T-Shirt | 7 1 1 |2006
Ttaly Rome |T-Shirt| 50 | 1 1 |2006
Spain |Barcelona| Socks | 30 | 1 1 |2006

Table 2. Implementation of figure 2 through a denormalized table (a multidimensional
table).

Finally, the “aggregation” operator computes the aggregation of a given at-
tribute over a given nested relation. Hence, it could be any of the usual
aggregation functions, like SUM, COUNT, MAX, MIN, AVG, etc. For in-
stance, M AX g41c5(T), being T table 2, would evaluate to 50.

In terms of this grouping algebra, a Roll-up operator consists of a proper
“group by” operation along with an “aggregation” of data. Following our

11

example, group T by Product do SUM(Sales) would calculate the Sales
sum per product; evaluating to {[Scarf,19],|T-Shirt,57],[Socks,30]}. Keep in
mind this operation must perform a proper aggregation of data if we want
it to be consistent.

A consistent Drill-across typically consists on a “Join” between two multi-
dimensional tables sharing the same multidimensional space. Notice that to
“Join” both tables it must be performed over their common Level identifiers
that must univocally identify each cell in the multidimensional space (the
Cube Base). Moreover, once “joined”, we must “project” out the columns
in the multidimensional table drill-acrossed to, except for its Measures.
Formally, Let A and B be the multidimensional tables implementing, re-
spectively, the origin and the destination Cells involved. In the relational
algebra it can be expressed as:

T Descriptorsa,Measures 4,Measuresps (-A > B)

As stated in section 2, changeBase allows us to rearrange our current mul-
tidimensional space either by changing to an alternative Base (adding /
removing a Dimension or replacing Dimensions) or reordering the space
(i.e. “pivoting”).

When changing to an alternative Base we must assure it does not affect the
functional dependency of data with regard to the Cube Base. Hence:

e To add a Dimension it must be done through its A11 Level or fixing
just one value at any other Level by means of a Selection, to not lose
cells (i.e. representing the whole Dimension as a unique instance as dis-
cussed in 2.2). Therefore, in the relational algebra adding a Dimension
is achieved through a “cartesian product” between the multidimensional
table and the Dimension table (that would contain a unique instance).
Specifically, being C the initial multidimensional table and D the rela-
tional table implementing the added Dimension, it can be expressed
as:

CxD, where|D|=1

e To remove a Dimension it is just the opposite, and we need to get rid
of the proper Level identifier projecting it out in the multidimensional
table.

e To change the set of Dimensions identifying each cell, that is, choos-
ing an alternative Base to display the data, we must perform a “join”
between both Bases and project out the replaced Levels Descriptors
in the multidimensional table. In this case, the “join” must be performed
through the identifier Descriptors of Levels replaced and Levels in-
troduced. Formally, let A be the multidimensional table, B the table
showing the correspondence between both Bases and d;, ..., d, the iden-
tifier Descriptors of those Dimensions introduced. In the relational
algebra, it is equivalent to:

TrDescriptorsB(dl 4), Measures.a (-A > B)

12

e Finally, pivoting just asks to reorder the Levels identifiers using the
SQL “order by” operator, not mappable to the relational algebra. For
that reason, it is not included in table 1.

— The multidimensional Union (Difference, Intersection) unites two Cubes
defined over the same multidimensional space. In terms of the relational al-
gebra, it is equivalent to “Union” two multidimensional tables.

3.2 The Multidimensional Algebras

Next, we present a comparative among our reference algebra and the other multi-
dimensional algebras presented in the literature. To the best of our knowledge, it
is the first comparative about multidimensional algebras carried out. In [VS99],
a survey describing the multidimensional algebras in the literature is presented.
However, unlike us, it does not compare them. Results presented along this sec-
tion are summarized in table 3. There, rows, representing an algebraic operator,
are grouped according to which algebra they belong to (also ordered chronolog-
ically), whereas columns represent the multidimensional algebraic operators in
our framework. Notice Roll-up and Drill-down are considered together since
one is the inverse of the other. Moreover, as discussed in section 2.2, we consider
all together the Union, Intersection and Difference operators.

The notation used is the following; a v' cell means that those operations
represent the same conceptual operator; a ~ stands for operations with similar
purpose but different proceeding making them slightly different; a v',, means that
the operation partially performs the same data manipulation than the YAM?
operator despite the last also embraces other functionalities, and a v’ ; means
that this operation is equal to combine the marked operators of our reference al-
gebra, meaning it is not an atomic operator. Analogously, there are some YAM?
operators that can be mapped to another algebra combining more than one of
its operators. This case is showed in the table with a D (from derived). Keep in
mind this last mark must be read vertically unlike the rest of marks. Finally, no-
tice we have only considered those operations manipulating data. Consequently,
those aimed to manipulate the data structure are not included.

[LW96] introduces a multidimensional algebra as well as its translation to
SQL. To do so, it previously extends the relational algebra with grouping and ag-
gregation operators, and later, it presents the multidimensional operators trans-
lation to the grouping algebra defined. Prior to present its operators, we must
notice it was one of the first models presented, and its main aim is to construct
multidimensional Cubes from local operational databases. In fact, they provide
the “Construct” operator to generate Cubes from relations. More precisely, it
defines five multidimensional operators representing mappings between either
Cubes or relations and Cubes.

The “Add dimension” operator adds a new Dimension to the current Cube,
like in the changeBase operator; the “Transfer” operator rearranges data in
the multidimensional space similar to a changeBase. This operation trans-
fers a Dimension attribute (a Descriptor) from one Dimension to another

13

Algebra

Operator

Selection

Projection

Roll-up
Drill-down

changeBase

Drill-across

Union
Difference
Intersection

Remarks

[LW96]

“Add Dimension”

vp

“Transfer”

“Cube Aggr.”

“Ro-join”

“Union”

[AGS9T]

“Push”

Semantic
Rels.

“Pull”

v'p

Semantic
Rels.

“Destroy Dimension”

Vp

“Restriction”

“Join”

“Merg

[ML97]

“Selection”

“Projection”

“Cartesian Product”

“Union/Diff. /Inters.”

“Fold /Unfold”

Vp

“Classification”

S/l

“Summarization”

[TD97]

“Restriction”

“Metric Projection”

“Aggrogation”

“Cartesian Product”

“Join”

K

“Union/Diff.”

“Extract”

Semantic
Rels.

“Force”

vp

Semantic
Rels.

[Leh98]

“Slicing”

“Roll-up/Drill-down”

“Split/Merge”

Tmplicit/Explicit Aggr.”

“Cell Operators”

Derived
Measures

[CT98b]

“Cartesian Product”

“Natural Join”

N

“Roll-up”

“Aggregation”

Sils

“Level Description”

vp

Semantic
Rels.

“Scalar Function App.”

Derived
Measures

“Selection”

“Simple Projection’

v p

“Abstraction”

[HS98]

“Restrict”

“Destroy”

vp

Tjoin”

“Join”

“Aggr’

[Ped00]

“Selection”

“Projection”

“Union/Diff.”

“Identity-based Join”

ggrogate Formation”

Vp

“Value-based Join”

“Duplicate Removal”

cell
definition

“SQL-Tike Aggr.”

vp

“Star-join”

+

“Roll-up/Drill-down”

[Vas00]

“Navigate”

4
NIRNA

“Selection”

“Split Measure”

[FKO04]

“Derived Measures”

Derived
Measures

“Join”

Vp

“Slice/Multislice”

“Union/Diff./Inters.”

[YPO4]

“Selection Cube”

“Decoration”

v p

“Fed. Gen. Projection”

v+

v+

v+

Table

3. Summary of the comparative between YAM? and the rest of multidimen-
sional algebras presented in the literature.

14

via a “Cartesian Product”. Since multidimensional concepts are directly derived
from non-multidimensional relations, concepts like Dimensions could be rather
vaguely defined, justifying the transfer operator; the “Cube Aggregation” opera-
tor performs grouping and aggregation over data, being equivalent to a Roll-up
and finally, the “Rc-join” operator, that allows us to join a relational relation with
a Dimension of the Cube projecting (selecting) the values in the Dimension
also present in the relation. It is a low level operator tightly related to the multi-
dimensional model presented, and it is introduced to relate non-multidimensional
relations with relations modeling multidimensionality (i.e. Cubes). In our frame-
work, it is equivalent to perform a Selection over a certain Dimension.

[AGS97] presents an algebra composed by six operators rather relevant since
they inspired many of the following algebras as we will see. First, “Push” and
“Pull” transform a Measure into a Dimension and viceversa, since in their
model Measures and Dimensions are handled uniformly. In our framework
they would be equivalent to define semantic relationships between the proper Di-
mensions and Cells and then, Drill-across and changeBase respectively. The
“Destroy Dimension” operator drops a Cube Dimension, like in the change-
Base operator, whereas the “Restriction” operator is equivalent to a Selection,
“Merge” to a Roll-up and “Join” to an unrestricted Drill-across. Consequently,
the latter can even be performed without common Dimensions between the
Cubes, performing a “Cartesian Product” and embracing a massive double-
counting. Notice that defining the “Cartesian Product” in a general sense does
not make any multidimensional sense if it is not restricted, since it does not
preserve disjointness when aggregating data. Finally, we can perform a Projec-
tion by means of “Pull”ing the Measure into a Dimension and performing a
“Destroy Dimension” operation over it.

[ML97] presents an algebra based on the classical algebraic operations. There-
fore, it includes “Selection”, “Projection”, “Union” / “Intersection” / “Difference”
and the “Cartesian Product”. All of them, except for the latter, being equivalent
to their analogous operator in our reference algebra. The “Cartesian Product”,
like in the previous algebra, is defined as a binary relationship between two
Cubes and therefore, mappable to an unrestricted Drill-across. “Fold” and
“Unfold” operators add or remove a Dimension to the multidimensional space
respectively, like in a changeBase and finally, it presents a Roll-up as a “Sum-
marization of Tables” and a “Classification of Tables”, where “Summarization”
summarizes data according to an aggregation function and “Classification” maps
results into groups (close to the GROUP BY clause modus operandi).

[TD97] and [TDO1| present an algebra with eight operators based on the al-
gebra presented in [AGS97]. Therefore, the “Restriction” operator is equivalent
to a Selection; the “Metric Projection” to a Projection; the “Aggregation”
to a Roll-up and the “Union” / “Difference” operators to those with the same
name in our reference algebra. Moreover, like in [AGS97], Measures can be con-

15

verted to Dimensions and viceversa (i.e. they are handled uniformly). Hence,
the “Force” and “Extract” operators are equivalent to the “Push” and “Pull”
operators introduced above. Finally, the “Cubic Product” is equivalent to the
“Join” operator in [AGS97]. Since a general “Cartesian Product” do not make
multidimensional sense, they also remark the specific case of a “Cubic Product”
over two Cubes with common Dimensions (preserving disjointness if they are
joined through their Dimensions in common). They call “Join” to this specific
“Cubic Product”.

[Leh98] presents an algebra composed by five operators. “Slicing” restricts the
multidimensional model in the same sense than Selection; “Roll-up” and “Drill-
down” and the “Split” and “Merge” operators are equivalent to Roll-up and
Drill-down. Despite they represent the same conceptual operators, its model
data structure, that differentiates two analysis phases of data, justifies them.
“Roll-up” and “Drill-down” find and interesting context in the first phase whereas
“Split” and “Merge” are needed to modify the data granularity dynamically along
the “dimensional attributes” (non-identifiers Descriptors) defined in the “classi-
fication hierarchies” nodes of the data structure. Moreover, like in other algebras,
they differentiate “Roll-up” from “Aggregation” of data. Because of that, they
also present two other operations aimed to aggregate and group data, the “Im-
plicit” and the “Explicit” aggregation. According to this, to “Roll-up” means to
perform an “Implicit aggregation” according to an aggregate function defined
over the multidimensional object. Finally, the “Cell-oriented operator” derive
new data preserving the same multidimensional space by means of “unary oper-
ators” (-, abs and sign) or “binary operators” (*, +, -, /, min and maz). “Binary
operators” ask for two multidimensional objects aligned (that is, with exactly
the same multidimensional space). In our framework it is obtained defining De-
rived Measures when designing the multidimensional schema, and therefore,
in design time.

[CT97], [CT98a] and [CT9I8b| present an algebra with nine operators. “Selec-
tion”, “Cartesian Product” and “Natural Join” are equivalent to those introduced
along this section. Similar to [Vas00], [Ped00] and [ML97], Roll-up is equivalent
to “Roll-up” and “Aggregation”. “Roll-up” is the conceptual change of Levels
through an aggregation relation whereas “Aggregation” aggregates and groups
data according to the Levels and aggregation functions depicted in the “Roll-
up”. A “Level description” is equivalent to an specific changeBase. It changes a
Level by another one related through a one-to-one relation to it. In our frame-
work we should define a semantic relationship among the Levels involved and
perform a changeBase. “Simple projection” projects out the selected Measures
and reduce the multidimensional space dropping Dimensions. Moreover, it can
only drop Measures or Dimensions or combine both. To drop Measures is
equivalent to a Projection and to drop Dimensions to a changeBase. Fi-
nally, “Abstraction” is equivalent to the “Pull” operator in [AGS97].

16

[HS98] presents a Description Logics based algebra developed from those
presented in [AGS97]. Therefore, it also introduces the “Restrict” operator; the
“Destroy” one equivalent to the “Destroy Dimension” and the “Aggr” operator
equivalent to a “Merge”. Furthermore, the “join” and “Join” operators can be
considered an extension of the “Join” operator in [AGS97]. Both operators re-
strict it to make multidimensional sense and consequently, being equivalent to a
Drill-across, despite the second one also allows to group and aggregate data be-
fore showing data. Consequently, it is equivalent to a Drill-across and Roll-up.

[Ped00] presents an algebra where “Selection”, “Projection”, “Union” / “Dif-
ference” and Roll-up and Drill-down are equivalent to those with the same
name presented in our framework, whereas the “Value-based join” is equivalent
to a Drill-across and the “Identity-based join” to a “Cartesian product”. As al-
ready presented in other algebras, it also differentiates the “Aggregate operation”
from the “Roll-up” one and two different operators are introduced. It also intro-
duces the “Duplicate Removal” operator to remove cells characterized by the
same combination of dimensional values. In our framework it can never happen
because of the Base definition introduced.

Finally, it presents a set of non-atomic operators; the “star-join” operator
combines a Selection over the Dimensions with a Roll-up over a certain Di-
mensions by the same aggregation function, and the “SQL-like aggregation”
applies the “Aggregate operation” to a certain Dimensions and projects out
the rest (that is, performs a changeBase).

[Vas00] presents an algebra with three operators focusing on the most com-
mon multidimensional operators. “Navigation” allows us to Roll-up, and ac-
cording to [Vas98| it is performed by means of “Level-Climbing” -reducing the
granularity of data-, “Packing” -grouping data- and “Function Application” -
aggregating by means of an aggregation function-. Finally, “Split a Measure” is
equivalent to a Projection and a “Selection” to our Selection.

[YPO4] presents an algebra over an XML and OLAP federation where “Se-
lection Cube” is equivalent to Selection; the “Decoration” operator adds new
Dimensions to the Cube and therefore, being mappable to a changeBase
and the “Federation Generalized Projection” Roll-ups the Cube and removes
unspecified Dimensions (changeBase) and Measures (Projection). Notice
despite the Roll-up is mandatory in this operator, we can combine it with a
Projection or/and a changeBase.

An algebra with four operations is presented in [FKO04]. “Slice” and “Multi-
slice” select a single or a range of values like a Selection; “Union” / “Intersec-
tion” / “Difference” are equivalent to the same operators in our reference algebra;
“Join” rather close to Drill-across but in a more restrictive way forcing both
Cubes to share the same multidimensional space and “Derived Measures” to
derive new measures from already existent. In our framework, as already said,

17

it should be performed in the schema design phase. Finally, notice they do not
include Roll-up in their set of operators. It is because it is considered in the
data structure of the model.

Some of these approaches have also presented an equivalent calculus besides
the algebra introduced above (like [ML97] and [CT98b]). [GMRI8] presents a
query language to define the expected workload for the Data Warehouse. We
have not included it in table 3 since it can not be compared smoothly to alge-
braic operators one per one. Anyway, analyzing it, we can deduce many of our
reference algebraic operators are also supported by their model like Selection,
Projection, Roll-up, Union and even a partial Drill-across as they allow to
overlap fact schemes.

3.3 Discussion

As seen in section 2, to carry out our work we need a multidimensional framework
in which to compare the different multidimensional algebras available nowadays.
We have chosen YAM? algebra as our reference framework since, as presented
in section 3.2, it embraces all the data operators presented up to now in the
literature, allowing us to carry out the comparison among multidimensional al-
gebras, as well as the comparison with the relational algebra, without loss of
generality.

Along this section, we would like to underline the necessity to work in terms
of a multidimensional algebra. As showed in section 3.1, the multidimensional
data manipulation should be performed by a restricted subset of the relational
algebraic operators; that is, an specific simplification. Therefore, we can not
use the whole relational algebra expression power and it must be restricted and
conditioned in order to be adapted to multidimensionality. Otherwise, the re-
sults of the operations performed either would not form a Cube (since they
are not closed with regard to the multidimensional model) or would introduce
aggregation problems (see section 6 for further details). For instance, we can not
talk about “cartesian product” in the multidimensional model, and we must be
restricted to “joins” to avoid double-counting instances (i.e. to preserve disjoint-
ness). In other words, the multidimensional algebra represents the relational al-
gebra subset applicable to multidimensionality. Furthermore, a multidimensional
algebra would allow us to develop easier and amicable front-ends as demanded
in OLAP tools, since it would provide us with a set of operators to apply over
data. For instance, we could create a front-end assigning to each operator just a
button; something rather complicate to develop with declarative languages like
SQL or MDX.

Moreover, as seen in section 3.2 by means of a comparison between our frame-
work and the rest of multidimensional algebras introduced, we could not use any
of those multidimensional algebras as the standard framework if we would like to
embrace all data operators presented in the literature. However, in that compar-
ison we have been able to identify some significant general trends. Firstly, Selec-
tion, Roll-up and Drill-down operators are considered in all the algebras. It is

18

quite reasonable since Roll-up is the main operator of multidimensionality and
Selection is a basic one, allowing us to select a subset of multidimensional points
of interest out of the whole n-dimensional space. Projection, Drill-across and
Union are included in most of the algebras presented. In fact, along the time,
just two of the first algebras presented did not include Projection and Drill-
across, but since then, the rest of algebras considered them somehow. About
Union, it depends on the transformations that the model allows us to perform
over data and indeed, it is a personal decision to make. However, we do believe
that to unite (intersect, difference) two Cubes is a kind of navigation desired
and easily extensible to all the algebras presented.

Finally, changeBase is also considered in most of the algebras. Specifically,
they agree on the necessity of modifying the n-multidimensional space adding
/ removing Dimensions, and they include it as a first class citizen operator.
However, unlike YAM?Z, they do not present any alternative way to rearrange
the multidimensional space. Our framework proposed allows two additional al-
ternatives: to change the multidimensional space Base (either replacing a Di-
mension with another one or changing the whole Base by an alternative one),
and “pivoting”, as presented in [FBSV00]. In general, we can always rearrange
the multidimensional space in any way, if we preserve the functional dependen-
cies of the cells with regard to the Levels conforming the Cube Base; that
is, if the replaced Dimension(s) and the new one(s) are related through a one-
to-one relationship. Anyway, the changeBase operator subsumes the “Add” /
“Remove Dimension” operator considered in the literature and raises up new
desirable alternatives to handle data.

Consequently, the comparative presented reveals many implicit agreements
among all the multidimensional algebras and in fact, there are many points in
common about how multidimensional data should be handled. Actually, like in
the conceptual multidimensional modeling issue, we strongly believe it could
be feasible to agree on a reference multidimensional algebra; crucial for the
evolution of the area. Ideally, the standard multidimensional algebra would need
to be subsumed by the relational algebra and, at the same time, subsuming all
the multidimensional algebras. In that case, it would give support to all the
multidimensional data operators presented in the literature.

4 Correspondence Between the Multidimensional
Algebra and SQL

This section presents in detail how the YAM? multidimensional algebra should
be translated to SQL. With this aim, we first present the template query (also
known as cube-query), using the standard SQL’92, to retrieve a Cell of data
from the RDBMS:

SELECT 17 .ID, ..., 1y .1D, [F(Jc.Measurej[) 1, ...

FROM Cell c, Levely 1y, ..., Levely, 1lp

WHERE c.keyq=17.ID AND ... AND c.keyp =1y .ID [AND 1;.attr Op. K]
[GROUP BY 17.ID, ..., 1,.ID]

[ORDER BY 171.ID, ..., 14 .ID]

19

The FROM clause contains the “Cell table” and the “Level tables”. These ta-
bles are properly linked in the WHERE clause as well as logic clauses restricting
an specific Level attribute (i.e. a Descriptor) to a constant X by means of a
comparison operator (i.e. equality, inequality, major, minor, etc.). The GROUP
BY clause shows the identifiers of the Levels at which we want to aggregate
data. Those columns in the grouping must also be in the SELECT clause in
order to identify the values in the result. Finally, the ORDER BY clause is in-
tended to sort the output of the query by these identifiers. Notice the GROUP
BY clause forces to aggregate Measures by means of aggregation functions, if
present. Otherwise, the GROUP BY clause is not necessary and it would be
redundant, since no data aggregation is performed.

This template allows us to retrieve all cells of a Cell which conform a Cube
that can be manipulated through the multidimensional operators, which will
modify appropriately the initial cube-query. Hence, we talk about atomic cube-
query when it just retrieves a Cube of data not yet manipulated by multidi-
mensional operations.

Next, we present how each multidimensional operator (presented previously
in section 2.2) modifies the atomic cube-query, summarized in table 4.

[Clause IIChangeBaselDrill-acrossl Selection I Roll-up IPrDjectionI Union
SELECT Replace Add Replace | Remove
(LevelID) (Measure) (LevelID)| (Measure)
FROM Add Add Union
(Levels) (Cell) (Cells and Levels)
WHERE Add Add AND Union OR
(links) (links) (conditions) (links) | (conditions)
GROUP BY Replace Replace
(LevelID) (LevelID)
ORDER BY Replace Replace
(LevelID) (LevelID)

Table 4. SQL query sentence modifications according to each multidimensional oper-
ation

— Selection: In SQL, it means to and the corresponding clause to the WHERE
clause. For instance, as presented in table 5.a, we can select those Weekly
Stocks referring to cookies in the Product Dimension.

— Roll-up: In SQL, it changes the identifier in the GROUP BY clause by that
of the parent Level. Thus, SELECT and ORDER BY clauses must be mod-
ified accordingly, so that the Descriptors coincide in all three. Measures in
the SELECT clause must also be summarized using an aggregation function.
To roll up to Level All, all Descriptors of a Dimension are removed from
the GROUP BY, and “All” is placed in the corresponding place in SELECT
clause. Going on, we can Roll-up from City to Level All along Place
Dimension (Table 5.b).

— ChangeBase: In SQL it can be performed in two different ways. Firstly,
it means to reorder Level identifiers in ORDER BY and SELECT clauses
when “pivoting”. Secondly, in case of changing to another Base, it means

20

to add the new Level tables to the FROM and the corresponding links to
the WHERE clause. Moreover, identifiers in the SELECT, ORDER BY and
GROUP BY clauses must be replaced consonantly. Following with the same
example, we can change from (Product x Week x All) to (Product X Week)
Base and therefore, preserving the functional dependence and not losing
cells (Table 5.c).

— Drill-across: In SQL, it means to add a new Cell table to the FROM, its
Measures to the SELECT, and the corresponding links to the WHERE
clause. In general, if we are not using any semantic relationship, a new Cell
table can always be added to the FROM clause if the attributes composing
the identifier of the desired Cell point to the already used Level tables. For
instance, in the same example, we could Drill-down to Daily Stock and
directly Drill-across to Daily Profit (Table 5.d).

— Projection: In SQL it removes Measures from the SELECT clause. Fol-
lowing our example, we can remove the Stock Measure (Table 5.¢).

— Union: In SQL, we unite both FROM clauses, WHERE links, and finally
or conditions of WHERE clauses. Hence, we can unite our example query to
one identical but querying for chocolate instead of cookies (Table 5.f). As
previously stated in section 2.2, these considerations can be easily extended
to Difference and Intersection.

SELECT p.ID, w.ID, c.ID, AVG(s.Stock) SELECT p.ID, w.ID, ‘‘A11”’, SUM(s.Stock) SELECT p.ID, w.ID, SUM(s.Stock)
FROM weeklyStock s, Product p, Week w, City c FROM weeklyStock s, Product p, Week w FROM weeklyStock s, Product p, Week w
WHERE s.keyq = p.ID AND s.keyp = w.ID WHERE s.keyq = p.ID AND s.keyg = w.ID WHERE s.keyj = p.ID AND s.keyo = w.ID
AND s.key3 = c.ID AND p.name = ’cookies’ AND p.name = ’cookies’ AND p.name = ’cookies’
GROUP BY p.ID, w.ID, c.ID GROUP BY p.ID, w.ID GROUP BY p.ID, w.ID
ORDER BY p.ID, w.ID, c.ID ORDER BY p.ID, w.ID ORDER BY p.ID, w.ID

a) Selection b) Roll-up ¢) ChangeBase
SELECT p.ID, d.ID, AVG(s.Stock), SUM(m.profit) SELECT p.ID, d.ID, SUM(m.profit) SELECT p.ID, d.ID, SUM(m.profit)
FROM dailyStock s, dailyProfit m, Product p, Day d FROM dailyProfit m, Product p, Day d FROM dailyProfit m, Product p, Day d
WHERE s.key] = p.ID AND s.keyg = d.ID WHERE m.keyq = p.ID AND m.keyy = d.ID WHERE m.key] = p.ID AND m.keyg = d.ID AND
AND m.keyq = p.ID AND m.keyg = d.ID AND p.name = ’cookies’ (p.name = ’cookies’ OR p.name = ’chocolate’)
AND p.name = ’cookies’ GROUP BY p.ID, d.ID GROUP BY p.ID, d.ID
GROUP BY p.ID, d.ID ORDER BY p.ID, d.ID ORDER BY p.ID, d.ID

ORDER BY p.ID, d.ID

d) Drill-across e) Projection f) Union

Table 5. Example of YAM? algebra translation to SQL

5 From SQL To Multidimensionality

As presented in section 3, the multidimensional algebra conceptually maps to
an specific subset of the relational one. Our aim in this section is to clearly
define this mapping at a logical level, going one step beyond and thoroughly
analyzing the multidimensional algebra expressiveness with regard to SQL (a
short version of this work can be found in [RA06]). Hence, we would be able

21

1 p N 1) 1
1 9 “‘) 1 1 3“)
15) 35 | L L
ae i PE s
L 7 (=} 1 L 10 [L] {r]

15 e Lo [Lo—1] T
17 [eJo— 33 [Lfo—[1]

Fig. 3. Cell - Cell, Cell - Level and Level - Level relationships

to ask the following questions: Which subset of the relational algebra can be
expressed in terms of the multidimensional one? Given a correct SQL query,
does it make multidimensional sense?

Consequently, we determine if a correct SQL query is a wvalid cube-query.
As we will see, an at first-sight syntactically correct cube-query following the
multidimensional query pattern presented in section 4, may not make multidi-
mensional sense. In fact, there are many other implicit restrictions to be guar-
anteed, and this pattern only guarantees the syntactic correctness of the query,
not assuring its multidimensional validness. With this aim, we present those
characteristics that an SQL query must enforce to make sense as a sequence
of multidimensional operations. Hence, from here on, we consider a valid cube-
query to be both semantically and syntactically correct in the multidimensional
model.

To validate an SQL query as a cube-query we will need to find if it fits a valid
multidimensional schema. Therefore, given an SQL query, our main objective will
be to generate the set of multidimensional schemas validating that query. If the
set obtained is empty then, it is not a valid cube-query. Otherwise, it is, and we
can always find a sequence of multidimensional operations retrieving the same
data than our SQL query.

Notice this analysis could have also been performed over the relational al-
gebra instead of SQL since it is well-known how to extract the syntactic tree
from a valid SQL query. However, for the sake of comprehension, we believe it
is easier for the reader to reason in terms of SQL since it directly emulates the
translation process a ROLAP tool would perform.

5.1 Valid Multidimensional Conceptual Relationships

Our first aim is to analyze which kind of relationships between multidimensional
concepts can be found in the multidimensional schema. These relationships will
be those used later by the multidimensional operators to manipulate data. Here,
we first analyze them from a conceptual point of view whereas next section
studies how to find and identify these relationships in a logical schema (in our
case, a relational schema).

In a multidimensional schema we semantically relate Cells and Levels to
analyze data contained in the firsts (Measures) with regard to data contained
in the second ones (Descriptors). Therefore, we can find three kind of relation-
ships: Level - Level, Cell - Cell and Cell - Level relationships.

22

Figure 3 summarizes all the possible relationships we can find between Cells
and Levels, and an specific relationship is crossed out if it does not make sense.
We say a relationship does not make sense if it violates any of the integrity
constraints presented in section 2.3. Notice we have not taken into account the
semantics of the relationship (for instance, an “aggregation”, “association”, “gen-
eralization”, “derivation” or “flow” relationships as presented in [ASS06]) but it
does consider the relationship multiplicity between both concepts (one-to-one,
one-to-many or many-to-one) and if the relationship endings allow zeros. Keep
in mind we will need to look for these relationships in a relational schema and
therefore, relationships semantics will be lost but multiplicity will not. Conse-
quently, we do not mind semantics of the relationship but if it is a valid rela-
tionship, and in this case, multiplicity is a key feature to spot the correctness of
a relationship as discussed below. Moreover, notice we do not even draw many-
to-many relationships since they always cause summarizability problems in the
multidimensional model.

CELL - CELL relationships: Here we consider those relationships between
Cells depicted in figure 3.1. We have conceptually divided them into two differ-
ent columns based on the relationship multiplicity.

First column shows possible one-to-one relationships. It means, one instance
is related with, at most, one instance from the other Cell, never raising summa-
rizability problems. These cases are only possible relating both Cells through
their Bases, and therefore, if they are sharing exactly the same multidimen-
sional space. For instance, these kind of relationships are typically used by a
Drill-across.

Second column summarizes, according to the navigation order between Cells,
the one-to-many and the many-to-one relationships. In these cases, since one
instance of a Cell matches many instances from the other one, these relation-
ships may cause summarizability problems when aggregating Measures through
them. However, we can avoid these problems and allow these relationships in the
schema, ensuring Measures of the origin Cell are not selected by the user when
navigating through them. That is, if they have been projected out. With this con-
straint, to navigate trough one-to-many relationships must be forbidden, since
it is meaningless to Drill-across to another Cell to just get rid of its Mea-
sures. Consequently, unlike one-to-one relationships, these relationships set up
an strict navigation order (i.e. from many to one) between both Cells. Notice we
talk about navigation order between Cells since they contain multidimensional
data and relating them, we are implicitly setting which is the initial and the
destination Cell of the navigation (i.e. of the Drill-across).

Finally, when navigating to any kind of relationship end allowing zeros (see
cases 1.1, 1.3, 1.5 and 1.7), we need to bear in mind that we may lose instances
from the origin Cell. In general, and similarly in the rest of upcoming cases,
ROLAP tools should preserve the multidimensional space when navigating to a
side allowing zeros.

23

CELL - LEVEL relationships: These relationships, presented in figure 3.2,
are the most common multidimensional relationships in the schema. They are
intended to show the Cell data depending on its analysis Levels perspective and,
unlike previous cases, these relationships semantics do not set up a navigation
order.

First column shows those one-to-one relationships. One Cell instance is re-
lated to at most one Level instance (something necessary to ensure that the
analysis Levels do define the multidimensional space), and one Level instance
is just related to one Cell instance. Although nothing prevents us from having
a one-to-one Level - Cell relationship, these are rather rare. Anyway, they are
possible, except for 2.2 and 2.4 cases since every Cell instance has to be related,
at least, to a Level instance.

Second column is completely forbidden. Relating one Cell instance to many
Level instances would imply double-counting instances when aggregating this
Cell Measures. At most, a Cell instance must match one Level instance to
ensure it is uniquely identified in the multidimensional space.

Finally, last column shows many-to-one relationships. These are the most
common and typical relationships between Cells and Levels. One cell is related
to just one Level instance and one Level instance may be related to many
different Cell instances. Similar to cases 2.2 and 2.4, cases 2.10 and 2.12 cannot
be found in a multidimensional schema.

LEVEL - LEVEL relationships: Figure 3.3 shows all possible Level - Level
relationships. Levels analyze data (i.e. Cells Measures) from a conceptual
perspective of view. Cell data related to them is aggregated accordingly, and as
presented below, they may cause potential aggregation problems depending on
the Cells placement.

In the first column we find the one-to-one relationships. Each Level instance
matches with at most one instance of the other Level, avoiding summarizability
problems. Therefore, they are always valid regardless of the Cells placement. As
previously discussed, cases 3.1 and 3.3 require special attention to avoid losing
cells. These relationships are typically used by a ChangeBase.

Second column shows the one-to-many and many-to-one relationships. These
relationships may cause aggregation problems depending on the Cells place-
ment. However, at this time, we are only analyzing the relationship between
both Levels, and a priori, all of them should be allowed. In fact, many-to-
one relationships are typically used by Roll-ups whereas one-to-many ones are
commonly used by Drill-downs. Furthermore, notice some of the many-to-one
relationships are surely pointing out some bad conceptual design decisions. Cases
3.5 and 3.7 represent those cases where some Level instances may not be aggre-
gated along the other one, raising up incomplete aggregations. In this case, best
solution is to include in the destination Level an “others” instance embracing
them, avoiding to deal with zeros. Finally, again, notice cases 3.5 and 3.7 need
special attention to preserve the multidimensional space.

24

5.2 Multidimensional Relationships at a Relational Level

Once we have determined which conceptual relationships among multidimen-
sional concepts are allowed, we need to analyze how they can be modeled at a
logical level; that is, in our case, in the relational model.

As presented in section 2.1, multidimensionality would be modeled by means
of Cell and Level tables, where Level tables may be partially or totally denor-
malized according to the implementation approach followed (i.e. an snowflake,
star or hybrid schema). Therefore, we need to look for those patterns in the or-
ganizational relational schemas in order to point multidimensional concepts out.
Moreover, when navigating through data by means of the relational algebra, con-
ceptual relationships presented will give rise to “joins” between relational tables.
Consequently, in this section, we present those features any relational join must
satisfy to model a valid relationship among multidimensional concepts. That is,
if it models one of those valid relationships presented in figure 3.

First feature is about semantics, essential in multidimensionality. When join-
ing two relation attributes, we should guarantee they have been defined over
compatible “semantic domains” and therefore, they are semantically overlapped.
For instance, it is meaningless to join city names with providers names despite
being defined over the same data type. ORDBMS (Object Relational Database
Management Systems) provide us with semantic domains, where we can guaran-
tee the semantic correctness of a join, but the relational model does not enrich
data with semantics and therefore, we are restricted to syntactic domains. How-
ever, relational systems allow us to guarantee the semantic compatibility between
two attributes defining a FK (Foreign Key) with regard to a CK (Candidate
Key). In our approach, we assume those joins whose semantics can not be au-
tomatically validated are also correct; since the SQL query to analyze expresses
users requirements.

ICK,,[C [FKC,[FKqy [NN,)[NNd[Relationship [Multiplicityl
[x [x [x[x[?2] 7] Attr. — Attr. | N-N |
v X X v v v CK - FK+ NN 1-oN
v X X ? v ? CK — Attr. looN
X v | v X v v FK+ NN — CK No-1
X v ? X ? v Attr. - CK N ool
VIV ivIiv |V vV |CK+FK — FK +CK 1-1
vV I vV X v v CK+ FK — CK lo-1
v I v X v IV v CK - CK+ FK 1-01
vV |V X X v v CK —- CK lool

Table 6. Relationship multiplicities in the relational model.

Next, to find out which conceptual relationships may appear in the relational
model we first focus on their multiplicity. In the relational model, multiplicity

25

b(

L

~

Multiplicity | L
1-1
lo-1
N -1

N o-1
N ool
N -o1l
lool

C

Q

XXX | X|X[X|N]
Q

x| x x|«

C

SNENENENENENENE
SNENENENENENENE

Table 7. Valid multidimensional relationships in a relational schema.

of a relationship depends on how attributes involved are defined in the schema.
That is, if they play the role of a relation CK and / or if they are defined as
a FK to the other attribute and / or if they allow null values. Joining to a
CK guarantees to match at most one instance of the relation. Otherwise it may
match many of them. Similarly, an attribute not allowing null values and being
defined as FK will surely match one and just one instance. Otherwise, it may
introduce zeros. Table 6 summarizes all those relationship multiplicities that we
may find in the relational model with regard to the definition of the attributes
involved. There, each row represents an specific relationship between tables (i.e.
a kind of join).

The notation used is the following; first six columns represent all possible
combinations with regard to the constraints of each join attribute: As CK, as a
FK pointing to the other attribute or as a NN (not null) attribute, not allowing
null values. If an specific cell is v/, the attribute is constrained accordingly to that
column. Otherwise, it is marked with a x mark. Notice not all the combinations
are correct and some columns determine the following ones. For instance, a CK
attribute can not accept null values. Moreover, a cell is marked with a ? mark if
previous rows determine a certain multiplicity, meaning its value does not affect
the result obtained. Finally, two last columns tell us the specific join depicted
as well as its multiplicity with regard to previous columns. There, an Attr.
represents an unconstrained attribute; that is, not defined neither CK nor FK
and allowing null values.

First row represents a join between two attributes not defined as CK’s. There-
fore, they can not be defined as FK’s to the other attribute and it does not matter
if they allow not null values since they will always raise a many-to-many rela-
tionship, not allowed in multidimensionality. Following two rows identify those
joins where the origin attribute is defined as a CK but not the destination one.
In this case, every instance of the destination table matches, at most, one in-
stance from the origin one. Furthermore, if the destination attribute is defined
as a FK not allowing nulls we can also ensure it matches, at least, one instance
from the origin table. Otherwise, it may give rise to zeros in the right-side of the
relationship. Finally, notice 1 - N and 1 o- N relationships can not be enforced
in the relational model just checking the schema (we do not consider neither as-

26

sertions nor triggers). Next rows represent an unconstrained attribute linked to
a CK. That is, the same two previous relationships presented but the other way
around, giving rise to the same considerations. Last four rows identify those re-
lationships among two CK'’s, raising up one-to-one relationships. In these cases,
depending on the FK’s defined we may introduce zeros to each relationship side.

Once we know which relationships multiplicity can be found in a relational
schema, we need to validate them according to the roles played by the tables
involved. Table 7 summarizes those multidimensional relationships we can find in
a relational schema. There, columns present all possible relations between Cell
and Level tables (see section 5.1 for more details) whereas rows represent those
multiplicities we may face in the relational model. An specific cell is marked with
a v/ mark if that multidimensional relationship along with the stated multiplicity
makes multidimensional sense. Otherwise, it is marked by a X, meaning it must
be avoided. Therefore, notice this table merges results presented in figure 3 and
table 6.

As discussed previously, we can not differentiate between a 1 - N and 1 -o N
relationship or a 1 o- N and a 1 o-o N relationship just looking at a relational
schema. However, as presented in table 7, they give rise to the same results (i.e.
rows 3-4 and rows 5-6 are identical), not affecting our process at all. Furthermore,
as presented in section 5.1, when navigating to a relationship side allowing zeros,
we must enforce the user to “left-outer join” both tables in order to preserve the
multidimensional space.

5.3 Analyzing the Cube-Query

In this section we validate a syntactically correct SQL query as a valid cube-
query. To do so, we need to find if it fits a multidimensional schema. There-
fore, starting from an input SQL query, we automatically generate the set of
multidimensional schemas validating that query. If the input query is not mul-
tidimensional (i.e. it does not represent multidimensional requirements) we will
not be able to propose any schema. Multidimensional schemas proposed will be
inferred from those implicit restrictions the SQL query needs to guarantee to
make multidimensional sense. Furthermore, in this process, the organizational
database schemas will play a key role as we will see.

To start this process we first create what we call the multidimensional graph;
that is, a graph representing the multidimensional query. Representing the query
by means of a graph will help us to facilitate the validation of the query, since
it concisely stores relevant information about the query.

The graph is deployed along four steps and it is composed of nodes, repre-
senting tables involved in the query and edges, relating nodes (i.e. tables) joined
in the query. As stated in section 2.1, in the relational model multidimensional-
ity is modeled through Cell and Level tables. Therefore, tables appearing in a
cube-query would play either a Cell or a Level role.

Moreover, each node contains three properties needed along the validation
process. The name property stores the table name, and will be used as its identi-
fier along the process. The type property identifies that node as a Cell if labeled

27

with a C, as a Cell with selected Measures (i.e. at least one of its Measures
appear in the SELECT clause), if labeled with a CM or as a Level table if
labeled with an L. Finally, the attribute list property stores all those table at-
tributes selected in the query. Analogously, for each edge we also need to store
three properties. The navigation property sets up the navigation order (i.e. a di-
rected arrow or a bidirectional one); the valid relationships list property setting
those allowed relationships between nodes related and at last, the join attributes
property, storing those attributes involved in the join.

Next, we present the steps to create such multidimensional graph. Each step is
aimed to validate each clause in the cube-query and to extract relevant knowledge
from it to be represented in the graph. Notice we do not validate it syntactically,
since we assume it is a correct SQL query and consequently, interpretable by
a RDBMS. Therefore, we focus on its multidimensional semantics correctness.
Finally, since this process is thought to be performed automatically, we present
it all together with an algorithm, described in pseudo code.

1. For each table in the FROM clause do

(a) Create a node;
(b) Initialize node properties;
2. For each attribute in the GROUP BY clause do
(a) node = get node(attribute);
(b) if (!defined_as_part_of _a_CK(attribute)) then
i. Set node type property as Level;
(c) else if (!degenerate dimensions allowed) then
i. FK = get_FK(attribute);
ii. node_dest = node;
item attributes FK = attribute;
iii. while chain_of FKs_ follows(FK) and FK_in_ W HERE _clause(FK) do
A. FK = get_next_chained_ FK(FK);
B. node_dest = get_node(get_table(FK));
C. attributes FK = get attributes(FK);
iv. /* We must also check #attributes selected matches #attributes at the end of the chain. */
v. if (FK == NULL and #attrs(attribute) == #attrs(attributes FK)) then
A. Set node_dest type property as Level;

3. For each attribute in the SELECT clause not in the GROUP BY clause do
(a) node = get_node(attribute);
(b) Set node type property to CM; //Cell with Measures selected

Fig. 4. Three first steps of the process.

Step 1, the FROM clause: As stated in figure 4, for each table in the FROM
clause we create a node setting its name property to the table name, its type
property to the ? mark (i.e. unknown) and its attribute list property to the
empty set. Along the process, our main objective will be to label nodes ac-
cording to its role played. In a certain moment, if a node has been already
labeled and we need to label it with a different tag, we finish the process and
point out the contradiction stated.

Step 2, the GROUP BY clause: This clause contains those attributes de-
picting the multidimensional space (i.e. the current Cube Base composed
by those Dimensions of analysis fully functionally determining data). We
consider a Cell table to always point out to its Dimensions of analysis, as

28

typically assumed when modeling multidimensionality (for instance, in an
star schema). Therefore, if an attribute is not defined as FK or it is but we
are able to follow a FK’s chain defined in the schema that is also present in
the WHERE clause, we can state for sure that the table where the FK’s chain
ends plays a Level role. Conversely, if it is part of a CK, we can directly
state that that table is a Level.

Notice we allow multiattribute FK’s. In that case, the whole FK must appear
properly linked and those attributes reached at the end of the FK’s chain
must match (in number of attributes) those in the GROUP BY.

Step 3, the SELECT clause: Since a syntactically correct SQL query forces

4.

both the GROUP BY and SELECT clauses to share the same attributes, we
can assure those attributes in the GROUP BY represent the Cube Base
whereas those aggregated attributes in the SELECT clause not present in
the GROUP BY point out Measures. Hence, those aggregated attributes
in the SELECT clause not present in the GROUP BY clause surely play a
Measure role. Therefore, we set the node type property with the CM label,
denoting, unequivocally, it is a Cell with selected Measures.

For each comparison in the WHERE clause do
(a) node = get node(attribute);
(b) if (defined_as_part_of _a_CK(attribute)) then
i. Set node type property as Level;
(c) else if (!degenerate dimensions allowed) then
i. attribute = get_attribute(comparison);
ii. FK = get_F K (attribute);
iii. node_dest = get_mnode(attribute);
iv. attributes FK = attribute;
v. while chain_of FKs_follows(FK) and FK_in_WHERE _clause(FK) do
A. FK = get_mnext_chained FK(FK);
B. node dest = get node(get table(FK));
C. attributes FK = get attributes(FK);
vi. if (FK == NULL and #attributes(attribute) == #attributes(attributes FK)) then
A. Set node_dest type property as Level;

Fig. 5. Fourth step of the process.

Step 4, selection comparisons in the WHERE clause: In a WHERE cla-

use we can find two different kinds of clauses; comparisons over the table
columns and links to join tables. In this step we focus on the first ones,
whereas next step focus on the joins performed. Comparison clauses are
intended to select data constraining a Descriptor to a concrete value or
set of values, and must be constituted of one attribute comparisons. That
means, we can only find equality (column = K), inequality (column <>
K) major (column > K) and minor (column < K) comparisons, where K
is a constant. In this case, as presented in figure 5, we can identify Levels
following FK’s as stated in the second step. However, notice this step will
only detect new Levels (i.e. not detected in previous step) if the attribute
compared is not included in the SELECT or the query does not contain a
GROUP BY clause.

29

5. For each join in the WHERE clause do

(a) /* Notice a conceptual relationship between tables may be modeled by several joins in the WHERE */

(b) set_of joins = look for_related joins(join);

(c) multiplicity = get_multiplicity(set_of joins);

(d) relationships fitting = {};

(e) For each relationship in get allowed relationships(multiplicity) do
i. if (lcontradiction _with_graph(relationship)) then

A. relationships fitting = relationships fitting + {relationship};

(f) if (!sizeof(relationshipsfitting)) then
i. return notify_ fail("Tablesrelationshipnotallowed");

(g) Create an edge(get_join_attributes(set_of joins));

(h) Set edge valid relationships list property to relationships fitting;

(i) if (unequivocal _knowledge _inferred(relationships_ fitting)) then
i. propagate knowledge;

Fig. 6. Fourth step of the process.

Step 5, joins in the WHERE clause: Previous steps are mainly aimed to
label nodes whereas this step labels edges. Relationships between tables give
us relevant information we need to exploit in order to validate those joins
performed in the WHERE clause by means of table 7 (see sections 5.1 and 5.2
for further details). Hence, as presented in figure 6, for each join performed,
we first infer the relationship multiplicity with regard to the definition of the
join attributes in the schema (i.e. as FK’s, CK’s or Not Null). According to
the relationship multiplicity, we look for those allowed relationships (with a
v mark in that row) depicted in table 7. For each allowed relationship for
this multiplicity, we see if it contradicts our previous knowledge, that is if (1)
it asks for labeling a node already labeled with a different tag. If it (2) does
not preserve the multidimensional space (see section 5.1), however, we do not
invalidate the query but inform the user to solve that problem. That is, in
the relational model, to outer join when navigating to a relationship end al-
lowing zeros. Otherwise, we add it to the edge multidimensional relationships
property. After checking all of them, if the allowed relationships set is empty
we can state this query does not make multidimensional sense. Otherwise,
we set the edge joining attributes property to those attributes involved in the
join. Furthermore, if we are considering just one possible valid relationship,
or we can infer unequivocal knowledge (i.e. despite having some different
alternatives, we can assure that origin/destination/both node(s) must be a
Cell or a Level), we update the graph labeling the nodes accordingly. If we
update one such node, we must propagate in cascade new knowledge inferred
to those edges and nodes directly related to those elements updated.

Finally, we focus on some additional considerations. These considerations
affect the process somehow and despite being rather unusual, they must be
taken into account:

Queries without GROUP BY clause: If data retrieved (i.e. Measures) is
not grouped by, we are not forced to aggregate them by means of aggregation
functions in the SELECT clause and therefore, step two would not be able to
point them out. Therefore, an unconstrained attribute in the SELECT clause
could be either a Measure or a Descriptor. Furthermore, we would not be

30

able to follow FK chains either, since Measures could be also modeled, in
the source operational schema, as FK’s (for instance, to semantically restrict
their values).
In addition, if the query contains a GROUP BY clause, notice every Cell
detected after step two is automatically labeled with a C tag. Conversely,
it does not happen if no GROUP BY clause is stated, and therefore, we
could set up its type property either to C or to CM. If the Cell attribute
list property is not empty (i.e. some of its attributes are selected), we may
identify any of these attributes to be a Measure if it is not defined as part
of a CK. Otherwise, we can assure it does not select any of its Measures.
Degenerate Dimensions: Up to now, as discussed in 2.1 and presented in
[KRTRI8], we have considered a Cell CK points to its analysis Levels CK’s
by means of FK’s. However, in a non-multidimensional relational schema this
may not happen. For some reason, we could have a table attribute represent-
ing a Dimension not pointing to any table. For instance, dates or control
numbers (like invoice number, bill of landing, etc.) are good candidates. Fur-
thermore, it could also happen if the schema is not well-formed (i.e. the table
exists but they are not linked by means of a FK). This situation, despite be-
ing rather unusual, can also appear in the multidimensional model giving rise
to “degenerate dimensions” (JKRTRI8|). “Degenerate dimensions” represent
those Dimensions without Descriptors (maybe because their related at-
tributes gave rise to other Dimensions) that are still useful for grouping
data. Consequently, they are directly modeled in the Cell table.
If the relational schema allows “degenerate dimensions” we can not assume
anymore FK’s end up in Level tables. Consequently, steps two and three of
the process are directly affected as depicted in figure 4 (step 2c) and figure
5 (step 4c) respectively.

5.4 Validating the multidimensional graph

Once the multidimensional graph has been deployed, we need to validate if it
represents a correct multidimensional schema as a whole. However, notice the
graph construction may have not labeled all the nodes. By means of backtracking,
we first look for all those valid labeling alternatives, and any labeling giving rise
to contradictions (see previous subsection) is eluded. If the process ends without
being able to label all the nodes at least once, we can assure there is not any
multidimensional schema validating the input query. Otherwise, this retrieves all
those multidimensional graphs composed of valid edges, and each one of them
needs to be validated as a whole (see figure 7).

Following, we present those steps aimed to validate the multidimensional
graph:

Step 6, the graph must be connected: In general, the multidimensional graph
must be connected to avoid the “Cartesian Product” among tables involved
in the query. Furthermore, the graph must look like as the one presented in

31

6. If lconnected(graph) then
(a) return notify fail(”Graph not connected.”);
7. For each subgraph of Levels in the multidimensional graph do
(a) if (redundant_descriptors_selected(subgraph) ||
selecting _descriptors_from_ different _branches(subgraph)) then
i. return notify_suggestion(”Descriptors subset chosen must be reconsidered”);
(b) if contains_cycles(subgraph) then
i. /* Alternative paths must be semantically equivalent and hence raising the same multiplicity. */
ii. if contradiction _about_paths_multiplicities(subgraph) then
A. return notify_ fail("Cyclescannotbeusedtoselectdata.");
iii. else
A. ask user for semantical validation;
(c) if exists_two_ Levels_related_same_Cell(cycle) then
i. return notify_ fail(”Non-orthogonal Analysis Levels”);
(d) For each relationship in get_1_to_N_Level_ Level_relationships(subgraph) do
i. if left_related to_a_Cell _with Measures(relationship) then
A. return notify fail(” Aggregation Problems.”);
8. For each Cell pair in the multidimensional graph do
(a) For each 1_1_correspondence(Cellpair) do
i. Create context edge between Cell pair;
(b) For each 1_ N _correspondence(Cellpair) do
i. Create directed context edge between Cell pair;
(c) If exists_other_correspondence(Cellpair) then
i. return notify_ fail(”Invalid correspondence between Cells.”);
9. if contains_cycles(Cells path) then
(a) if contradiction about paths multiplicities(Cells path) then
i. return notify fail(”Cycles can not be used to select data.”);
(b) else
i. ask user for semantical validation;
ii. Create context nodes(Cells path);

10. For each element in get_1_to_N_contexzt_edges_and_nodes(Cells path) do

(a) If CM _at_left(element) then
return notify fail(” Aggregation problems among Measures.”);

11. If ewxists_two_1_to_N_alternative_ branches(Cells path) then
(a) return notify_ fail(” Aggregation problems among Cells.”);

Fig. 7. Process to validate the multidimensional graph.

figure 8; that is, the graph must be composed of valid edges giving rise to a
path among Cells and connected subgraphs of Levels surrounding it. There,
Cells contain multidimensional data to be retrieved whereas subgraphs of
Levels point the multidimensional space out (i.e. depicting the Dimensions
of analysis). In next steps, we will formally validate these features in detail.

Step 7, validating subgraphs of Levels: Dimensions of analysis should be
orthogonal. Despite it could be possible to find Dimensions determining
others in the schema, it must be avoided among Dimensions arranging
the multidimensional space in a cube-query, in order to guarantee cells are
fully functionally determined by Dimensions ([Abe02]). Unfortunately, re-
lational schemas do not capture all data semantics and we are not able to as-
sure that Dimensions selected are orthogonal. Consequently, we may select
any Level Descriptor in a subgraph of Levels. However, as checked in step
Ta, once we have shown (i.e. selected) a Level Descriptor, showing others
related to this by a one-to-many relationship is absolutely redundant. Fur-
thermore, two alternative branches in the subgraph selecting Descriptors
(see subgraph LS3 or LS5 in figure 8) clearly state that those Dimension
tables conform a hierarchy to be reconsidered (in fact, we are selecting the
“Cartesian Product” of both selected Levels).

32

Fig. 8. A Multidimensional Graph.

If the subgraph contains a Levels cycle (see subgraph LS3 in figure 8), we
must assure that exist two Levels (conceptually the top and bottom of the
hierarchy) so that every path between them must be semantically equivalent
(step 7b). It would mean that such a cycle represents a valid Dimension
hierarchy. If the subgraph contains more than one cycle, we just need to focus
on the biggest one embracing the rest of cycles and validate it, since contained
cycles will just represent new alternative paths to be validated. Consequently,
to validate cycles we must be able to spot the origin and destination nodes of
the cycle so that every instance in the origin node matches the same instances
in the destination node, for every possible path between them. Otherwise,
they would be selecting data retrieved equally by those paths. Conceptually,
the origin and destination node represent, respectively, the top and bottom
Levels in the hierarchy of Levels depicted by that cycle. Therefore, despite
we can not automatically validate cycles semantically (the user must confirm
the cycle correctness), both nodes (i.e. the origin and destination) must be
related by the same multiplicity for every possible path between them. This
constraint could be relaxed depending on the DW criteria and allow cycles
not being semantically equivalent to select data. However, in any case, we
must tell the user that those joins in the WHERE clause are, indeed, a
selection, and it should be performed by means of comparison clauses.
Once we have validated the subgraph of Levels per se, we focus on validate
them with regard to Cells (specifically, to those Cells with Measures se-
lected). Those subgraphs are aimed to place data in the multidimensional
space and therefore, we need to assure that the data placement is free of
summarizability problems.

As discussed in section 5.1, one-to-one relationships between Levels never
raise summarizability problems, but similar to Cell relationships, one-to-
many Level - Level relationships may cause aggregation problems depend-
ing on the Cells placement with regard to them. Specifically, if a Cell is
related to the right side of a one-to-many Level - Level relationship (see
step 7d), every Cell instance would be related to at most one instance of the
left-side Level, avoiding them to be counted more than once. Conversely, if
the Cell is related to the left side, it will always raise problems invalidat-

33

ing it: if data is grouped by means of a Descriptor of the left-side Level,
it would cause summarizability problems. In this case, we may only navi-
gate through these relationships if we ensure no data (i.e. the Measures) of
that Cell is selected. Oppositely, if data is grouped by a Descriptor of the
right-side Level, we would be asking to decompose data into a lower level of
granularity that we can not provide (i.e. when Drill-downing we need that
data to be materialized). Finally, since each connected subgraph of Levels
represents a single perspective of view to analyze data, two different Levels
in a subgraph can not be related to the same Cell (see step 7c); otherwise
they would not be orthogonal, violating the Base integrity constraint.

Fig. 9. Examples of Cells paths of context edges and nodes

Step 8, pointing out the Cells path: Cells determine multidimensional data
and therefore, they must be related somehow (by means of direct links or
/ and through subgraphs of Levels). Otherwise, they would not retrieve a
single Cube of data. Consequently, for every two Cells in the graph, we aim
to validate those paths between them as a whole, inferring and validating the
multiplicity raised by all those paths together, as follows: if exists a one-to-
one correspondence between two Cells, we replace all relationships involved
in that correspondence, by a one-to-one context edge between both Cells
(see step 8a). Notice a context edge replaces that subgraph corresponding to
the one-to-one correspondence between both Cells. Specifically, as depicted
in figure 9.1, it means that there are a set of relationships linking, as a whole,
a Cell CK, also linked by one-to-one paths to a whole CK of the other Cell.
Otherwise, if both CK’s are related by means of one-to-many paths or the
first CK matches the second one partially, we replace involved relationships
by a one-to-many directed context edge (see step 8b). Notice that these cor-
respondences must consider Selections performed in the WHERE since an
equality comparison fixes that Dimension to a unique value. For instance,
a CK matching partially another CK whose unrelated attributes are fixed
to a value by means of an equality, would raise a one-to-one context edge
instead of a one-to-many. Any other case invalidates the graph (see step 8c)
since, as presented in section 5.1, we only allow one-to-one and one-to-many
relationships between Cells. Eventually, we will have replaced all the graph
edges by context edges.

34

At this moment, this step has validated and represented as context edges
every multidimensional conceptual relationships between Cells stated in the
query. However, we still need to validate the whole Cells path constituted by
these edges with regard to multidimensionality integrity constraints, along
next three steps.

Step 9, validating Cells cycles: Firstly, we must validate cycles like we have
previously presented when validating Levels cycles. That is, we must assure
that every possible path in the cycle is semantically equivalent (again, the
user must confirm the cycle semantical correctness). Therefore, we must be
able to point out the origin and destination nodes, and every path between
them must raise up the same multiplicity. Once the cycle has been validated,
Cells involved are clustered in a context node as showed in figure 9.2. Fi-
nally, we label that node with the multiplicity between the origin and the
destination nodes. That is, either one-to-one or one-to-many. In the latter,
we also add the navigation order. Notice that, again, we are replacing that
subgraph by a node depicting the whole correspondence.

Step 10, validating the Cells path: Secondly, as discussed in section 5.1, if
there are any one-to-many context edge or node in the path, any Cell at
the left-side of that edge (or node) can not select Measures. That is, we
propagate the one-to-many Cell - Cell relationship constraint by transitiv-
ity. Notice this constraint must also be satisfied by those Cells clustered in
a context node.

Step 11, validating alternative paths: Finally, notice the Cells path may
conform a “tree”, as presented in figure 9.2. In this case, as depicted in the
figure, if more than one alternative branch contains a one-to-many context
edge or node, we may face summarizability problems, since Cells at the
right-side of the one-to-many relationships would be related through a many-
to-many relationship.

5.5 A practical example

In this section, we present a practical example of the method presented along this
paper. In this example, we consider figure 10 (where CK’s are underlined and
FK’s dash-underlined) to depict the organizational relational schema. Therefore,
given the following requirement: "Retrieve benefits obtained with regard
to supplier ABC, per month", it could be expressible in SQL as:

SELECT m.month, my.supplier, SUM(mp.profit)

FROM Month m, Monthly sales ms, Monthly supply my, Monthly profit mp, Supplier s, Prodtype pt, Product p

WHERE mp.month = ms.month AND mp.product = ms.product AND s.month = m.month AND ms.product = p.product AND my.month = m.month

AND my.supplier = s.supplier AND my.prodtype = pt.prodtype AND p.prodtype = pt.prodtype AND s.supplier = ’ABC’

GROUP BY m.month, my.supplier
ORDER BY m.month, my.supplier

To validate that multidimensional requirement, we will follow the algorithm
presented along previous section. First, we start constructing the multidimen-

35

Prodtype (prodtype)

Supplier(supplier, name, city)

Product (product, prodtype (—prodtype.prodtype), discount)

Month(month, numdays, seasom)

Monthly profit(month (—month.month), product(—product.product), profit)

Fig. 10. The organizational relational database schema

sional graph. In our case, we do not consider degenerate dimensions (see section
5.3):

Step 1: We first create a node for each table in the FROM clause. Initially,
they are labeled as unknown (?) nodes.

Step 2: First, for each attribute in the GROUP BY clause, we try to identify
the role played by those tables which they belong to.

— m.month: This attribute belongs to the Month table. Since it is not part
of a FK, we can directly label that node as a Level.

— my.supplier: This attribute belonging to the Monthly supply table is
defined as a FK pointing to the supplier attribute in the Supplier
table. This equality can be also found in the WHERE clause, and there-
fore, we can follow the FK chain to the Supplier node, where the FK
chain ends. Consequently, we label the Supplier node as a Level.

Step 3: For each attribute in the SELECT not in the GROUP BY (i.e. mp.profit),
we identify the node it belongs to as a Cell with Measures selected.

Step 4: In this step, we analyze the s.supplier = *ABC’ comparison clause.
First, we extract the attribute compared (supplier) and identify the table
it belongs to (Supplier). Since it is not part of a FK, this table must be
labeled as a Level. However, since it has been already labeled and there is
no contradiction, the algorithm goes on without modifying the graph.

Step 5: For each join in the WHERE clause, we firstly infer the relationship

multiplicity according to table 6. For instance, mp.month = ms.month joins
two attributes that are part of two CK’s in their respective tables. There-
fore, we first look if the whole CK’s are linked. In this case, this is true
since mp.product = ms.product also appears in the WHERE clause. Con-
sequently, we are joining two CK’s, raising up a 1 0-o 1 relationship. Since
this relationship asks to preserve the multidimensional space due to zeros,
at this moment, we should suggest to the user to outer-join properly both
tables.
Secondly, according to the multiplicity inferred, we look at table 7 looking
for those allowed multidimensional relationships between both nodes. That
is, C' - C or L - L. However, last alternative raises a contradiction, since it
asks to label the Monthly profit node as a Level when it has been already
labeled as a Cell with Measures. Consequently, it is eluded. Since the set
of relationships allowed is not empty, we create an edge and we label it
accordingly.

36

{L-L iL-L
Supplier Tl M onthly supply G Month
C-L

D=

{LL
Frodust ©-C =T Monthly profit
5 - C} @ L-C} c-Ch
A1 H A H
Prodiype hlonthly sales

Fig. 11. The multidimensional graph deployed

Finally, we propagate current knowledge. That is, according to that edge,
the monthly sales table must also be a Cell, and therefore, it is labeled
as a Cell without selected Measures. After repeating this process for every
join, we would obtain, at the end of this step, the graph depicted in figure
11.

At this moment, we have deployed the multidimensional graph that in next
steps, we want to validate. However, since some nodes have not been labeled,
we previously find out all the valid alternatives by means of a backtracking
algorithm. For instance, if the Product node was labeled as a Level, according
to the edge between Product and Prodtype, the latter should be also labeled
as a Level. Moreover, the Monthly supply node may be labeled as a Cell or
a Level. The backtracking algorithm ends retrieving all those valid labeling
alternatives depicted in table 8. Notice those crossed out are eluded in this step
since they raise up contradictions.

For each labeling alternative retrieved by the backtracking algorithm, we
try to validate the graph. For instance, we will follow in detail the validation

lMonthly supply[Prodtype[Product[Remarks ‘

Illegal context edge
Invalid subgraph of Levels
Illegal context edge
Non-orthogonal dimensions

v

S Qe QeQ
Sl Qe e Qe Q

Q| Q|| e e e Q

X
X
X

Table 8. Labeling alternatives retrieved

37

algorithm with the first alternative, where all three unknown nodes are labeled
as Cells:

Step 6: First, we check if the graph is connected (in this case, it is).

Step 7: In this step we validate each subgraph of Levels (those two depicted in
figure 11). Since they do not contain cycles of Levels (step 7b) nor contain
alternative branches (step 7a), both are correct. Next, we validate subgraphs
of Levels with regard to Cells. There is neither two Levels in the same
subgraph related to the same Cell (step 7c) nor Level - Level relationships
(step 7d), both are correct again.

Step 8: Here, we create the context edges between Cells. In this case, we are
not able to replace all the edges, since the Monthly supply and Monthly
sales unique correspondence (thorugh the Month node) can not be replaced
by a context edge (step 8c).

Since we have found a contradiction, we elude this labeling and try the next
one. We address the reader to follow the algorithm with the rest of alternatives.
Second labeling is forbidden because of step 7d, since it raises a one-to-many
Level - Level (i.e. Monthly supply - Month) where the one side is related to
a Cell with selected Measures (i.e. Monthly profit). Third alternative raises
the same problem than the first one whereas the fourth one relates two Levels
of the subgraph with the same Cell (see step 7c). Finally, the last alternative
is valid, since we are able to replace Monthly supply and Monthly sales cor-
respondence by a one-to-many directed context edge -see step 8b- (in fact, they
are related by joins raising a many-to-many relationship, but the comparison
over the supplier field in the WHERE clause turns it into a one-to-many). Fur-
thermore, the Cells path do not conform a cycle (step 9); Cells at the left side
of the one-to-many context edge (i.e. Monthly supply) do not select Measures
(step 10) and there are not alternative branches with one-to-many context edges
or nodes each (step 11) either.

Summing up, the algorithm would propose the Monthly supply, Monthly
profit and Monthly sales as factual data whereas Supplier, Product and
Prodtype, and Month would conform the dimensional data.

5.6 Discussion

In this section we have presented a method to validate an end-user multidimen-
sional requirement expressed as an SQL query. In our approach that query is
represented by means of a multidimensional graph that lately, is validated as a
whole. That is, if we are able to find an implicit multidimensional schema fitting
it. With this aim, our work is based on the following criteria:

The cube-query template: We look for that template all over the user query
identifying multidimensional concepts. Therefore, it is used to construct the
multidimensional graph along steps 1 to 5.

38

The Base integrity constraint: Levels depicted in the query must identify
the multidimensional data. Therefore, they must be orthogonal. It has been
used in step 2 to deploy the multidimensional graph, as well as in steps 7a
and 7c, in the validation steps.

The correct data summarization integrity constraint: We have followed
the three necessary conditions introduced by [LS97] and also introduced in
section 2.3:

— Disjointness and Completeness: Used in step 5 to validate the multidi-
mensional conceptual relationships as well as to validate the whole graph
(step 6), Levels subgraph with regards to the Cells placement (step
7d) and the Cells path depicted by the context edges (steps 10 to 11).
Moreover, the completeness condition has given rise to preserve the mul-
tidimensional space when treating with multidimensional relationships
allowing zeros (step 5).

— Compatibility: Unfortunately, we have not been able to validate this
constraint since that metadata is not captured by the relational schemas.
We should ask the user to validate it or ask for a list of valid alternatives.

Therefore, if we can verify that the SQL query given follows the cube-query
template; it does not cause summarizability problems and data retrieved is un-
equivocally identified in the space, we would be able to assure it makes multidi-
mensional sense. Moreover, there are other optional criteria to be used depending
on the DW expert:

— Selection: If we want to force the user to select data by means of selection
comparisons in the WHERE clause, we can validate Levels and Cells cycles
semantics as proposed in steps 7b and 9.

— Degenerate dimensions: Multidimensionality is typically modeled in the
relational model forcing Cells to be related to its analysis Dimensions.
Therefore, we can assume it when looking for potential multidimensional
concepts over the relational databases (obtaining more information). Other-
wise, we must bear it in mind as depicted in steps 2 and 4.

6 From Multidimensionality to SQL

This section analyzes the implicit and automatic translation process every RO-
LAP tool must perform. A preliminary version of this job can be found in [RA05].
Specifically, an end-user would perform navigational and analytical tasks over
the organizational data by means of the multidimensional algebra. The set of
operations performed in this semantic layer will be automatically processed by
the ROLAP tool that will translate it to SQL and therefore, to the relational
algebra. The SQL translation of an isolated operation does not represent a prob-
lem, but when mixing up the modifications brought about by a set of operations
in a single cube-query, some conflicts could emerge depending on the operations
involved. Therefore, if these problems are not detected and treated appropri-
ately, the automatic translation can retrieve unexpected results. In this section,

39

lOperation/SourceH [[Selection[Roll—up[Projection Drill—across[ChangeBase[Union‘

Selection
Roll-up X X X X
Projection
Drill-across X X X
ChangeBase
Union

Table 9. Conflicts summary

we define and classify conflicts raised when automatically translating a multidi-
mensional algebra to SQL, and analyze how to solve or minimize their impact.

In section 4 we have presented how an atomic cube-query should be mod-
ified when applying an isolated operation over it, but many times end users
demand to navigate from Cube to Cube not just applying isolated operations
but performing sequences of operations. Thus, a user chooses a source Cube
from where starting to operate. Automatically, the ROLAP tool will conform a
cube-query to retrieve this Cube. Notice this Cube is our start point so that
it has not been yet manipulated by any operation. Consequently, it is placing a
Cell of data on the n-dimensional space conformed by its analysis Dimensions.
This Cell, as stated in section 4, could have been materialized or not. If it was,
ROLAP tool will retrieve it from an atomic cube-query and if not, it will look
for an appropriate Cell, in a lower aggregation Level, from where obtaining the
needed Cell by means of Roll-ups. For instance, according to figure 1, we could
start our analysis from a materialized Cell (i.e. Monthly Profit) or from a non
materialized one (i.e. Annual Profit). As Annual Profit is not materialized,
we need to perform an implicit Roll-up over Monthly Profit from Month to
Year to get needed data.

As presented in table 9, certain operations may pop up a conflict when com-
bined with an specific source cube-query. We refer to a source cube-query as an
atomic cube-query modified by a sequence of operations. If no operation has
been performed over the atomic cube-query we consider the empty sequence ().
Hence, a cell is crossed (x) when the sequence of operations in the source cube-
query contains an specific operation that may cause a conflict with next one to
be performed. For instance, it may happen if our source cube-query includes a
Selection and next operation to be carried out is a Roll-up.

Anyhow, any kind of conflict could be avoided using one subquery per multi-
dimensional operation, but we only use subqueries if strictly necessary, shunning
the materialization of partial results and easing the RDBMS query optimizer job.
Specifically, as presented in [RG03|, an important point to note about nested
queries (i.e. subqueries) is that a typical optimizer is likely to do a poor job,
because of the limited approach to nested queries optimization. In fact, from an
efficiency standpoint, they advise us to consider not using nested queries. Main
reasons are:

40

— The nested subquery is fully evaluated in the first step. Consequently, tempo-
ral materialization of results may be needed, as well as some good evaluation
plans are missed according to the order imposed by nesting. For instance,
some proper indexes would never be considered.

— Many times, the query optimizer is not smart enough to find the optimal
strategy (for instance, which join algorithm use) and the typical join method
used is the “index nested loops” (see [RG03] for more details). Therefore,
this approach eludes other join methods that could lead to optimal plans.
Moreover, if the nested query is correlated (i.e. a variable from the top-level
query also appears in the nested subquery), the nested subquery is evaluated
once per outer tuple (i.e. it will be evaluated many times if the correlation
field matches many outer tuples).

— If there are several levels of nesting in the query (like in our case if trans-
lating each multidimensional operation to one subquery), same approach
is considered as presented above just evaluating such queries from the in-
nermost to the outermost and preserving correlation. That is, a correlated
subquery may be evaluated once per each high-level query referring to it.

Nevertheless, a nested query often has an equivalent query without nesting,
as well as a correlated query often can be many times turned into a decorrelated
query. A typical SQL optimizer is likely to find a much better evaluation strategy
if it is given the unnested or decorrelated version of the query. However, many
of these optimizers are not able to identify that equivalence and transform the
initial query to its optimal form.

Notice all conflicts pointed out in table 9 are caused by data aggregation
anomalies. In fact, the standard SQL language (and therefore, the relational
algebra) will not ever introduce any kind of conflicts. However, as presented in
section 3.1, we need to extend the relational algebra in order to support proper
data aggregation as demanded in the multidimensional model, giving rise to
what is called as the grouping algebra. As introduced in [LS97] and discussed in
section 2.3, operations performed must satisfy the disjointness, completeness and
compatibility of data handled to guarantee its correct summarization. Otherwise,
two operations that, as a whole, do not preserve those three conditions will raise
up a conflict. However, since we are trying to avoid subqueries, we need to
aggregate in just one SQL query the multiple aggregation of data performed,
implicitly or explicitly, by different multidimensional operators.

Therefore, as presented in table 1, Roll-up is the only operator performing
data aggregation and consequently, it is the only one that may directly raise
up conflicts when performed along with other operators. Nevertheless, Roll-up
is the most important multidimensional operator since it allows us to modify
data granularity and for that reason, it is crucial for a ROLAP tool to prop-
erly detect and avoid any potential conflict. Specifically, according to table 9, all
conflicts are related to Roll-up and Drill-across. The rest of operations except
for Selection, propagate conflicts if already present in the cube-query but do
not introduce new ones. Consequently, Projection, Union and ChangeBase
never raise a conflict. Intuitively, Projection removes Measures from the SE-

41

€ rCicy o1

1
+*
c City c Conartery
i | Arpaual Stock |
*\J?OE Counb __’—Q

[Daily Stock [+ 1

Fig. 12. Example of a hierarchy of Cells

LECT clause and dropping a Measure just means to omit a “Cell table” column;
Union ores conditions of two Cubes with the same n-dimensional space not
removing / adding any point; and ChangeBase always asks for a one-to-one
relationship in order to be performed, avoiding conflicts due to its own nature.
Conversely, Drill-across and Selection may introduce conflicts in the operators
sequence. As presented below, Drill-across asks for a one-to-one relationship
but sometimes, a one-to-many relationship is enough. In these cases, due to not
materialized Cells, we need to perform implicit Roll-ups to get the necessary
one-to-one relationship and being able to raise up the same conflicts caused by
a Roll-up. Similarly, it may happen with atomic cube-queries not materialized
that would need to perform implicit Roll-ups. A Selection may cause an spe-
cific conflict along with a Roll-up if we select a subset of points of the Cube
and later we Roll-up, avoiding to take advantage of potential pre-aggregated
data. Consequently, notice it is enough to analyze potential conflicts between
each pair of operators, since all of them are caused by conciliating multiple ag-
gregations of data in just one SQL query and therefore, order performed among
operations does not matter.

Since all conflicts are due to data aggregation anomalies, we have classified
conflicts introduced above in three groups according to the three necessary con-
ditions needed to guarantee a correct data summarizability: those performing
multiple aggregation functions in a query (not preserving compatibility of data),
those due to hidden many-to-many relationships (not preserving disjointness)
and finally, those related to the selection granularity (not preserving complete-
ness).

6.1 The Multiple Aggregation Problem

First problem is about functions used to aggregate data. This case typically arises
when combining more than one Roll-up in the same cube-query. To analyze this
problem, we conceptually divide a combination of two Roll-ups in two categories
depending on whether both were performed over the same Dimension or over
different ones.

In the first case, we can always solve the problem disregarding first Roll-up
and just performing the second one, because in a certain moment of time, mul-
tidimensional data can only be showed in a certain aggregation Level for each
Dimension. Notice it can always be assumed since, in the worst case, we can

42

perform a Roll-up from the atomic Level. Oppositely, when performed over
different Dimensions we have to compulsory aggregate data for each Dimen-
sion. Since SQL does not allow us to aggregate data by means of two different
functions in the same query this conflict can not be solved in a single cube-query.
For instance, if we carry out a Roll-up from Week to Year Level in the Weekly
Stock Cell, and later we Roll-up from Year to Level All, the whole sequence
of both Roll-ups can be directly expressed as:

SELECT p.ID, ‘‘A11’’, c.ID, SUM(s.Stock)

FROM weeklyStock s, Product p, City c

WHERE s.key; = p.ID AND s.keyg = c.ID

GROUP BY p.ID, c.ID
ORDER BY p.ID, c.ID

On the contrary, if we just carry out first Roll-up, and later another one from
City to Country along the Place Dimension, nested queries are compulsory:
SELECT p.ID, co.ID, y.ID, SUM(s.Stock)

FROM (SELECT p.ID, c.ID, y.ID, AVG(s.Stock)
FROM weeklyStock s, Product p,
City c, Week w, Year y
WHERE s.keyq = p.ID AND s.keyg = c.ID
AND s.key3 = w.ID AND w.fkey = y.ID
GROUP BY p.ID, c.ID, y.ID
ORDER BY p.ID, c.ID, y.ID), Country co
WHERE s.key] = p.ID AND s.keyg = c.ID
AND s.keyg = w.ID AND c.fkey = co.ID

GROUP BY p.ID, co.ID, y.ID
ORDER BY p.ID, co.ID, y.ID)

Even if SQL allowed us to perform more than one aggregation function in
the same query, we would face another problem: the order between aggregation
functions. Consider the Stock Cell hierarchy detailed in figure 12 extracted from
the example presented in figure 1. In this case, Stock is analyzed through two
Dimensions (Place and Time), and for each possible combination of its Levels
we got a different Cell. For instance, City Weekly Stock (containing cells on
a Week-City granularity Level), Country Annual Stock (Country-Year), City
Daily Stock (City-Day), etc. Thus, it is important to realize that our own
multidimensional conceptual design fixes the order of aggregation functions when
navigating along Cells hierarchy. If we want to Roll-up from City Daily Stock
to Country Annual Stock we have to first aggregate by means of sum (it means,
Roll-up from City to Country Level) and later aggregate by means of average
(Roll-up from Day to Year). So that, order does really matter since sum of
averages is different from an average of sums (latter happens when navigating
through City Weekly Stock). Both orders are possible, but semantics chosen
when designing our schema forces us to follow a certain order.

As said, above conflict could be avoided if SQL allowed us to perform more
than one aggregation function per query and set up an order between them.
For instance, as showed below, an SQL extension stating explicitly two GROUP
BY’s (very similar to SQL’99 GROUPING SETS modus operandi), would avoid
using nested queries when combining more than one conflictive Roll-up. First
GROUP BY would be related to first aggregation function and analogously to
second one:

43

SELECT p.ID, co.ID, y.ID, AVG(SUM(s.Stock))

FROM weeklyStock s, Product p, City c, Week w, Year y, Country co
WHERE s.key; = p.ID AND s.keys = c.ID

AND s.keyg = w.ID AND w.fkey = y.ID AND c.fkey = co.ID

GROUP BY p.ID, c.ID, y.ID

GROUP BY p.ID, co.ID, y.ID

ORDER BY p.ID, c.ID, y.ID

Although this problem has been presented as a Roll-up plus Roll-up prob-
lem, it goes far beyond as it is crucial when obtaining non materialized Cells
from materialized ones. For instance, if we have to work with the City Weekly
Stock Cell that has not been materialized, ROLAP tools will have to perform
a Roll-up from Day to Week over City Daily Stock to obtain needed data.
So that, we have already performed an implicit Roll-up that could arise con-
flicts already presented if we next perform just one explicit Roll-up. Similarly,
as presented in 6.2, implicit Roll-ups can also appear when carrying out a
Drill-across (also in a ChangeBase, but in this case it is raised over the same
Dimension avoiding any kind of conflict as stated earlier in this section) from
a non materialized Cell.

Meanwhile, best solution to minimize this problem is to choose with care
appropriate Cells to be materialized. An extreme solution would be to materi-
alize all of them, but since it is an exponential space problem, it is not feasible.
Hence, in addition to traditional criteria like how frequently would be a Cell
queried, this problem emphasizes another criterion to decide the usefulness of
a given materialized view. According to semantics related to our Cells hierar-
chy, those Cells whose data can be used as pre-aggregated data to calculate
above Cells are good candidates (for instance, in case presented, to materialize
Country Daily Stock instead of City Weekly Stock, since Country Annual
Stock can only be calculated through the former).

Two possible criterions to decide which Cells materialize could be how fre-
quently would be a Cell queried and, according to semantics related to our Cells
hierarchy, choose those ones whose data can be used as pre-aggregated data to
calculate above Cells (for instance, in case presented, to materialize Country
Daily Stock instead of City Weekly Stock, since Country Annual Stock can
only be calculated through the former).

6.2 The Fan-Shaped Problem

In this section we introduce a family of problems that are caused because dis-
jointness is not preserved when aggregating data in certain situations. It typically
appears related to Drill-across, either through semantic relationships or shared
Dimensions. Drill-across asks for a one-to-one relationship, but sometimes a
one-to-many relationship is enough. For instance, after dropping the Place Di-
mension (by means of Roll-up and ChangeBase) we can Drill-across from
Annual Stock to Annual Profit. Conceptually, the one-to-one relationship is
quite clear but in fact, we really have a one-to-many relationship since both
Cells are not materialized and Weekly Stock and Monthly Profit are related
to different Levels in the Time Dimension. We can get the needed one-to-
one relationship by means of internal Roll-ups (from Month to Year over both

44

Cells). Since Year is not materialized, its descriptors are included along with its
children Levels in the Time Dimension hierarchy, given raise to the following

query:

SELECT p.ID, y.ID, AVG(s.Stock), SUM(m.Profit)
FROM weeklyStock s, monthlyProfit m, Product p
Month mo, Week w, Year y

WHERE m.keyq = p.ID AND m.keyp = mo.ID

AND s.keyq = p.ID AND s.keyp = w.ID

AND mo.yearID = w.yearID

GROUP BY p.ID, y.ID

ORDER BY p.ID, y.ID

As enounced in [LS97], the aggregation of data must be disjoint, and in this
case, it is not. In fact, what should be a one-to-one relationship turns into a
many-to-many one calling up a fan-shaped matching. Thus, we should use a
nested query performing first one Roll-up and later, the other one, being the
‘join” last performed. Hence, this problem could be solved if SQL allowed us
to state a priority between “joins” and GROUP BY’s. However, to minimize
its impact it is important, again, to choose with care which Cells should be
materialized. Therefore, this is another criterion to bear in mind when deciding
the usefulness of a given materialized view.

Finally, also notice that when carrying out a Drill-across to a non mate-
rialized Cell, a ROLAP tool may need to perform internal Roll-ups to obtain
data to where Drill-across. Internal Roll-ups followed by an explicit Roll-up
can cause the same conflict stated in subsection 6.1.

6.3 The Selection Granularity Problem

This problem is closely tied to Selection and raises when completeness is not
guaranteed. Selection allows us to reduce current n-dimensional space by means
of a logic clause over a certain Descriptor. For instance, selecting those cells
of Daily Stock related to Barcelona in the Place Dimension. Now, if we
Roll-up from Day to Week we cannot change Daily Stock to Weekly Stock
Cell in the cube-query to take advantage of pre-aggregated data, since aggre-
gation in Weekly Stock is complete and in our current Cell it is not (we only
have those points related to Barcelona). In general, we cannot take advantage
of any pre-aggregated data in a materialized Cell when translating to SQL if
a Selection has been carried out over a lower Level Descriptor in any of its
analysis Dimensions. Using appropriate granularity Cell and performing in-
ternal Roll-ups is mandatory. Only way to solve this problem is considering
it in the multidimensional schema. For instance, using semantic relationships
and creating an specialization of Daily Stock (i.e. Barcelona Daily Stock)
and another on Weekly Stock (i.e. Barcelona Weekly Stock). Between those
Cells, aggregation is complete and we can use the pre-aggregated data without
problems.

6.4 Discussion

When analyzing in detail the automatic and implicit translation process a RO-
LAP tool performs between the multidimensional algebra and SQL, we realize

45

that there are some additional considerations to be made if we want this process
to be free of summarizability problems. Specifically, according to [RG03], it is
worth enough to avoid subqueries in order to ease the job of the RDBMS query
optimizer, and therefore to conciliate in a single query the SQL translation of
multiple multidimensional operators. However, it may embrace to conciliate mul-
tiple data summarization in a single query and therefore, we may face potential
summarizability problems because of Roll-up and not materialized Cells.

Since all conflicts depend on summarizability anomalies, Roll-up is the only
operator that can explicitly cause them. Nevertheless, due to not materialized
Cells, other operators can raise them by means of implicit Roll-ups. Conse-
quently, we have analyzed each possible combination of multidimensional oper-
ators to classify these problems. Notice, since each multidimensional operator
translation to SQL is embedded in a single query all along with the rest of mul-
tidimensional operators performed in the sequence of operations carried out by
the end-user, order between operators does not matter at all. That is, analyzing
conflicts raised by each pair of multidimensional operators is enough to detect
all of them.

We classify those potential summarizability problems according to the three
necessary conditions to assure a correct aggregation of data presented in [LS97];
namely: the multiple aggregation problem (not preserving compatibility of data),
the fan-shaped problem (not preserving disjointness) and the selection granular-
ity problem (not preserving completeness). Along these problems, we presented
how to solve, or at least, smooth them.

Summing up, to guarantee a better performance, these problems must drive
the design of the multidimensional schema as well as they must be taken into
account when deploying the SQL query in the translation process every ROLAP
tool must perform.

7 Conclusions and Future Work

In this paper we have analyzed in detail the mismatch between the multidi-
mensional and the relational model focusing on the implicit translation process
a ROLAP tool performs between the multidimensional algebra and SQL (and
eventually, to the relational algebra). To do so, we have presented two well-
differentiated studies.

First, by means of a conceptual comparative between the multidimensional
and the relational algebra, we have remarked the necessity to work in terms
of an standard multidimensional algebra. On one hand, we have presented why
the relational algebra does not directly fit to multidimensionality. The multi-
dimensional data manipulation should be performed by a restricted subset of
the relational algebraic operators; that is, an specific simplification avoiding ag-
gregation problems and defining a closed set of operations. Our main result
of this comparative has been the identification of such subset of the relational
algebra. On the other hand, we have presented a detailed comparison among
the multidimensional algebras introduced in the literature. To the best of our

46

knowledge, it has been the first comparative about multidimensional algebras
carried out. There, we have been able to identify some significant general trends:
Selection, Roll-up and Drill-down operators are considered in all the alge-
bras, whereas Projection, Drill-across and Union are included in most of
them. Finally, changeBase is also considered in the majority of algebras, since
most of them agree on the necessity of modifying the n-multidimensional space
adding/removing Dimensions. Consequently, we strongly believe it could be
feasible to agree on a reference multidimensional algebra subsumed by the rela-
tional algebra.

Later, we have presented a detailed analysis of the implicit translation a RO-
LAP tool performs from the multidimensional algebra to SQL. On one hand, we
have identified those features a cube-query must enforce to also be semantically
correct, analyzing the multidimensional algebra expressiveness with regard to
SQL. Based on the criteria that an SQL query must enforce to make multidi-
mensional sense, we have presented an automatic method to validate an SQL
as a valid cube-query. Our approach is divided into two main phases: first one
creates the multidimensional graph storing relevant multidimensional informa-
tion about the query, that will facilitate the query validation along the second
phase. Such graph represents tables involved in the query and its relationships,
and our aim is to label each table as factual data or dimensional data. A correct
labeling of all the tables gives rise to a multidimensional schema fitting the input
query. Thus, if we are not able to generate any correct labeling, the input query
would not make multidimensional sense. Moreover, this approach can be used
for multidimensional modeling by examples if we are able to express the multidi-
mensional requirements as SQL queries, as presented in [RA06]. As output, the
process will propose, automatically, those multidimensional schemas fitting the
input requirements; giving support in the multidimensional design process. On
the other hand, we have presented how an atomic cube-query should be mod-
ified when applying an isolated operation over it. But many times, end users
demand to navigate from Cube to Cube not just applying isolated operations
but performing sequences of operations to be translated in a single cube-query.
Certain operations may pop up conflicts due to data aggregation anomalies when
combined with an specific source cube-query (a preliminary version of this job
can also be found in [RAO05]). With this aim, we have classified and analyzed
those potential problems in three groups: those performing multiple aggregation
functions in a query (not preserving compatibility of data), those due to hidden
many-to-many relationships (not preserving disjointness) and finally, those re-
lated to the selection granularity (not preserving completeness). We have also
presented how to solve or at least smooth these problems avoiding subqueries.
These problems have also given rise to two new criteria to decide the useful-
ness of a given materialized view: according to semantics related to our Cells
hierarchy and avoiding hidden many-to-many relationships.

As future work, we will focus on how to conciliate those labeling proposed
by our automatic method aimed to validate multidimensional requirements ex-
pressed in SQL queries. Given a set of SQL queries, representing each one dif-

47

ferent multidimensional requirements, the process proposes a set of multidimen-
sional schemas fitting that requirement. With this improvement, the process
would also automatically conciliate all those schemas proposed in a set of non-
contradictory schemas, conforming an alternative design methodology by ex-
amples. Furthermore, one of our future efforts will focus on implementing this
method. Finally, next step would consist on generalize those features a cube-
query must guarantee to make multidimensional sense, in a generic multidimen-
sional pattern. That pattern would allow us to face an ambitious goal translating
it to OWL (Web Ontology Language) or Description Logics and develop a de-
sign multidimensional methodology over ontologies representing our organization
transactional schemas.

Acknowledgments. This work has been partly supported by the Spanish Min-
isterio de Educacion y Ciencia under project TIN 2005-05406.

References

[Abe02] A. Abells. YAM?: A Multidimensional Conceptual Model. PhD thesis, Uni-
versitat Politécnica de Catalunya, 2002.

[AGS97] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling Multidimensional Data-
bases. In Proc. of the 18th Int. Conf. on Data Engineering (ICDE 1997),
pages 232-243. IEEE, 1997.

[ASS03] A. Abello, J. Samos, and F. Saltor. Implementing Operations to Navigate
Semantic Star Schemas. In Proc. of 6th Int. Workshop on Data Warehousing
and OLAP (DOLAP 2003), pages 56-62. ACM, 2003.

[ASS06] A. Abells, J. Samos, and F. Saltor. YAM? (Yet Another Multidimensional
Model): An extension of UML. Information Systems, 31(6):541-567, 2006.

[Cod72] E. F. Codd. Relational completeness of data base sublanguages. Database
Systems, pages 65—98, 1972.

[CT97] L. Cabibbo and R. Torlone. Querying Multidimensional Databases. In
Proc. of the 6th International Workshop on Database Programming Lan-
guages (DBPL 1997), volume 1369 of LCNS, pages 319-335. Springer, 1997.

[CT98a] L. Cabibbo and R. Torlone. A Logical Approach to Multidimensional Data-
bases. In Proc. of 6th Int. Conf. on Extending Database Technology (EDBT
1998), volume 1377 of LNCS, pages 183-197. Springer, 1998.

[CT98b] L. Cabibbo and R. Torlone. From a Procedural to a Visual Query Language
for OLAP. In Proc. of the 10th Int. Conf. on Scientific and Statistical
Database Management (SSDBM 1998), pages 74-83. IEEE, 1998.

[FBSVO00] E. Franconi, F. Baader, U. Sattler, and P. Vassiliadis. Fundamentals of
Data Warehousing, chapter Multidimensional Data Models and Aggrega-
tion. Springer, 2000. M. Jarke, M. Lenzerini, Y. Vassilious and P. Vassiliadis
editors.

[FK04] E. Franconi and A. Kamble. The GMD Data Model and Algebra for Mul-
tidimensional Information. In Proc. of the 16th Int. Conf. on Advanced In-
formation Systems Engineering (CAiSE 2004), volume 3084 of LNCS, pages
446-462. Springer, 2004.

48

[GMROS]

[HS97]

[HS98]

[Klu82]

[KRTRS|

[Lar99]

[Leh9s]

[LS97]

[LW96]

[Mic]

[MKO0]

[ML97]

[Ped00]

[PJO1]

[RA05]

[RA06]

[RGO3]

[TBCYY]

M. Golfarelli, D. Maio, and S. Rizzi. The Dimensional Fact Model: A Con-
ceptual Model for Data Warehouses. Int. Journals of Cooperative Informa-
tion Systems (IJCIS), 7(2-3):215-247, 1998.

M-S. Hacid and U. Sattler. An Object-Centered Multi-dimensional Data
Model with Hierarchically Structured Dimensions. In Proc. of IEEE Knowl-
edge and Data Engineering Exchange Workshop (KDEX 1997). IEEE, 1997.
M-S. Hacid and U. Sattler. Modeling Multidimensional Database: A for-
mal object-centered approach. In Proc. of the 6th FEuropean Conference on
Information Systems (ECIS 1998), 1998.

A. Klug. Equivalence of relational algebra and relational calculus query
languages having aggregate functions. Journal of the Association for Com-
puting Machinery., 29(3):699-717, 1982.

R. Kimball, L. Reeves, W. Thornthwaite, and M. Ross. The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying
Data Warehouses. John Wiley & Sons, Inc., 1998.

K.S. Larsen. On grouping in relational algebra. Int. Journal of Foundations
of Computer Science., 10(3):301-311, 1999.

W. Lehner. Modelling Large Scale OLAP Scenarios. In Proc. of 6th Int.
Conf. on Extending Database Technology (EDBT 1998), volume 1377 of
LNCS, pages 153—-167. Springer, 1998.

H.J. Lenz and A. Shoshani. Summarizability in OLAP and Statistical Data
Bases. In Proc. of SSDBM’1997. IEEE, 1997.

C. Li and X.S. Wang. A Data Model for Supporting On-Line Analytical
Processing. In Proc. of 5th Int. Conf. on Information and Knowledge Man-
agement (CIKM 1996), pages 81-88. ACM, 1996.

Microsoft. MDX Specification. http://msdn.microsoft.com/library /default.asp
‘Turl=/library/en-us/olapdmad/agmdxbasics _04qg.asp. Last access:
3/24/2006.

D.L. Moody and M.A. Kortink. From Enterprise Models to Dimensional
Models: A Methodology for Data Warehouse and Data Mart Design. In
Proc. of DMDW’2000. CEUR-WS.org, 2000.

M. and L. Lakshmanan. A foundation for multi-dimensional databases. In
Proc. of 23rd Int. Conf. on Very Large Data Bases (VLDB 1997), pages
106-115. Morgan Kaufmann, 1997.

T.B. Pedersen. Aspects of Data Modeling and Query Processing for Complex
Multidimensional Data. PhD thesis, Faculty of Engineering and Science,
2000.

T.B. Pedersen and C.S. Jensen. Multidimensional Database Technology.
IEEE Computer, 34(12):40-46, 2001.

O. Romero and A. Abell6. Improving Automatic SQL Translation for RO-
LAP Tools. Proc. of 9th Jornadas en Ingenieria del Software y Bases de
Datos (JISBD 2005), 284(5):123-130, 2005.

O. Romero and A. Abell6. Multidimensional Design by Examples. In Proc.
of 8th Int. Conf. on Data Warehousing and Knowledge Discovery (DaWaK
2006). Springer, 2006. To be published in September 2006.

R. Ramakrishnan and Johannes Gehrke, editors. Database Management
Systems. McGraw Hill, 2003.

N. Tryfona, F. Busborg, and J.G.B. Christiansen. starER: A Conceptual
Model for Data Warehouse Design. In Proc. of 2nd Int. Workshop on Data
Warehousing and OLAP (DOLAP 1999). ACM, 1999.

[TDY7]

[TDO1]

[TPGS01]

[Vas98]

[Vas00]

[VS99]

[YP04]

49

H. Thomas and A. Datta. A Conceptual Model and Algebra for On-Line
Analytical Processing in Data Warehouses. In Proc. of the 7th Workshop on
Information Technologies and Systems (WITS 1997), pages 91-100, 1997.
H. Thomas and A. Datta. A Conceptual Model and Algebra for On-Line
Analytical Processing in Decision Support Databases. Information Systems,
12(1):83-102, 2001.

J. Trujillo, M. Palomar, J. Gomez, and 1.-Y. Song. Designing Data Ware-
houses with OO Conceptual Models. IEEE Computer, 34(12), IEEE, 2001.
P. Vassiliadis. Modeling Multidimensional Databases, Cubes and Cube oper-
ations. In Proc. of the 10th Statistical and Scientific Database Management
(SSDBM 1998), pages 53-62. IEEE, 1998.

P. Vassiliadis. Data Warehouse Modeling and Quality Issues. PhD thesis,
Dept. of Electrical and Computer Engineering (National Technical Univer-
sity of Athens), 2000.

P. Vassiliadis and T.K. Sellis. A Survey of Logical Models for OLAP Data-
bases. SIGMOD Record, 28(4):64-69, ACM, 1999.

X. Yin and T.B. Pedersen. Evaluating XML-extended OLAP queries based
on a physical algebra. In Proc. of 7th Int. Workshop on Data Warehousing
and OLAP (DOLAP 2004). ACM, 2004.

