Using OWL to integrate relational schemas

Alberto Abells! and Fernando Carpani?

! Dept. de Llenguatges i Sistemes Informatics, U. Politécnica de Catalunya
% Instituto de Computacién, U. de la Repiiblica Oriental del Uruguay

Abstract. Ontologies offer two contributions to the Semantic Web. On
the first hand, they show a vocabulary consensus inside a community.
On the other hand, they provide reasoning capabilities. In this paper
we present a completely automatic translation from relational schemas
to OWL, so that inference mechanisms can be used to integrate differ-
ent schemas, by dealing with structure heterogeneities. The output of
the translation algorithm, which explicits functional dependencies in the
relational schema, belongs to OWL Full.

1 Introduction

In the last years, the appearance of the Web has changed the way of conceiving
not only business, but also computers themselves. Integration and interoperabil-
ity were already hot research topics, and the Web has just outlined their impor-
tance. However, the current state of the Web does not facilitate it, because only
contains data instead of true information. Web pages are usually designed for
humans, and their meaning cannot be captured by automatized engines. To ease
the interpretation of data to the computers, the Web is being transformed into
the “Semantic Web”, by publishing the schema of data in the form of ontologies.
As can be seen in [W3C04], the W3C has proposed a “Web Ontology Language”
(OWL) for this ontologies.

Contribution of ontologies is two fold. On the one hand, an ontology should
be generated by consensus of the actors in its usage domain. On the other hand,
ontologies offer automatic reasoning mechanisms. From our point of view, such
reasoning or inference mechanisms should be used to overcome schema conflicts.
In most cases, due to the size of the schema manual integration can be really
hard. But in some cases, like “Peer-to-Peer Database Management Systems”
(P2PDBMS), this is not even feasible, and integration must be completely auto-
mated. As pointed out in [BHS05], interoperability and integration of ontologies
is an important issue, and reasoning capabilities would help on testing for con-
sistency and computing the integrated class hierarchy.

Therefore, in order to give access to our data to either humans or machines,
we should offer the schema in such a way that it can be automatically interpreted.
Unfortunately, in most cases, the conceptual schema of the data we want to
publish is obsolete or lost. However, even in these cases, we can access the catalog
of our DBMS to know the relations, attributes and constrains that are current.

In this work, we try to convert the relational information in the catalog
(without considering the instance data) of the“Database Management System”
(DBMS) into ontological knowledge, in such a way that inference mechanisms
can be used to overcome schema discrepances.

Next section shows related work regarding some reverse engineering tech-
niques; section 3 explains the notation used; section 4 introduces the algorithm;
section 5 demonstrates how the obtained OWL schemas should be used; section
6 discusses the reasoning algorithms; and finally section 7 concludes the paper.

2 Related work

From the beginning, there has been a tight relationship between reasoning tools
and databases. [BB93] shows a mechanism to translate from DL to a Relational
Database. Every primitive (those not appearing on the left-hand side of a def-
inition) concept or role is translated into a relation, while derived (those that
do appear on the left-hand side of a definition) concepts or roles are smartly
translated into SQL queries. The aim of this work is to be able to reason on the
schema with a KBMD (Knowledge Based Management Systems), while keeping
the instances in a DBMS. Our work is similar to [BB93] in the sense that our
data is in a DBMS and want to publish the schema in such a way that reasoning
algorithms can be used. The difference is that our starting point is the DBMS,
while their is the KBMS.

More recently, with the appearance of the Web, as already pointed out in
[BL98], there exists the need of publishing database contents. Thus, some works
have been devoted to schema extraction and publication on the Web. [SSV02]
shows a reverse engineering approach to extract an ontology (using Frame Logic)
from a relational schema. They do not study the possibility of reasoning on the
obtained ontology, and the process is not fully automatic, since the user chooses
the translation rule to be applied in some cases. [Ast04] also shows a reverse
engineering approach to transform a relational schema in 3NF into an ontology
expressed in Frame Logic (which can be translated into RDF). They analyze
keys, data and attribute correlations to be able to enrich the ontology with
equivalence and inclusion relationships. However, they do not study the further
use of inference mechanisms on their translation.

[dLCO05] place their work at P2PDBMS area. They want to exchange data
among a dynamic set of DBMS. To facilitate this, the authors propose the ex-
change of schema and instances together. Therefore, they choose OWL Full as
ontology language, and the proposed translation from Relational model to OWL
emphasizes that characteristic. However, their translation does not facilitate any
kind of reasoning on the generated concepts.

3 Notation

Since it is a recommendation of W3C, we take OWL as the ontology language
for this work. OWL provides three increasingly expressive sublanguages:

Lite: Supports subclass/superclass hierarchies, as well as properties besides
some integrity constraints like cardinalities zero or one for those properties.

DL: DL comes from ”Description Logics”. Together with those in OWL Lite,
this also supports complex definitions of classes like union, intersection, dis-
junction and complementariness; and any cardinality for the properties.

Full: Supports the same language constructs as DL. The difference lies on the
usage restriction of those constructs. For example, while OWL DL requires
the separation between classes and instances, OWL Full allows a class being
an instance of another class. Another important characteristic of OWL Full
is that it allows cardinality constraints placed on transitive properties.

<owl:Class rdf:ID="className">
<rdfs:subClass0f>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class rdf:ID="attrName'/>
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>

Fig. 1. Example of OWL syntax for “className C JpropName.attr Name”

As can be seen in figure 1, OWL syntax is too verbose. Therefore, through
this paper, we will use DL syntax, which is much shorter. As can be seen in
[HPS04] and [BHS05] OWL semantics can be translated into DL.

Thus, we consider that a knowledge base comprises two components, i.e.
TBox (the terminology, we could recognize it as the schema) and ABox (the
assertions about individuals, or instances). As explained in [BCM*03], the TBox
contains concepts (i.e. classes), and to define a formal semantics of the logic we
use an interpretation Z. An interpretation is a pair [AZ,-Z], where AZ is the
domain (a non-empty set), and L is an interpretation function that assigns
to every atomic concept (i.e. class) 4 a set (A7 C AT) and to every atomic
role (i.e. property) r a binary relation (rZ C AT x AT). A property is said to
be functional iff {(a,b),(a,c)} C r? implies b = c. A property is said to be
transitive iff {(a,b), (b,c)} C r? implies (a,c) € rZ. Inductively, this is extended
to non-atomic classes by the following definitions (where C' and D are classes ;
r and s properties):

inverseOf (T
FunctionalProperty (F
min/maxCardinality (N

T = {(a,b) € AT x AT | (b,a) € 7T}
rt={acAT| #{b]| (a,b) € rt} <1}
rt ={ae AT | #{b| (a,b) €'} <n}

(r~

Bottom (S) 1T =0
Top (S) =A%
complementOf (S) (-C)f = AT -C
intersectionOf (S) (C' M D)t = ¢* n D*
unionOf (§) (Cu D)t = cTuD*
someValuesFrom (S) (3r.0)% = {a € AT | 3. (a,b) € r* Ab € CT}
allValuesFrom (S) (Vr.C)* = {a € AT | Vb. (a,b) € rT = b€ C*}
(1))
))
))

(<1
<n

(

Thus, this constructs can be used in the TBox to state a set of subsumption
(i.e. subClassOf) and equivalence (i.e. equivalentClass) axioms of the form C C
D and C = D (being C and D possibly complex classes).

XCYeVvl:xtcy?
X=YeXCYAYCX

Moreover, with # constructs in the logic, we can also state axioms respec-
tively noted r C s to define a property hierarchy (i.e. subPropertyOf), on the
understanding that cardinality restrictions are only allowed in “simple” proper-
ties (i.e. those non-transitive, and without transitive subproperties). Depending
on the constructs allowed in the logic, we can talk about the complexity and
expressive power of SHZF, SHOZN (which corresponds to SHZN, plus collec-
tions of individuals), etc.

OWL-Lite SHIF
OWL-DL SHOIN
OWL-Full|Unconstrained SHOZN

Table 1. Correspondence between OWL and DL

Table 1 shows the equivalences between OWL and DL. OWL-DL is equivalent
to SHOIN with nominals and concrete domains. Notice that OWL-Full removes
the constraint on transitive roles and number restrictions, which is known to
result in some undecidable combinations, as can be seen in [HST99).

4 Translation algorithm

Different translation possibilities (as shown in section 2) have already been de-
fined in the literature from relatonal model to OWL. Ours differs from those be-
cause it facilitates reasoning by expliciting functional dependencies and smoothly
deals with null values.

Similar to [AHV95], we assume the existence of a finite set atts of attributes,
and another finite set rels (disjoint from atts) of relations. Being A € atts,
Dom(A) is a set of constants called the domain of A. We also have a function int :
rels — P(atts), which represents the attributes of a relation (i.e. its intension).
Moreover, we assume that attributes belong to, at most, one relation (VR, S €
rels : R # S = int(R) Nint(S) = 0).

The extension of a relation is a subset of the cartesian product of the domains
of its attributes. Therefore, we define ext(R) C Dom(A;) x ... x Dom(A,,), being
int(R) = {A1,...,An}. A tuple of a relation R is an element of its extension.
Thus, 74, (t) is the value of ¢ belonging to Dom/(A;).

A “Functional Dependency” (FD) is an expression of the form X — Y where
X,Y C atts fulfilling that Vs, t tuples : mx(s) = nx(t) = 7y (s) = wy (t). Then,
a “Key Dependency” (KD) of a relation R is a set of sets of attributes so that
for each one of these sets it is subset of the intension of R and there exists an
FD from it to the intension. Thus, KD is a function KD : rels — P(P(atts)),
so that VR : KD(R) C P(int(R)) AVX € KD(R) : (X — int(R) € FDA#Y C X :
Y — int(R)).

Finally, a “Foreign Key” (FK) between two sets of attributes X and Y be-
longing respectively to relations R and S (where Y is a Key Dependency of
S) is a bijection pt (showing that an attribute points to another attribute)
between the two sets of attributes so that for each tuple of R exists a tu-
ple in S with the same values for attributes X and Y, respectively. Thus,
we define FK as a function FK : rels — P(atts) x (atts — atts), so that
VR:V< X,pt >¢ FK(R) : (X € P(int(R)) A3S € rels: (3K € KD(S) :VA €
X :pt(A) € KAVs € ext(R) : 3t € ext(S) : VA; € X 1 m4,(8) = Tpy(a,)(t))).

Thus, a relational schema FEpg is a tuple < atts,rels,int, KD, FK,null >,
where null is a function null : atts — {“T”,“F”} that shows whether an at-
tribute admits null values or not. From here on, relational elements will have a
subindex “R” to be distinguished from their corresponding OWL classes.

Figure 2 shows the translation algorithm from one of such schemas to OWL.
First of all, we define four different superclasses, namely Tuples, Values, Relati-
ons, and Keys. By means of them, step 1 states that tuples are not attribute
values; step 2 defines tuples as being exactly those of relations and keys; step 3
states that relations are disjoint from keys.

The main characteristic of this translation is that attributes are not classes
but properties, which may look a bit strange. However, this is just a literal trans-
lation, because it is well known (see [EN89]) that attributes are functions from
real world entities to data values. Therefore, they are translated into functional
properties (step 4(b)i and 4(b)ii) and their domain into a derived class (step
4(b)iii and 4(b)iv). Step 4(b)v states that an attribute belongs to only one rela-
tion. We can extract more knowledge from the obligatory nature of the attribute.
Thus, step 4(b)vi shows whether the attribute admits null values or not. We do
not introduce any special value, the property instance just exists or not.

Conversely, relations, KDs and FKs are translated into classes (steps 4a, 4(c)i,
and 4(d)i respectively). Nevertheless, they are related by means of properties. A

State Tuples C ~Values
State Tuples = Relations U Keys
State Relations T ~Keys
For each R € rels
(a) Add class R
(b) For each AR € int(RR)
i. Add property 74
ii. State (= lry) = 3ry. T
iii. Add class A C Values
iv. State A = 3ry .R
v. State R J 3ry.A
vi. If null(Ap) =“F”
A. State RC 3ry.A
(c) For each K € KD(RR)
i, Add class K
ii. Add property rp
iii. State (= lrg) = Jrg. T

BN e

iv. State (= lrg) = 3rgx —.T

v. State K = 3rg ~.R

vi. State R = 3rg.K

vii. For each Ap € Kp
A. Add property ri ,
B. State (=1lrg) =3rg, . T
C. State K = 3rg ,.A
D. State 3rg.K = (= 2rpy), being ry a transitive property so that

rx Erryg ira BT andrgy Do
(d) For each < Fg,pt >€ FK(RR)

i. Add class F

ii. Add property rp

iii. State (= lrg) = 3rp. T

iv. State F = 3rp ~.R

v. State 3rp.F =g, ey, 3744

vi. State F C K (being K € KD(SR) so that VAR € Fg : pt(AR) € KR)
vii. For each AR € Fg

A. Add property rp

B. State (= lrp,) =3rp,.T
C. State F =drp, .A
D. State 3rp.F = (= 2TTFA), being T, ® transitive property so that
rF Errp,ita Errp, and gy Errp
E. State rp, C TR (a)
F. State A C pt(A)
5. For each Rp € rels
(a) For each Sp € rels
i. If Ry # Sg: State RC 5§
ii. For each Kp € KD(RR)
A. For each K € KD(SR): if Kg # Kp: State K C ~K'
6. State Relations = Uy erels B

7. State Keys = Lp,erels Uk ek D(Ry) K

Fig. 2. Translation algorithm to DL

relation is related to its KDs by means of a bijective complete property (steps
4(c)ii, 4(c)iii, 4(c)iv, 4(c)v and 4(c)vi), and to its FKs by means of a functional
non-complete one (step 4(d)ii, 4(d)iii, 4(d)iv, and 4(d)v). Moreover, FKs also
generate inclusion dependencies between classes, which are represented by means
of subsumption axioms (step 4(d)vi). Then, as if they were relations, each KD
and FK is related to its attributes (steps 4(c)vii and 4(d)vii respectively) by
means of functional properties (steps 4(c)viiA, 4(c)viiB, 4(d)viiA and 4(d)viiB),
stating them as mandatory (steps 4(c)viiC and 4(d)viiC). Steps 4(c)viiD and
4(d)viiD state that the value of an attribute of a relation must be the same if we
go firstly through the KD or FK to find it. Similarly, step 4(d)viiE states that
the value of an attribute of a FK coincides with the value of the pointed KD.

Finally, steps 5(a)i states that relations are disjoint between them; while
5(a)iiA states that KDs are disjoint between them. Steps 6 and 7 state that

all tuples of relations and keys are exactly those in the extensions of existing
relations and keys, respectively.

Steps 4(c)viiD and 4(d)viiD should actually show property composition (i.e.
ra drigorg, andra Jrporp,), which guarantees the consistency between the
different paths from a relation to its attributes. Nevertheless, this does not belong
to SHOZN and, consequently, cannot be represented in OWL. Thus, we have
expressed it by means of a number restriction on a transitive property, which
is equivalent in this case to the composition, but pushes us from OWL-DL to
OWL-Full. However, not imposing it would not affect the reasoning performed
in next section.

Moreover, this translation algorithm does not require any Normal Form for
the relational schema to be translated. However, the most normalized it is, the
more explicit KDs we find. Therefore, we will get a richer translation if the
original relational schema was in Boice-Codd Normal Form (BCNF).

We have implemented this translation algorithm in a prototype and validated
the results by introducing them in Protege 3.1.1 (which can be downloaded from
http://protege.stanford.edu).

5 Usage

Once we have detected correspondences between attribute domains by means of
name similarity measures like in [BSM04] and validating it maybe by mining their
values, our OWL translation will allow to deal with structure heterogeneities,
following the classification of semantic heterogeneities in [GSS96]. In the rela-
tional model, this can be seen like deciding whether two relations are equivalent
or not, i.e the transitive closure of their FDs coincide. Notice that if one schema
is not in BCNF, some FDs would not be captured by the translation algorithm,
and we may make some mistakes in the comparison.

In order to be able to compare the schemas, we would need to define a
property det showing that one class determines another. To do this, we need to
use two DL constructs that do not belong to OWL, namely property union (i.e.
role disjunction) and transitive closure of properties.

Property union (r U s)*

{(a,b) | (a,b) € 7 V (a,b) € 57}
Transitive closure (r7)%

Ui21(7"1)l

With this, det property is defined as follows:

det = (|_| (|_| (reUrg™)U |_| rp)) T

Rré€rels Kr€e KD(RR) <FRr,pt>€FK(RR)

At this point it is important also to notice that if the relational schema is
not a tree, we cannot guarantee that the transitive application of FKs results in
a functional dependency. Let’s pay attention to figure 3, where letters from A to
D correspond to relations, and arrows show FKs between them. The query may
show more than one value in D determined by each value of A. To guarantee

SELECT A.PK, D.PK

B
FROM A, B, D
WHERE A.FKB=B.PK AND B.FKD=D.PK

A D UNION

SELECT A.PK, D.PK
FROM A, C, D
C

WHERE A.FKB=C.PK AND C.FKD=D.PK;

Fig. 3. Example of non functionality in FKs

this is not happening, we should consider assertions and triggers, which have
not been taken into account in this work. Under this conditions, the following
theorems state how we can use det to automatically establish the equivalence
between two schemas.

Theorem 1. The tuples of Ry that functionally determine values of an attribute
A4 are represented by:
R (3det.Ira.A)

Proof. First of all, since we know that rx, rxg~ and rp are functional properties
(steps 4(c)iii, 4(c)iv, and 4(d)iii) and the composition of functions is also func-
tional, we can assure that each transitive chain in det determines exactly one
value. Since we are assuming that it could not be that there is more than one
chain of FKs from Rp to Sg, and given that r4 is functional, we can assure that
Adet.Fra.A = (=1 det.3ra.A).

Let’s prove by induction on the length of the chain of FKs that the expression
corresponds to the tuples that determine values of the attribute.

Base case, there is no FK (i.e. Ap € int(RR)) :
In step 4(b)i, we have defined r4. By definition,R J 3r4.A (step 4(b)v).
This implies
Jra.A=R0N (HT’A.A)

Given Kg the key of Rg, by definition of det, (rx Urg ~)" C det. Therefore,
Va,a € R = (a,a) € det’. Again, given that R 3 3r4.A (step 4(b)v),

RN (3ra.A) = RN (Idet.Fra.A)

Therefore, if Ar € int(Rg), we have shown that those tuples having values
for attribute Ag are exactly RM (3det.Ira.A).
Inductive case, there is a chain of n+ 1 FKs (i.e. Ag € int(Rg)) :

If so, there exists Sk so that Ag € int(Sg) and there is a chain of n + 1
FKs from Rg to Sg. Thus, by induction hypothesis, RM (3det.3rp.B) shows
those tuples of Rp that would determine values of By if Bg € int(T') and
there is a chain of n FKs; and R M (3det.Irp.3Irx —.3r4.A) corresponds to
the tuples of Rg that determine values of Ar with a chain of n + 1 FKs
(being K the key of Sg and F' the FK of T pointing to it).

By definition of det, rr and rx~ belong to it. Therefore, since it is a transitive
closure, we know that Idet.Irp.Irx~.S C Idet.S. Thus,

R (3det.Trp.Irx~.Ara.A) C RN (Idet.Tr4.A)

Moreover, since we assume that FKs have a tree structure, they must coin-
cide. It cannot be that other tuples of Rg than R M 3det.drp.K determine
values of Kg.

R (3det.Trp.Irx— .Ara.A) = RN (Idet.Tr4.A)

Thus, RM(3det.3r 4.A) shows the instances of Rr determining exactly one value
for attribute Ag. a

Lemma 1. Given two schemas E} and E% over the sets of attributes atts' D
atts®, and two relations R}, € E}, and R, € E%, then the transitive closure of
the KDs of R% is contained in that of Ry, (R% = R%) iff:

VAg € atts” : R* 1 (3det®>.Ir3.A) T LV R' N (3det’ . Ir}y.A) T R® N (Idet” I} A)
Proof. We must prove both directions:
RYL E R -

If R}, = R%, then the transitive closure of KDs of R% is a subset of that of
RL (R%' C RL™) for the attributes of E%. Therefore, VAR € atts?,VKp C
int(R%) : Kp — Ap € Ry = Kr — Ag € RL™.

Since by theorem 1, RM(3det.3r 4.A) shows the instances of Rp determining
exactly one value for attribute Ag, either does not exists any KD Kr — Ap
in R4" (i.e. R2 M (3det®>.3r%.A) C 1) or it exists and is fulfilled by both
relations R}, and R%, which means that

R' 11 (3det' 3r.A) C R* N (3det® Fr?%.A)

VAgr € atts® : R* N (3det> Iri.A) C LV R' N (Idet* Irl.A) C R? N (Idet®.Ir}.A) :

Let’s suppose not, i.e. there exists Kr — Ag € R%%+ so that Kp — Ap &
RLT and R! N (3det'.3rl.A) C R2 1 (3det®.3r%.A). By definition of KD,
there should be an instance of R}, that does not determine a value of A,
while belonging to R% it does determine one. However, we also know that
all instances of R' that determine one value of A are subsumed by those
instances of R? that determine one value of A. Moreover, since Kg — Ag €
R%ﬁ, R?1 (3 det®>.3r%.A) Z L. Therefore, we arrive to a contradiction and
the hypothesis must be false.

O

Corollary 1. Given two schemas E}, and E%, over the same attributes atts, and
two relations R}y, € E} and R, € E%,, R}, is equivalent to R, (Ry = R%) iff:

VAR € atts : R* N (3det' . 3r'.A) = R* N (Idet® . Ir%.A)

Create Table Apeople(
ssn Primary Key,
labour)

Apeople_has_pk_ssn_tab_pk*

Relations

Apeople_has_ssn* ‘ Apeople_labour

Apeople_pk_ssn_pk_has_att_ssn_pk_att*

Apeople_ssn

Fig. 4. Schema with an attribute admitting nulls

Let’s consider two schemas that show people data. Schema A contains only
one relation, which has an attribute “labour” that admits null values. On the
other hand, schema B has specialized people, so that this attribute is in another
relation “women”, which does not allow null values. Figures 4 and 5 show the
views generated by the “Ontoviz” tab of Protege 3.1.1 for those schemas, from
the corresponding OWL representation (all generated classes are shown, but only
Tk, rr and r4 properties have been depicted).

Once we have detected, for example by means of name similarity, the equiva-
lences between both sets of attributes (i.e. apcopic_ssn = Breopte_ssn, AN Apcoptc_tabour =
Buomen-labour), We should state it in our knowledge base and check whether apeopicn
(FAdet.Apeople_has_ssn.Apeople_ssn) = Bpeople N (IBdet.Bpeople_has_-ssn.Bpeople_ssn) and Apeople N

(3Adet. Apeople_has_labour. Apeople_labour) = Bpeople M (IBdet.Bwomen_has_labour.Bwoman_labour). If
S0, we can assure that apcopte = Bpeopte.

6 On reasoning algorithms

Our translation needs to be expressed in OWL-Full just because of the equiva-
lences in steps 4(c)viiD and 4(d)viiD (the rest of classes and properties belong
to SHZF, which corresponds to OWL-Lite, as we can see in [HPS04]). These
steps generate a transitive property whose cardinality needs to be constrained.
This combination is not allowed in OWL-DL, because it results in undecidable
reasoning problems in general, as we can see in [Hor05]. However, in our case,
this will not result in infinite models.

On the other hand, the definition of “det” falls clearly out of OWL and nowa-
days there is no reasoner that supports transitive closure and union of properties.
However, it seems to us an essential tool, not only in our case, but for ontologies
in general. Moreover its worse case complexity is well known and coincides with
that of SHZQ(as can be seen in [BCM*03]), which do have implemented reason-
ers with good response time in the common cases. DL is a relatively young area.
Therefore, as expressed in [Hor(05], we can expect some improvements in the
expressive power of reasoners. Moreover, as shown in theorem 1, our problem is
equivalent to obtaining the closure of a set of FD which is known to be decidable.

Tuples
Create Table Bpeople(ssn Primary Key)
Create Table Bwomen(ssn Primary Key References Bpeople(ssn), Labour)

Bpeople_pk_ssn Bpeople_has_ssn*

Values

Bpeople_pk_ssn_pk_has_att_ssn_pk_att*

Bpeople_ssn

sa

Bwomen_ssn sa

Bwomen_has_ssn* inverse_of_Bwomen_has_ssn*

Bwomen_pk_ssn_pk_has_att_ssn_pk_att* Bwomen_fk_ssn_fk_has_att_ssn_fk_att*

Bwomen

Bwomen_has_pk_ssn_tab_pl Bwomen_has_fk_ssn_tab_fk*

Bwomen_has_labour*

Bwomen_pk_ssn (Bwomen_fk_ssn

Bwomen_labour

Fig. 5. Schema with an specialization forbidding nulls

In fact, it is an easy problem (a polynomial algorithm is in [AHV95]). Therefore,
while no general algorithm is provided, we could use an efficient ad-hoc one.

7 Conclusions

In this work, we have shown an automatic translation from the information
contained in the catalog of a relational DBMS to OWL. This translation allows
to use a standard DL algorithm like subsumption to reason on the integration of
different data sources. The reasoning is based on FDs whose transitive property
difficulties the implementation of general algorithms. However, because of the
existence of polynomial algorithms for the obtaining of the closure of FDs, we can
assure that an ad-hoc tool will provide good performance. As future work, besides
the implementation of such reasoning tool, we plan to extend the translation to
deal with domains and checks.

Acknowledgements

Our work has been partially supported by the Spanish Research Program PRON-
TIC and FEDER under project TIN2005-05406.

References

[AHV95]

[Ast04]

[BBO3]

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

I. Astrova. Reverse Engineering of Relational Databases to Ontologies. In
Proc. of 1st European Semantic Web Symposium (ESWS 2004), volume
3053 of LNCS, pages 327-341. Springer, 2004.

A. Borgida and R. J. Brachman. Loading Data into Description Reasoners.
In Proc. of 1993 ACM SIGMOD Int. Conf. on Management of Data, pages
217-226. ACM Press, 1993.

[BCM103] F.Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,

[BHS05]

[BLOS]

[BSMO04]

[dLCO5]

[EN89]

[GSS96]

[Hor05]

[HPS04]

[HST9]

[SSV02]

[W3C04]

editors. The Description Logic Handbook. Cambridge University Press, 2003.
F. Baader, I. Horrocks, and U. Sattler. Description Logics as Ontology
Languages for the Semantic Web. In Mechanizing Mathematical Reasoning,
volume 2605 of LNCS, pages 228-248. Springer, 2005.

T. Berners-Lee. Relational Databases on the Semantic Web, September
1998. http://www.w3.org/Designlssues/RDB-RDF.html.

J. D. Bo, P. Spyns, and R. Meersman. Assisting Ontology Integration with
Existing Thesauri. In Proc. of OTM Confederated Int. Conf. (ODBASE’0/),
volume 3290 of LNCS, pages 801-818. Springer, 2004.

C. Pérez de Laborda and S. Conrad. Relational. OWL - A Data and Schema
Representation Format Based on OWL. In Proc. of 2nd Asia-Pacific Conf.
on Conceptual Modelling (APCCM2005), pages 89-96, 2005.

R. Elmasri and S. Navathe, editors. Fundamentals of Database Systems.
Benjamin/Cummings, 1989.

M. Garcia-Solaco and F. Saltor. Object-Oriented Multidatabase Systems,
chapter Semantic Heterogeneity in Multidatabase Systems, pages 129-202.
Prentice Hall, 1996.

I. Horrocks. Applications of Description Logics: State of the Art and Re-
search Challenges. In Proc. of 13th Int. Conf. on Conceptual Structures
(ICCS 2005), volume 3596 of LNCS, pages 78-90. Springer, 2005.

I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to de-
scription logic satisfiability. Journal on Web Semantics, 1(4):345-357, 2004.
I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive
Description Logics. In Proc. of 6th Int. Conf. on Logic for Programming
and Automated Reasoning (LPAR’99), number 1705 in LNAI pages 161—
180. Springer, 1999.

L. Stojanovic, N. Stojanovic, and R. Volz. Migrating data-intensive web
sites into the Semantic Web. In Proc. of 2002 ACM Symposium on Applied
Computing (SAC), pages 1100-1107. ACM, 2002.

W3C. Ontology Web Language (OWL)-Reference, February 2004.
http://www.w3.org/TR/owl-ref.

