EU-Rent Car Rentals Specification

Leonor Frias, Anna Queralt' and Antoni Olivé®
(leonor.frias@estudiant.upc.es, [aqueralt | olive]@Isi.upc.es)

1. INTRODUCTION AND MOTIVATION

EU-Rent is a widely known case study being promoted as a basis for demonstration of
product capabilities. However, no in-deep case analysis neither specification had been
developed. As far as we are concerned, all available documents only referred to a part of the
system and did not confront some definition holes or even ambiguities of the case.

Therefore it was considered interesting, useful and even necessary to develop an in-depth
study of the case which would lead to its whole specification. Having a complete specification
of the case should be useful for its users, which could have a common reference.

On the other hand, it was considered a good opportunity to test the real application of some
proposals. The first group consists on alternate mechanisms to define integrity constraints
and derived elements proposed in [IC-OI03][DR-OI03] by Antoni Olivé. The root of these
proposals is the definition of constraint and derived elements by means of operations.

Secondly, it was aimed to proof the utility and easy-to-use of an alternative approach of
modelling events in which is still working Antoni Olivé. This alternative consists basically on
modelling the events as objects and so, exploit the advantages of the OO.

Furthermore, although it was not an initial objective, the specification of this case has been
useful to experiment with a few of the latest releases introduced in UML 2.0 and OCL 2.0 as
some of these new mechanisms were needed (or practical) for the project working out.

This document is structured as follows: firstly the original case study is reviewed as some
extensions are introduced, then, general remarks about the specification (language and tools
used) are made, and next, the complete specification is presented with some previous
explanations in each section. Lastly, conclusions and success of the overall work are
commented on.

! Reviewer
2 Director

2. THE CASE STUDY: EU-Rent Car Rentals
Overview

EU-Rent is a case study being promoted as a basis for demonstration of product capabilities
which originally was developed by Model Systems, Ltd. It presents a car rental company with
branches in several countries which provides typical rental services. Apart from collecting
information about cars, branches...etc, effort is done to capture information about customers
(if they are good clients or had had bad experiences otherwise).

Firstly, we will present the original case study, and then, some extensions widely used about
pricing and discounting. These extensions were developed by Inastrol, and have been of
great importance for all the interesting business rules associated in determining the price of a
rental agreement. Documents from [BRF03] and [EBRCO03] have been used for this section.

Lastly, we will expose some clarifications of some aspects of the case being judged obscure.
The decisions made are intended to be consistent with the rest of the case and refer to other
documents ideas when possible. Apart from own ideas, suggestions from [BRFO3] ,
[EBRCO03], [PSZ00] have been used for that section.

The original case

EU-Rent is a car rental company owned by EU-Corporation. It is one of three businesses -
the other two being hotels and an airline - that each has its own business and IT systems,
but with a shared customer base. Many of the car rental customers also fly with EU-Fly and
stay at EU-Stay hotels.

EU-RENT BUSINESS

EU-Rent has 1000 branches in towns in several countries. At each branch cars, classified by
car group, are available for rental. Each branch has a manager and booking clerks who
handle rentals.

Rentals

Most rentals are by advance reservation; the rental period and the car group are
specified at he time of reservation. EU-Rent will also accept immediate ("walk-in")
rentals, if cars are available.

At the end of each day cars are assigned to reservations for the following day. If more
cars have been requested than are available in a group at a branch, the branch manager
may ask other branches if they have cars they can transfer to him.

Returns

Cars rented from one branch of EU-Rent may be returned to a different branch. The
renting branch must ensure that the car has been returned to some branch at the end of
the rental period. If a car is returned to a branch other than the one that rented it,
ownership of the car is assigned to the new branch.

Servicing

EU-Rent also has service depots, each serving several branches. Cars may be booked
for maintenance at any time provided that the service depot has capacity on the day in
guestion.

For simplicity, only one booking per car per day is allowed. A rental or service may cover
several days.

Customers

A customer can have several reservations but only one car rented at a time. EU-Rent
keeps records of customers, their rentals and bad experiences such as late return,
problems with payment and damage to cars. This information is used to decide whether
to approve a rental.

EU-RENT BUSINESS RULES

External constraints

Each driver authorized to drive the car during a rental must have a valid driver's
licence.

Each driver authorized to drive the car during a rental must be insured to the level
required by the law of each country that may be visited during the rental.

Rented cars must meet local legal requirements for mechanical condition and
emissions for each country that may be visited during the rental.

Local tax must be collected (at the drop-off location) on the rental charge.

Rental reservation acceptance

If a rental request does not specify a particular car group or model, the default is
group A (the lowest-cost group).

Reservations may be accepted only up to the capacity of the pick-up branch on the
pick-up day.

If the customer requesting the rental has been blacklisted, the rental must be refused.
A customer may have multiple future reservations, but may have only one car at any
time.

Car allocation for advance reservations

At the end of each working day, cars are allocated to rental requests due for pick-up the
following working day. The basic rules are applied within a branch:
- Only cars that are physically present in EU-Rent branches may be assigned.
If a specific model has been requested, a car of that model should be assigned if one
is available. Otherwise, a car in the same group as the requested model should be
assigned
If no specific model has been requested, any car in the requested group may be
assigned
The end date of the rental must be before any scheduled booking of the assigned car
for maintenance or transfer
After all assignments within a group have been made, 10% of the group quota for the
branch (or all the remaining cars in the group, whichever number is lower) must be
reserved for the next day's walk-in rentals. Surplus capacity may be used for
upgrades.

If there are not sufficient cars in a group to meet demand, a one-group free upgrade
may be given (i.e. a car of the next higher group may be assigned at the same rental
rate) if there is capacity
Customers in the loyalty incentive scheme have priority for free upgrades.
If demand cannot be satisfied within a branch under the basic rules, one of the 'exception’
optlons may be selected:
A car may be allocated from the capacity reserved for the next day's walk-ins.
A 'bumped upgrade' may be made. (For example, if a group A car is needed and
there is no capacity in group A or B, then a car allocated to a group B reservation
may be replaced by a group C car, and the freed-up group B car allocated to the
group A reservation.)
A downgrade may be made.
A "downgrade" is a car of a lower group.
A car from another branch may be allocated, if there is a suitable car available and
there is time to transfer it to the pick-up branch.
A car due for return the next day may be allocated, if there will be time to prepare it
for rental before the scheduled pick-up time.
A car scheduled for service may be used, provided that the rental would not take the
mileage more than 10% over the normal mileage for service.
If demand cannot be satisfied within a branch under the 'exception’ rules, one of the 'in
extremis' options may be selected:
Pick-up may have to be delayed until a car is returned and prepared.
A car may have to be rented from a competitor.

Walk-in rentals

The end date of the rental must be before any scheduled booking of the assigned car
for maintenance or transfer.

If there are several available cars of the model or group requested, the one with the
lowest mileage should be allocated.

Handover

Each driver authorized to drive the car during a rental must be over 25 and have held
a driver's license for at least one year.

The credit card used to guarantee a rental must belong to one of the authorized
drivers; and this driver must sign the rental contract. Other drivers must sign an
‘additional drivers authorization' form.

The driver who signs the rental agreement must not currently have a EU-Rent car on
rental.

Before releasing the car, a credit reservation equivalent to the estimated rental cost
must be made against the guaranteeing credit card.

The car must not be handed over to a driver who appears to be under the influence of
alcohol or drugs.

The driver must be physically able to drive the car safely - must not be too tall, too
short or too fat; if disabled, must be able to operate the controls.

The car must have been prepared -- cleaned, full tank of fuel, oil and water topped
up, tires properly inflated.

The car must have been checked for roadworthiness -- tire tread depth, brake pedal
and hand brake lever travel, lights, exhaust leaks, windscreen wipers.

No-shows

If an assigned car has not been picked up 90 minutes after the scheduled pick-up
time, it may be released for walk-in rental, unless the rental has been guaranteed by
credit card.

If a rental has been guaranteed by credit card and the car has not been picked up by
the end of the scheduled pick-up day, one day's rental is charged to the credit card
and the car is released for use the following day.

Return from rental

At the end of a rental, the customer may pay by cash, or by a credit card other than
the one used to guarantee the rental.

If a car is returned to a location other than the agreed drop-off branch, a drop-off
penalty is charged.

The car must be checked for wear (brakes, lights, tires, exhaust, wipers etc.) and
damage, and repairs scheduled if necessary.

If the car has been damaged during the rental and the customer is liable, the
customer's credit card company must be notified of a pending charge.

Early returns

If a car is returned early, the rental charge is calculated at the rate appropriate to the
actual period of rental (e.g. daily rate rather than weekly).

Late returns

If the car is returned late, an hourly charge is made up to 6 hours' delay; after 6 hours
a whole day is charged.

A customer may request a rental extension by phone -- the extension should be
granted unless the car is scheduled for maintenance.

If a car is not returned from rental by the end of the scheduled drop-off day and the
customer has not arranged an extension, the customer should be contacted.

If a car is three days overdue and the customer has not arranged an extension,
insurance cover lapses and the police must be informed.

Car maintenance & repairs

Each car must be serviced every three months or 10,000 kilometres, whichever
occurs first.

If there is a shortage of cars for rental, routine maintenance may be delayed by up to
10% of the time or distance interval (whichever was the basis for scheduling
maintenance) to meet rental demand.

Cars needing repairs (other than minor body scratches and dents) must not be used
for rentals.

Car purchase and sale

Only cars on the authorized list can be purchased.
Cars are to be sold when they reach one year old or 40,000 kilometres, whichever
occurs first.

Car ownership

A branch cannot refuse to accept a drop-off of a EU-Rent car, even if a one-way
rental has not been authorised.

When a car is dropped off at a branch other than the pick-up branch, the car's
ownership (and, hence, responsibility for it) switches to the drop-off branch when the
car is dropped off.

When a transfer of a car is arranged between branches, the car's ownership switches
to the 'receiving' branch when the car is picked up.

In each car group, if a branch accumulates cars to take it more than 10% over its
guota, it must reduce the number back to within 10% of quota by transferring cars to
other branches or selling some cars.

In each car group, if a branch loses cars to take it more than 10% below its quota, it
must increase the number back to within 10% of quota by transferring cars from other
branches or buying some cars.

Loyalty incentive scheme

To join the loyalty incentive scheme, a customer must have made 4 rentals within a
year.

Each paid rental in the scheme (including the 4 qualifying rentals) earns points that
may be used to buy 'free rentals.’

Only the basic rental cost of a free rental can be bought with points. Extras, such as
insurance, fuel and taxes must be paid by cash or credit card.

A free rental must be booked at least fourteen days before the pick-up date.

Free rentals do not earn points.

Unused points expire three years after the end of the year in which they were earned.

EXAMPLES OF "RULES FOR RUNNING THE BUSINESS"

(not really the same kind of rules as those above)
- Each branch must be set targets for performance -- numbers of rentals, utilization of
cars, turnover, profit, customer satisfaction, etc.
Where performance requirements conflict (e.g. profit vs. customer satisfaction when a
customer requests a reduction n charges after an unsatisfactory rental) heuristics
must be provided to guide branch staff.
Performance data must be captured.
If performance targets are not met, control action must be taken. Control action may include:
- changing the resources at branches (e.g. numbers of cars, quotas of cars within each
group, number of staff),
changing responsibilities (e.g. having transfers of cars managed by groups of
branches, rather than by negotiation between individual branch managers),
changing operational guidance (e.g. what proportion of cars should be kept for walk-
in rentals), but not external constraints (e.g. legal requirements) or company policies
(e.g. rentals must be guaranteed by a credit card, a customer may have only one car
at a time).

Assumed extensions about pricing and discounting

Standard Price

Rental Duration Category provides the allowable set of rental durations. For each duration,
the unit of measure is provided (e.g. week, day, hour) and the minimum and maximum limits
for each duration. For example, a weekly rental is for a minimum of 6 days and a maximum
of 7 days. EU-Rent doesn’t have weekend rental durations.

A rental may cover multiple durations. For example, a 10-day rental consists of 1 weekly
rental and 3 daily rentals.

While EU-Rent will rent cars on an hourly basis during one day, it won't rent for portions of a
day. So, a customer can't request to rent a car for 3 days and 5 hours. But he could ask to
rent a car for just 5 hours.

Car Group Duration Price provides the standard rates for each Car Group by Rental Duration
Category.

To develop the standard price for a rental agreement
- Break down the total rental duration into duration categories (weeks, days etc.) and
determine the number of units for each,
For each duration category, select the duration price for the car group, multiply each
price by the number of units.
Add all the results to get the total price.

Discounting

A rental may qualify for discounts under a number of promotions, such as a Loyalty Program
Member discount or a “week long” rental discount. Only one (the best one) is used to
calculate the rental price.

A customer must always receive the best price for a rental, regardless of promotions that
were in effect when they made their reservations. At each customer touch point (e.g. make a
reservation, pick up the car, return the car) the pricing business rules are applied to
determine whether the rental qualifies for a better discount. So, if a new promotion is put into
place after the customer makes a reservation or even during the rental, the customer can
benefit from that new promotion.

However, provided that the rental duration is unchanged the best price quoted is always
honoured; e.qg. if the best price at pick-up is higher than the price quoted at reservation, the
reservation price is used, even if the rules and rates that applied at reservation time are no
longer current.

If the rental duration is changed - by rescheduling before pick-up, by returning the car earlier
or later than the scheduled date - the price must be recalculated, using the best discount for
the new duration.

EU-Rent's current discounted promotion programmes are

Name Car Groups [Durations |Discount Business Rules
3-day All All 10% All rentals booked at least 3 days in
Advance advance qualify for a 10% discount.
Summer Mid-sized, |Weekly €50.00 Weekly renters of a qualifying car
Week Full Sized, receive a €50 discount.

Luxury,

Sport Utility,

Minivan
New Loyalty | Compact, Dalily, 2 car group|New loyalty club members are
Member Mid-sized, |Weekly, upgrades eligible for a 2 level upgrade, subject

Full Sized Monthly to availability on their first rental after

joining the programme.

Proposed clarifications

This section seek mainly two aims. Firstly, it pretends to describe more clearly the entities of
the system and their attributes while making some hypothesis; secondly, it pretends to make
concrete clarifications about the logic of the business.

ENTITIES

In the case study, we can identify the following entities:

- Branch:
Attributes:

- Capacity (on a day): There is no definition in the context of the case, and from our

point of view, the term availability would represent the concept more accurately.
We understand that branch capacity refers to the total number of cars available to
rent on a concrete day (that is, the sum of the number of estimated cars of each
group), and so, better corresponding with the idea of availability.

Our suggestion to calculate the capacity of a day x is to add the capacity of the
previous day(x-1), to the cars expected to be returned that day(x), and finally,
subtract the cars which are already reserved for that day(x).

- Location: on the road, medium city, big city, airport

- Cars:

They are classified by car group.

Important attributes:

- Model: a rental could specify a preferred model.

- Mileage: is an indicator for the state of the car (if it is in need of service or not). It
will be necessary the current mileage and mileage from last service.

- Date of last service.

State:

- Available: not being rented, assigned or need maintenance.

- Assigned: assigned to one of today’s reservations and awaiting pick-up.

- Inrent: assigned to an open rental agreement

- Needs maintenance: one of the conditions to need maintenance has become true.

- Maintenance scheduled

- Repairs scheduled

- To be sold: cars that have reached one year old or 40,000 kilometres, or the ones
that the manager has decided to sell due to a surplus.

- Sold: cars that no longer belong to EU-Rent

- Car group:
- Classification scheme that groups car models, based on common features.

Each car group has a quota, which corresponds to the desirable number of cars of a
concrete type. We assume that every branch has its quota for each car group.

We won't assume that the number of car groups is fixed, however this hypothesis is
made in some interpretation in [PSZ00].

- Car model:
The name given by a car manufacturer to a category of car that it produces.

- Rental agreement:

There are two types of rentals.

- Advance reservations: it must be supplied the rental period (that is, pick-up time
and day of drop-off), the drop-off branch and car group (otherwise default group is
used). We assume that countries through which the customer is going to travel
are also given.

Other additional information that may be supplied: model of preference, credit
card to guarantee the rental(*).Recording the moment in which the reservation is
made will be also useful for defining a priority criteria to allocate cars.

- Walk-in rentals: immediate, depend on the availability of cars

(*) The original text is rather contradictory in this aspect and we have assumed that

the customer must not necessarily guarantee the rental, which is the suggested

option until the last section (where it is stated the contrary).

States:

- Reservation: a car has been requested for a specific date

- Open Rental Agreement: a car has been picked up and the car has not been
returned.

- Closed Rental Agreement: the car has been picked up and returned

- Cancelled: any of the handover requirements has not been met, the customer
has not shown or the customer has decided to cancel the reservation.
We will consider that if the customer decides to cancel the rental before the pick-
up day, it's free of charge (it is the policy that seems to be suggested by the way
no-shows are treated). Otherwise, if it was a guaranteed rental, one-day rental will
be charged.

Other attributes:

- Payment type: cash, credit card, loyalty club points

- Base rental price: price before any discounts have been applied

- Lowest price: lowest price offered since reservation

- Actual return date and time

People (of interest to EU-Rent):
Categories:
- Customer: someone who once had or has a reservation with EU-Rent
- member of the loyalty incentive scheme.
- non member
- Non customer: has been an additional driver in at least one rental or has tried to
do a rental.
Historical information about customers is kept to decide whether to approve a rental.
This information is a composite of rentals, bad experiences (such as late returns,
problems with payment and damage to cars) and others.
They must have a valid driving license.
They must be over 25 (date of birth should be recorded).
Historical information about additional drivers should be recorded as well, in case
they become customers in the future or to accept them as additional drivers again.
This information includes: bad experiences, age, driving license.

Rental duration category:
The minimum and maximum duration should be stored for each

Countries:

Requirements for mechanical condition and emissions of cars s hould be recorded.
Other attributes: car renting tax

EU-RENT BUSINESS RULES

- Rental reservation acceptance:
Some extensions of EU-Rent use criteria to blacklist a person. In this aspect, we think
the criteria should also take into account faults seriousness. Consequently, it will be
necessary to describe more accurately the bad experiences to identify the degree of
the fault, and have a concrete criteria to blacklist (because managers are not
expected to examine client records). In the examples given we suggest:
- late return: number of days/hours, justifying cause
- problems with payment: amount of money, delay time
- car damage: repairing cost (in days, hours).
Intervals can be made to fix the degree of the fault.

Additionally, we will assume that as soon as the blacklisting criteria are met (after a
return, ...), the customer will be blacklisted and all his reservations cancelled.

Finally, we will assume for simplicity that once a person has been blacklisted, he or
she will always remain blacklisted, since neither the original case nor any of the
extensions specify the opposite. However, in a real case, this option should be
included (to correct errors, misunderstandings, special situations...).

- Car allocation for advance reservations:
A relevant fact that is not mentioned in the original case is the order in which car
allocation is made, which is specially important when a reservation cannot be eventually
accomplished. One reasonable criteria to solve this problem is to give more priority to the
“best customers” (that is, in the loyalty incentive scheme), and then to guaranteed
rentals.
Finally, more priority can be given to the earliest reservations.

However, this cannot be inconsistent with the fact of giving free upgrades to the best
customers, so it is needed a previous estimation of the number of free upgrades that are
going to be made, and then assign them firstly to clients in the loyalty incentive scheme.
Furthermore, among clients within a kind of assignment (e.g. Clients who asked for class
B and are going to be assigned class B), the preference criteria (model) will be applied to
decide the concrete assignment.

Lastly, we consider that in case the client is served after the day expected, he/she should
be compensated, in the same way that he is required to pay a fine when has a bad
experience. Additionally, an apologising letter will be sent as is suggested in an
interpretation in [PSZ00] as we want to harm the least possible customer satisfaction.

We leave the order in which exception criteria should be applied open to the user or the
designer.

Additionally, some remarks on the following exception rules:
- A downgrade may be made.
If this option is chosen, rental price will be calculated on the basis of the downgrade
car group, instead of doing it with the desired car group as usual. This is done to
prevent the customer from paying for more than what he is offered.

- A car from another branch may be allocated, if there is a suitable car available
and there is time to transfer it to the pick-up branch.

First of all, we will assume that a suitable car is a car of the group demanded by the

customer. Secondly, this alternative presents the following problem: if every branch

can transfer to every branch, which first? With which criteria? As we have the

10

transportation time constraint, it seems reasonable that each branch can only
transfer to a subset of all branches (for distance limitations or size of the branch). To
have a concrete criteria to look for a transfer, we will assume that we know the
expected time of transportation between related branches, and that minimum time is
desirable. We will not assume bidirectionality of the relation (That is, A can transfer to
B, but B not necessarily transfers to A).

Additionally, we will assume that ownership of the car is not effectively transferred
until the car arrives to its destination.

- A car due for return the next day may be allocated, if there will be time to prepare
it for rental before the scheduled pick-up time

This option implies 2 facts: firstly, it implies knowing that a car is going to be dropped
off in that branch, and secondly, having an estimation of time needed to prepare a car
to rent. We will assume that this time is composed by a basic time, needed for a
simple inspection, and an additional time needed depending on the characteristics of
the rental which is to be assigned.

To fulfil the first implication we will assume that the client must fix the branch of drop-
off when doing the reservation. It is reasonable that this factor is fixed as it is stated in
[EBRCO03].

Walk-in rentals:
It is not described what happens when no cars of the requested type are available.
However, it is logical to think that available cars are going to be offered, paying in this
case the fee corresponding to the rented car, not the corresponding to the initially desired
car, as happens with reservations.

Furthermore, it is surprising that the mileage criteria is only used for walk-in rentals.
However, we won't include it in reservations. We will lastly assume that mileage is
referring to the absolute mileage, not relative to the last service.

Handover:

First of all, if any of the handover conditions is not met, we assume that the reservation is
cancelled.

Additionally, we consider that, in case that any of the conditions which the renter is
responsible for is not fulfilled, he/she should be punished. Firstly, the renter should be
aware of these conditions and consequently know his rights and duties. Secondly, in the
case of late-returns and no-shows the customer is punished (at least economically), and
so should happen in this case to be consistent.

We assume that if it was a reservation, the car assigned is freed and the renter is
charged in an hourly base if it was a guaranteed rental (we adopt the policy used for no-
shows). It also could be considered as a bad experience (as late-returns are), but we are
not going to do it.

Furthermore, we consider similarly as it is suggested in [EBRCO03], that additional drivers
who have been blacklisted must be refused. This implies that additional drivers behaviour
has to be judged as customers’ is.

Lastly, we consider that additional drivers information(who, driving license..) is not known
until the handover, as the rental procedure does not mention anything about it.

11

No shows:
If a rental has been guaranteed by credit card and the car has not been picked up by the
end of the scheduled pick-up day, one day’s rental is charged to the credit card and the
car is released for use the following date.

To ease the assignment of cars to reservations, we will assume that cars can only be
picked up or returned during what is considered the working day. Otherwise, we could not
be able to use cars (for new assignments) whose driver has not appeared. Besides, a 24-
hour service is not suggested in the case, so we consider it a reasonable hypothesis (as
happens with real car rent companies).

Return from rental:
We assume that car checking will be done as soon as possible (not more than a working
day unless big repairs are needed) and in the same branch. We suppose that every
branch is equipped with a garage service, where checking and repairs are done.
Whereas, the responsibilities of service depots seem to be only periodic maintenance,
not checking before and after a rental. Repairs and maintenance can’t overlap.

In case any damage has been recorded, it will be taken into account for all drivers.
However, we will consider that the other bad experiences (problems with payment, late
return...) will be only taken into account for the renter.

Late returns:
One additional problem that late returns (without arranged extension) imply refers to
possible current assignments of cars returned late. A car could be assigned for the same
day if the corresponding exception rule has been applied. In that case, the only
reasonable solution would be delaying the handover unless there is an available car. In
that case, the unsatisfied renter should be compensated as stated previously in the
document.

Furthermore, extensions should only be allowed until 1 day before the agreed date of
return, otherwise the same problem as with late returns (without arranged extension) may
happen. If this is fulfilled and provided there are not overlaps with other reservations of
the same customer, we assume that there is no limit in the number of extensions.

Car maintenance & repairs:

We will consider that although initial date of car maintenance can be delayed as it is
stated, we will achieve this effect by cancelling and rescheduling it to avoid more
problems. Additionally, we will assume that both car maintenance and repairs must last
for the expected duration (there will not be possible extensions). This conservative
decision is taken because no major attention has been paid to this aspect in the
bibliography, and it has been considered top priority to keep the simplicity of the case.

Car purchase and sale:
The original case states that only cars on the authorized list can be purchased. We will
assume that the authorized list includes car models which are to offer in EU-Rent, and
their corresponding car groups.

However, it is not described how this process works. We will assume consequently a
simplified process consisting of ordering a car and receiving a car (moment which is
acquired effective ownership, although since its ordered it's owned with the object of
accounting).

12

Car ownership:
In the case is stated that responsibility for a car is switched when car is dropped off,
consequently, while the car is being rented, the renter branch has its ownership. If the car
is rented from a competitor, we consider that no branch has ownership of it, but
responsibility about it.

Then, in order to manage the difference between the desirable quota of a car group and
the actual number of car it owns (that includes the ones being currently rented by the
stated before), both car transfers and selling are possible options. However, is not
specified a preferable option or to which branches cars can be transferred.

It is logical that the preferable option is transferring cars. However, transferring should not
collapse the target branches (if there is surplus) or leave a branch with not enough cars
of a car group. So it may be necessary to transfer cars to different locations. We suggest
that cars can be transferred from one branch to another if there is a transfer agreement,
and the transferring branch has excess, the receiver has less than its quota of that type
of car and transferring does not exceed that quota. Finally, if there is still surplus, oldest
cars of that group will be sold, while if there were not enough cars, cars should be
bought.

Loyalty incentive scheme:
First of all, it is not clear from the case whether a customer automatically becomes a
member of the loyalty incentive scheme when the criteria is achieved, or on the other
hand, some action should be taken. However, the use of the verb ‘join' suggests that the
client should make some specific action. It is also the hypothesis that follow [BRFO3].

Besides, we will assume that no quota should be paid for becoming or being a member of
the loyalty member scheme. In addition, we assume that once a customer has become a
member, he or she will be so until he/she declines (previous reservations will not lose the
discounts), makes no rental within a year or records a bad experience.

With regard to the requirements to become a member of the loyalty incentive scheme, it
is stated that a customer must have made 4 rentals within a year. However, it is natural to
think that if a bad experience is recorded, points or accumulated rentals are lost, as this
scheme promotes good customers.

Furthermore, it is not fixed how points are assigned. We will assume that points are given
upon the cost of rental (for example each x euros, a point is given) and only if the rental
has not been qualified as a bad experience (due to reasons defended before).

Another interesting point is the policy referring to how points can be spent. It is exposed
that extras such as insurance, fuel and taxes must be paid by cash or credit card.
However, this description of extras is a bit misleading. First of all, a prepared car must
have the tank full of oil (so we do not consider that as an extra service), and secondly,
insurance as is made reference in the case (in section about returns) seems to be
referring to a company insurance, not customer’s .

Additionally, concerning points use, we will assume as in [EBRCO03], that a base price for

a rental (without taxes) must be entirely paid with points. We also take the same criteria
of not benefiting then from discounts.

13

- Pricing and discounting:
If the duration of a rental is changed previous discounts are not applicable, that is, final
price will be calculated upon current or future fees. It is the only point in which payment
type can (and should) be reconsidered (if loyalty points are used or not).

We could also consider the possibility of adding new parameters of discounting, such as
a senior citizen discount, as is suggested in [BRFO03], which will be the same for all
branches.

Additionally, we assume that the best discount is automatically applied in every touch
point, except for offers for a better service but same price, such as upgrades due to being
a brand new member of the loyalty program, as it is assumed in [BRFO03]. In that case,
the customer may decline the upgrade (and consequently, lose that discount) and then,
the rest of discounts are applicable.

Lastly, we assume a logical (but not mentioned) rule concerning fees between car
groups. Fees for a higher car group, in each of the durations, will be equal or more
expensive than the lower groups.

EXAMPLES OF “RULES FOR RUNNING THE BUSINESS”

- We assume that targets for performance can be different from one branch type to
another. However, some common indicators can be assumed (we will assume the ones
given as an example).

- Some additional performance criteria suggested in bibliography, which we are not
going to take into account, are:

In some interpretation of the case in [PSZ00] the most popular models within a
branch are recorded. This may give priority to buy cars of popular models.

Track the discounts actually applied to rentals to analyse the effectiveness of the
discount program. Suggested in [BRF03].

- Similarly, heuristics can change from one branch to another, as different countries
can have different values. Another factor can be the size of the branch or location(if it is
in a big city or not, in an airport...). This division is used in some cases of [PSZ00].
Consequently, it can be assumed that each kind of branch within a country defines its
additional indicators and heuristics.

- Finally, actions to be taken will be grouped as is stated in the case, and each kind of
branch within a country can define the concrete actions.

ADDITIONAL REMARKS

- Sharing of client database with companies EU-Fly and EU-Stay:
It is not clear in the case how the different companies share customer data. We will
suppose in the text that although there is actually a shared data, the term new client
refers to a new client for EU-Rent, but not necessarily for EU-Stay and EU-Fly. This
should be taken into account when defining the related operations of the system.

- Interaction with the system:
Some of the services that the system must provide, such as reservations, could be
served either from a EU-Rent branch or from the Internet (we can easily imagine that a
potential costumer could fill in a formulary by the Internet to make a reservation).
However, this would imply that some checkings could not be done until the handover,
and so, if basic customer requirements such as driving license and age were finally not
met, there would be stored data of someone who can’t be a customer. So, in order not to

14

add unnecessary complexity, we will assume that all transactions apart from extension of
a rental agreement, will be done in situ in a EU-rent branch.

Customer management:

Most of the actions to be managed in EU-Rent are naturally assigned to a branch
(reservations, assignments...). However, where is customer management (without direct
customer involvement) done? (For example, who invites a customer to the loyalty
incentive scheme?) As central management does not seem a solution because is a wide
area company and there is so many data and sensibilities to be taken into account, we
choose the following criteria: a customer belongs to the EU-Rent branch where he/she
firstly had a contact with. His/her management (notifications...) will be done there.

Units of measurement: We have assumed euros for money and decimal metrical
system for distances, as it is in the original case, despite in Inastrol case study miles are
used for distances.

Money available of each branch: We will assume that EU-Rent is a profitable company
and there is no problem of money to pay expenses (a new car, service depots...).
Calculating the available money of a branch would require knowing many data which is
not defined: sum of staff salaries (and so, how many staff), cost of maintenance...etc.

15

3. GENERAL COMMENTARIES ABOUT THE
SPECIFICATION

Notation and Language

In order to define the conceptual schema of the case EU-Rent, UML was chosen as base
modelling language, while OCL was chosen for the definition of constraints. Additionally, the
variations and proposals mentioned in the introduction will be used when appropriate.

Concerning versions, initially were implicitly chosen current versions 1.5 of UML and OCL.
However, during the development of this project, some mechanisms were needed which
were not offered by the current versions, and therefore it was considered reasonable to use
the new proposals of UML 2.0 and OCL 2.0 (still not definitive).

Concretely, UML 2.0 notation has been used for the elaboration of sequence diagrams and
OCL 2.0 has been used for the definition of some complex restrictions which needed the
concept of Tuple which is introduced in 2.0 version.

Furthermore, it has been considered convenient to use some standard XML types relating to
time, as UML does not define any by default. XML schema provides a concrete semantic of
these types and their operations and no additional complexity wanted to be added.

Finally, it should be noticed that some global predicates have been used for convenience,
such as now(), today(),.... In these cases, the chosen name has tried to be self descriptive.

Tools

To easily construct the diagrams which make up the conceptual model, the Rational Rose 98
Case Tool was mainly used. The choice of this tool was motivated by a mere criteria of
previous knowledge of the tool and it was considered enough for the aim of this project.

However, once the project was being developed it showed to be rather poor in some aspects
such as the lack of representation of n-ary associations, which were solved with some
graphical tricks.

Additionally, the sequence diagrams were drawn manually with Microsoft Word. There were

not significantly better alternatives as UML 2.0 notation is still not official and so, it is not
supported by case tools.

16

4. USE CASES

Notation

To describe the system use cases we have chosen a rather simple 2-column template (that
is, without preconditions and postconditions, GUI requirements ...etc) which we have
considered enough for the aim of this project. Additionally, we have had the need to structure
the use-cases, mainly using the include stereotype, as there is not a total agreement about
the use of extend stereotype and generalization.

In order to describe alternate courses and have a clear semantic reference of them, we have
mainly applied the ideas proposed in [Coc00] although we have also taken into account
commentaries in [Lar02] and [Gel03].

Finally, we have written the use cases which imply complex business rules with the aid of
tables. This technique is suggested in [Wei03] to not clutter the schema.

Diagrams

The modelling of use cases has been divided in packages, corresponding to thematic areas,
in order to ease understanding. These are the following:

]]]

Reservation Customer Pricing and
Management Management Discounting

—]] —

Car Allocation Car Preparation
and Maintenance

Car Pick-up and
Return

Car Branch
Management Management

Car Group and Model
Management

]

Performance Indicators
Management

17

RESERVATION MANAGEMENT

O ' Offer points payment

<<inclu >

/Cancel a reservation
<<include>>

Offer special advantatges

EU-Rent lude>>

Make a reservation
Customer,

<include>> Introduce a new EU-Rent
customer/driver

Make a walk-in rental

<<inc\99e»—%©

Handover

O (from Car Pick-up and Return)

Extend a rental agreement

Clerk

18

CUSTOMER MANAGEMENT

O

Introduce a new EU-Rent

customer/driver
(from Reservation Management)
<<inglude>>
Clerk

(from Reservation |I...)

Introduce a new EU-Corporatio
costumer

EU-Rent
Customer nclude>>
(from Reservation |...
Join the loyalty incentive scheme scheme membership

Recalculate price for loyalty

incentive scheme

Cancel membership of the loyalty \%

. . f R ion I...
Get candidates for membership of (from Reservation [...)

Branch Manager the loyalty incentive scheme

List customers being blacklisted

/ Record defaulting customer
O <include>>

Cancel all reservations

19

PRICING AND DISCOUNTING

O

Offer points payment

EU-Rent

Customer
(from Reservation I...)

(from Reservation Management)

<<include>>

/

Offer special advantatges

(from Reservation Management)

-

Clerk

(from Reservation 1...)

Eliminate a discouno
// Introduce a new discount

Create a new rental category

EU-Rent Manager\

-

Create a car group duration price

Change price for a car group
duration price

-

Calculate best base price

<<indlude>>

Calculate best price

<<indlude>>

Apply discount

20

CAR ALLOCATION

<<include>> O
_——
Sell a car

Allocates cars to reservations

<<inc >>

%;/’2@ <<inciude>> O

llocate a car with an in-extremis rule

Allocate a car for a reservation

Clerk

(from Reservatign I..)

Q@Iude» %

Allocate a car with an exception rule

Branch Manager

(from Cystomer Ma...)

Head Mechanic

Transfer cars
O Trailer Driver

Receive cars being transferred

Establish a transfer agreement Branch Manager

between branches

e D

Clerk

(from/Customer Ma...)

Change transfer agreement data

-

Cancel a transfer agreement between
branches

(from Reservation I...)

21

CAR PREPARATION AND MAINTENANCE

O

Get cars to be prepared

CO—X

End of car preparation

-

Schedule maintenance

/ End of car maintenance \

<<inclliide>>

Clerk <]

(from Reservatign I..) <<include>>

Head Mechanic

(from Car Allocation)

EU-Rent

Customer
(from Reservation 1...)

Mechanic

Sell a car

(from Car Allocation)

<<in Iud%

ar repairs

O

End of car checkjhg

O

Cancel all reservations

<<include> (from Customer Management)

<<include>>

Detect damages

22

CAR PICK-UP AND RETURN

O

Pick-up a car

EU-Rent
Customer

(from Reservation I... <<include>> Additional Driver

Handover O
Q <<inelude:
Return of a car

Control late returns

Clerk

(from Reservation I\)

Cancel all reservations

(from Customer Management)

EU-Rent

Customer <<inc|ud©
(from Reservation 1...) O
Calculate best price

Free cars (from Pricing and Discounting)

Introduce a new EU-Rent customer/driver

23

CAR MANAGEMENT

Incluae

Reduce number of cars Sell a car

(from Car Allocation)

<<include>>

D o

Control number of cars Receive a car Clerk

(frgm Reservation I...)
<<inclyde>>

Increase number of cars Buy a car

Branch Manage

(from Customer Me...

Confirm car sale

BRANCH MANAGEMENT

O

Create a branch

<<include>>
EU-Rent Manager

(from Pricing and D...)

Record country information

CAR GROUP AND MODEL MANAGEMENT

<<indglude>>
Create a new car group

EU-Rent Manager O Add a car model

(from Pricing and D...)

Qe a car model group

Change car group quota

PERFORMANCE INDICATORS MANAGEMENT

>

Add a performance indicator

EU-Rent Manager O

(from Pricing and D...)
Change target value for a performance

indicator

List information of a performance indicator
Branch Manager
(from Customer Ma...) O

Get alert indicators and execute actions

_—

25

Description

Reservation management

Use case: Make a reservation
Actors: Customer (initiator), Clerk
Overview: A customer makes a reservation from an EU-Rent branch
Type: Primary and essential
Typical course of events:

1.

Actor action
The wuse case begins when a
customer decides to make a
reservation and tells it to an available
clerk
The clerk asks the costumer for
his/her ID and introduces it.

The customer tells the information
about the reservation to the clerk

The clerk introduces the period
desired, the pick-up branch, the drop-
off branch, countries planned to visit
and, optionally, the car group or the
car model desired.

7. The clerk asks the customer if he/she

wants to guarantee the rental. If so, a
credit card number is introduced.

System responsibility

3. Checks if the customer is a person

who has had contact with EU-Rent.

a. If he or she exists, verifies that
the customer has not been
blacklisted

b. Initiate Introduce a new EU-
rent costumer/driver, otherwise

Verifies that the period is correct, that
there is no overlap with other
reservations of the customer and the
availability of the specified car group
or car model for the period indicated.
If the customer has neither specified
a car group nor a car model, he will
be assigned a car belonging to the
cheapest group. If the customer has
specified a car model but there are no
cars available of that model, a car of
the same group will be assigned.

If a credit card number has been
provided, the rental is guaranteed.
Checks offers which must be selected
a priori:

a. If the customer is a member of
the loyalty incentive scheme,
Initiate Offer points payment

b. Initiate Offer special
advantages, otherwise

26

10. The rental is confirmed.
11. A new rental agreement is created
with the indicated characteristics
SUCCESS EXIT
Extensions:
3a.a. The customer has been blacklisted: FAILURE EXIT.

6a. - The period is not correct:
- The period overlaps with other reservations of the customer:
Actor action System responsibility

62.1. Notifies the problem
6a.2. The clerk notifies the customer of
the problem.
6a.3. The customer either:
a. Abandons the rental.
SUCCESS EXIT.
b. Specifies another period.

6b. There is no availability of the specified car group or model for the complete period
Actor action System responsibility
62.1. Notifies the problem

6b.2. The clerk notifies the customer of
the problem.
6b.3. The customer either:
c. Abandon the rental.
SUCCESS EXIT.
d. Specifies other data.

10a. The rental is cancelled: SUCCESS EXIT

Use case: Extend a rental agreement
Actors: Customer (initiator), Clerk
Overview: A customer extends a rental agreement by phone
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The wuse case begins when a
customer decides to extend his
current rental agreement.
2. The customer phones an EU-Rent
Branch and tells his/her ID to the
clerk who answers. The clerk
introduces his/her ID and demands
the extension. 3. Verifies if the extension is possible
(no maintenance should be done).

4. The changes are confirmed.
5. The rental agreement is updated.
SUCCESS EXIT
Extensions:
3a. Maintenance has been scheduled: FAILURE EXIT

27

Use case: Cancel a reservation by customer demand
Actors: Customer(initiator), Clerk
Overview: A customer decides to cancel a reservation
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The wuse case begins when a
customer decides to cancel one of
his/her reservations. He/She tells the
clerk his/her ID and the beginning
date of the reservation which wants to
be cancelled.
2. The clerk indicates the ID of the client,
which one of his reservations wants to
be cancelled, and the beginning date
of the reservation which wants to be
cancelled.

3. Verifies that a reservation for that day
exists and has not been cancelled.

4. The cancellation is confirmed.
5. Looks for the pick-up day of the

reservation.

a. If the pick-up day is today and
it was a guaranteed rental, the
assigned car will be freed and
1 day-rental will be charged.
Additionally, the system
checks if there is a today
reservation without car and the
freed car can be assigned to it.

b. The customer is charged with
no costs, otherwise.

6. The reservation is updated with
cancelling detalils.
SUCCESS EXIT
Extensions:
3a. Reservation doesn't exist:
Actor action System responsibility
2a.l. Notifies the problem

2a.2. The clerk notifies the customer of
the problem.
2a.3. The customer either:

a. Abandons the cancellation.

SUCCESS EXIT.
b. Specifies another beginning
date.
3b. Reservation has already been cancelled: FAILURE EXIT

28

Use case: Make a walk-in rental
Actors: Customer (initiator), Clerk

Overview: A customer wants to make a walk-in rental

Type: Primary and essential
Typical course of events:

1.

Actor action
The wuse case begins when a
customer decides to make a walk-in
rental and tells it to an available clerk
The clerk asks the costumer for its ID
and introduces it.

The customer tells the information
about the reservation to the clerk

The clerk introduces the period
desired, the drop-off branch,
countries planned to visit, the car
group and a car model if customer
specifies it.

7. The rental is confirmed.

10.

Initiate Handover

11. The customer will wait until the car is

prepared.
SUCCESS EXIT

Extensions:
3a.a. The customer has been blacklisted: FAILURE EXIT.

System responsibility

3. Checks if the customer is a person

who has had contact with EU-Rent.

a. If he or she exists, verifies that
the customer has not been
blacklisted

b. Initiate Introduce a new EU-
rent costumer/driver, otherwise

Verifies that the period is correct, that
there is no overlap with other
reservations of the customer and that
there is current availability (including
non-guaranteed rentals whose renter
has not shown after 90 min) of the
specified car group. The system also
verifies that the car is not scheduled
for maintenance before the return
date.

If there are several cars available, the
one with the lowest mileage should be
allocated.

If the car was previously assigned to
a no-show reservation, it is cancelled
and the car is freed.

A new rental agreement is created
with the indicated characteristics

29

6a. - The period is not correct:
- The period overlaps with other reservations of the customer:
Actor action System responsibility
6a.1. Notifies the problem

6a.2. The clerk notifies the customer of
the problem.
6a.3. The customer either:
a. Abandons the rental.
SUCCESS EXIT.
b. Specifies another period.

6b. There is no availability of the specified car group on the current day

Actor action System responsibility
6b.1. Notifies the problem

6b.2. The clerk notifies the customer of
the problem.
6b.3. The customer either:
c. Abandons the rental.
SUCCESS EXIT.
d. Specifies other data.

10a. The rental is cancelled: SUCCESS EXIT

Customer management

Use case: Introduce a new EU-Rent customer/driver
Actors: Customer, Clerk
Overview: A new EU-Rent customer/driver is recorded.
Type: Abstract
Typical course of events:
Actor action System responsibility
1. Verifies that the customer

iS an

existing customer of EU-Corporation.
2. Otherwise, initiate Introduce a new

EU-Corporation customer.
3. The clerk asks the customer for the
driving license and verifies number,
date of issue (at least 1 year of
experience), date of expiration (it is
still valid) .
4. The clerk introduces the information.

5. Records the information of a new EU-
rent customer belonging to the EU-
Rent branch where the registration is

done.
SUCCESS EXIT

Extensions:
3a. The customer has less than a year of experience: FAILURE EXIT
3b. The driving license is not valid: FAILURE EXIT

30

Use case: Introduce a new EU-Corporation customer
Actors: Customer, Clerk
Overview: A new EU-Corporation customer is recorded.
Type: Abstract
Typical course of events:
Actor action System responsibility
1. The clerk asks the customer for
personal details (name, address,
birthdate).
2. The clerk introduces personal details

3. Records the information of a new EU-
Corporation customer.
SUCCESS EXIT

Extensions:
3a. The customer is below 25: FAILURE EXIT

Loyalty incentive scheme

Use case: Join the loyalty incentive scheme
Actors: Customer (initiator) ,Clerk
Overview: A good customer joins the loyalty incentive scheme
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when a
customer wants to join the loyalty
incentive scheme.
2. The clerk introduces customer ID.

3. Verifies that the customer is not
already a member of the scheme.

4. Verifies that the customer meets the
requirements to become a member of
the loyalty incentive scheme (he/she
has made at least 4 rentals within a
year and none of them has been
gualified as a bad experience).

5. The membership is accepted.

6. The status of the client is changed
and points are accumulated for the
last 4 rentals.

SUCCESS EXIT

Extensions:
3a. The customer is already a member of the scheme: FAILURE EXIT
4a. The customer doesn’t meet the requirements: FAILURE EXIT

31

Use case: Cancel membership of the loyalty incentive scheme

Actors: Customer (initiator), Clerk

Overview: A current member of the loyalty incentive scheme declines membership

Type: Primary and essential
Typical course of events:
Actor action
1. The use case begins when a
customer wants to decline
membership of the loyalty incentive
scheme.
2. He/she tells to a clerk in a EU-Rent
branch. The clerk introduces customer
ID.
3.

System responsibility

The status of the client is changed
and points are lost.

SUCCESS EXIT

Use case: Get candidates for membership of the loyalty incentive scheme

Actors: Clerk, Branch manager

Overview: Customers belonging to a branch which meet the requirements for being

members of the loyalty incentive scheme are notified.
Type: Primary and essential, temporal
Typical course of events:
Actor action
1. At the end of each working day, an
automatic process is initiated to get
candidates for membership.

6. A clerk picks up the printout and the
letters. He/she sends the letters and
hands the printout to the branch
manager.

SUCCESS EXIT

Blacklisting

Use case: List customers being blacklisted

Actors: Clerk, Branch manager

Overview: List candidates which are being blacklisted
Type: Primary and essential, temporal

System responsibility

List all customers belonging to the
branch which have met the
requirements for being members of
the loyalty incentive scheme during
this day.

Print the list of customers.

Select one customer from the list and
prepare a letter for him/her.

Repeat 3 while there are more clients.

32

Typical course of events:
Actor action

1. At the end of each working day, an
automatic process is initiated to get
candidates being blacklisted that day.

6. A clerk picks up the letters and sends
them. He/she also picks up the
printout and hand it to the branch

manager
SUCCESS EXIT

Use case: Cancel all reservations
Actors: -

System responsibility

List all customers belonging to the
branch which have met the
requirements for being blacklisted
(have recorded several bad
experiences of certain seriousness)
during this day.

Print the list.

Select one customer of the list and
prepare a letter for him/her.

Repeat 4 while there are more
customers.

Overview: Cancel all reservations from a customer with the supplied motivation

Type: Abstract
Typical course of events:
Actor action

Payment problems

Use case: Record defaulting customer
Actors: Clerk (Initiator)

N

System responsibility
Get all customer reservations.
Select one reservation which has not
been cancelled.
The reservation is updated with
supplied cancelling details.
Repeat 2 and 3 while there are
reservations which have been not
cancelled

SUCCESS EXIT

Overview: Record a customer’s problem with payment

Type: Primary and essential

33

Typical course of events:
Actor action

1. The use case begins when a clerk
receives a notification of a defaulting

customer.

2. The clerk introduces the customer’s

ID, the rental qualifying for bad

experience and the seriousness of

the problem.

Extensions:

3a. The customer doesn'’t exist: FAILURE EXIT
3b. The rental doesn't exist: FAILURE EXIT

Pricing and discount management

Use case: Offer points payment
Actors: Customer ,Clerk

System responsibility

Verifies that the customer and the
rental exist.
Records a bad experience for the
customer of the indicated seriousness.
If the customer was member of the
Loyalty Incentive Scheme, he loses his
membership.
Checks criteria to be blacklisted
a. If they are achieved, blacklist
the person and initiate Cancel
all reservations of the renter
due to blacklisting
SUCCESS EXIT

Overview: The price for a rental duration is calculated and the customer chooses points

payment or discounts.
Type: Abstract

Typical course of events:
Actor action System responsibility

1. Verify that the reservation is being
done or was done at least 14 days in
advance.

2. Calculate the current base price for
the duration of the reservation for the
desired car group.

3. Verify that the customer has enough
points

4. Calculate applicable offers and show
the best (best discount, free days,..)
and price paying with points.

5. The clerk tells the customer which are
the options and asks if he/she wants
to pay with points.

6. The clerk introduces customer’'s

option
7. The rental will be paid in the chosen
way.
SUCCESS EXIT
Extensions:
la. The reservation is not being done at least 14 days in advance:

Actor action System responsibility
la.l. Initiate Offer special advantages

SUCCESS EXIT

3a. The customer doesn’t have enough points:
Actor action System responsibility
3a.l. Initiate Offer special advantages
SUCCESS EXIT

Use case: Offer special advantages
Actors: Customer ,Clerk
Overview: The customer is offered some special advantages that must be decided at
reservation time.
Type: Abstract
Typical course of events:
Actor action System responsibility
1. Selectall special advantages currently
applicable to the customer rental.
2. Verify that there are special
advantages applicable
3. Show the options to the customer.

4. The clerk tells the customer which are
the options and asks if he/she wants
any of them or prefers normal
discounts.
5. The clerk introduces customer's
decision result. 6. The rental will be paid in the chosen
way.
SUCCESS EXIT

35

Extensions:

2a. There are no special advantages applicable: SUCCESS EXIT

Use case: Calculate best base price
Actors: -

Overview: Calculate best base price for a customer rental

Type: Abstract
Typical course of events:
Actor action

Use case: Calculate best price
Actors: -

System responsibility

1. Check if the rental has been

extended.
a. Ifit has been so, obtain date of
last extension.

2. Calculate the duration of the rental

3. Calculate best price for the rental
duration and car group since
reservation date or last extension (if it
has been extended).

4. Show base price

SUCCESS EXIT

Overview: Calculate best price for a customer rental

Type: Abstract
Typical course of events:
Actor action

Extensions:

2a. The customer has not enough points:

Actor action

Use case: Apply discount
Actors: -

System responsibility
1. Initiate Calculate best base price.
2. Check if points payment has been
chosen:

a. If it has been chosen, verify
that the customer has enough
points

b. Initiate Apply discount with
base price.

3. Show final price
SUCCESS EXIT

System responsibility
2a.1. Payment will not be done with

points.
2a.2. Initiate Apply discount with base

price

Overview: Calculate best discount for a customer rental

Type: Abstract

36

Typical course of events:
Actor action

Use case: Introduce a new discount
Actors: Manager (initiator)
Overview: Introduction of a new discount.
Type: Primary and essential
Typical course of events:

Actor action

1. The use case begins when a Manager
from EU-Rent decides to offer a new
discount.

2. The manager introduces the name of
the discount, the applicable car
groups and durations, the concrete
effect, a description, the date when it
starts being available and if it is valid
only for reservation time.

Extensions:
3a. The discount already exists: FAILURE EXIT

Use case: Eliminate a discount
Actors: Manager (initiator)
Overview: Eliminate a current discount.
Type: Primary and essential
Typical course of events:
Actor action
1. The use case begins when a Manager
from EU-Rent decides to eliminate a
current discount.
2. The manager introduces the name of
the discount.

Extensions:
3a. The discount doesn't exist: FAILURE EXIT

1.
2.

3.
SuU

3.

System responsibility

Calculate the applicable discounts on
a customer’s rental.
For each applicable discount,
calculate final price.
Select best option.
CCESS EXIT
System responsibility
The information of the new discount is
recorded.
Each EU-rent branch is notified of the
new discount
SUCCESS EXIT
System responsibility
Records that the discount is not

applicable any more.
SUCCESS EXIT

37

Rental categories and their prices

Use case: Create a new rental duration
Actors: Manager(s) (initiator)
Overview: Create a new rental duration
Type: Primary and essential
Typical course of events:
Actor action
1. The use case begins when

managers decide to create a new

rental category.

2. A manager specifies the name, the
minimum and maximum duration and

the shorter rental duration.

5. A manager specifies the prices for
each applicable car group and the

newly created rental duration

Extensions:

3a. The rental duration already exists: FAILURE EXIT

System responsibility

Verifies that the rental duration doesn't
already exist and the previous rental
category exists.
Creates a new rental duration in the
specified place

Checks that price for a car group is
lower or equal in longer durations and
higher or equal in shorter durations.
Records the price for each car group
introduced.

Each EU-rent branch is notified of the
new car group duration prices.
SUCCESS EXIT

3a. The previous rental duration doesn't exist: FAILURE EXIT

Use case: Create a car group duration price

Actors: Manager (initiator)

Overview: Create a car group duration price

Type: Primary and essential
Typical course of events:
Actor action
1. The use case begins when

managers decide to establish a price

for a car group and a duration.

2. A manager specifies the car group,

the duration and the price

System responsibility

Verifies that the car group duration
price doesn’t already exist.

Create a new car group duration price.
Each EU-rent branch is notified of the
new car group duration price.
SUCCESS EXIT

38

Extensions:

3a. The car group duration price already exists: FAILURE EXIT
3b. The car group doesn't exist: FAILUE EXIT

3c. The duration doesn’t exist: FAILURE EXIT

Use case: Change price for a car group duration price
Actors: Manager (initiator)
Overview: Change price for a car group duration price
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when
managers decide to change the price
for the pair car group and duration
price.
2. A manager specifies the car group,
the duration and the new price

3. Verifies that the car group duration
price exist.
4. Change the car group duration price.
5. Each EU-rent branch is notified of the
change of the duration price.
SUCCESS EXIT
Extensions:
3a. The car group duration price doesn't exist: FAILURE EXIT

Car allocation

Use case: Allocate cars to reservations

Actors: -

Overview: Assign cars to next-day reservations
Type: Primary and essential, temporal

39

Typical course of events:
Actor action
1. At the end of the day, it is time to
allocate cars to rental requests due for
pick-up the following working day.

10.

11.

System responsibility

Cancels all reservations not picked-up
during the day.
For all available cars, checks if the car
must be sold (More than one year old
or 40,000 km).
a. Ifit must, Initiate Sell a car
Calculates for each car group:
o Availability, availability per model
o Number of demands, number of
demands per model.
o cars available for upgrade
Gets next-day reservations of
members of the loyalty incentive
scheme. Between them order by
guaranteed rental and lastly by time of
reservation.
For each customer from 4, Initiate
allocate a car for a reservation
Get unresolved next-day reservations
of guaranteed rentals. Between them
order by time of reservation.
For each customer from 6, Initiate
allocate a car for a reservation
Get all unresolved next-day
reservations. Between them order by
time of reservation.
For each customer from 7, Initiate
allocate a car for a reservation
Notify all the branches with which
there is an agreement of the end of
the assignments.

SUCCESS EXIT

Use case: Allocate a car for a reservation

Actors: -

Overview: Allocate a car for a next-day reservation
Type: Abstract

40

Typical course of events:
Actor action

Extensions:

1.

System responsibility
Applies the first action of the following
whose condition is true:
Allocate a free upgrade, if
availability in the car group < car
demand in the car group, and
there are remaining upgrades.
Allocate a car of the desired
model, if it was specified in the
reservation and there are cars
available.
Allocate a car of the specified
group, belonging to the model with
the lowest demand
Initiate Allocate a car with an
exception rule
Verify that the end date of the rental is
before any scheduled booking of the
assigned car for maintenance or
transfer.
Decrement availability and availability
per model of the model of the car
group allocated.
Decrement number of demands and
number of demands per model of the
model desired.

SUCCESS EXIT

1la. No condition is satisfied: Initiate Allocate a car with an in-extremis rule
2a. There is some booking: Go to 1 and try with another car assignment

Use case: Allocate a car with an exception rule

Actors: Clerk

Overview: Allocate a car for a next-day reservation

Type: Abstract

Typical course of events:
Actor action

2. A clerk selects one option.

Exception rules:

1.
3.

4.
Su

System responsibility
Calculates applicable exception rules.

Selects one car that meets the

requirements of the option selected.

Perform the specified action rule.
CCESS EXIT

RULE

APPLICATION
CONDITION

ACTION

Allocate a car from
the capacity
reserved for walk-
ins

The immediate higher car
group has capacity for
walk-ins.

The selected car is assigned to the
customer reservation.

If there is a loyalty member reservation
which doesn’t have a free upgrade,

as

signments are exchanged.

41

Make a bumped
upgrade

The second higher car
group has surplus

An assigned car of the immediate higher
group x (from a loyalty member if there is
one, any otherwise) is reassigned to the
customer reservation.

The selected car is assigned to the orphan
reservation.

Make a downgrade

The immediate lower car
group has surplus.

The selected car is assigned to the
customer reservation. The selected car is
assigned to the customer reservation.

Allocate a car from
another branch

Exists a branch with a
relation which:

- has an available car of
the car group desired

- there is enough time for
doing the transfer

The candidate branch will
be the nearest.

Order the car to be transferred (notifying
the transferring branch)

Assign the car to the customer
reservation.

Use a car
scheduled for
service

Exists a car of the car
group desired which have
to be serviced and the
rental won't take the
mileage more than 10%
over the normal mileage
for service.

Cancel service.
Assign the car to the customer
reservation.

Use case: Allocate a car with an in-extremis rule

Actors: Branch manager
Overview: Allocate a car for a next-day reservation

Type: Abstract

Typical course of events:
Actor action

System responsibility
1. Calculates “least bad” in-extremis rules
and shows their description.

2. A branch manager selects one
option.
3. Perform the specified action rule.
SUCCESS EXIT
In-extremis rules:
RULE CHARACTERISTICS ACTION

Pick-up delay

The pick-up should be delayed until a
car is returned and prepared. It is
calculated the expected time.

The rental is marked to be
pendant of assignment

Rent a car from a
competitor

Calculate cost from renting the car from
a competitor. Select the cheapest one.

Assign the car to the rental.

42

Use case: Transfer cars
Actors: Clerk, Head mechanic, Trailer driver
Overview: Cars to be transferred are transported to their destinations.
Type: Essential, temporal
Typical course of events:
Actor action System responsibility
1. Once cars have been assigned to
reservations in all branches which the
concrete branch has agreements, lists
(and prints) all the cars needed to be
transferred and their destinations.
2. For each car, change its status to
being transferred

3. A clerk picks up the printout and
gives it to the head mechanic, who
will prepare the cars to be
transferred.

4. The trailer driver transports the cars
to the destinations.

SUCCESS EXIT

Use case: Receive cars being transferred
Actors: Clerk, Head mechanic, Trailer driver (initiator)
Overview: Cars being transferred are delivered.
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when the trailer
driver arrives to a branch where
he/she is transporting cars to.
2. Notifies the head mechanic and cars
are queued for preparation.
3. The head mechanic notifies a clerk
of the arrival of cars.
4. The clerk introduces the registration
number of every car.

5. Ownership of cars is transferred to the
branch and cars are available.

6. Cars being rented during the day, are
gqueued to be prepared.

SUCCESS EXIT

Use case: Establish a transfer agreement between branches

Actors: Receiver branch manager (initiator), Transferor branch manager
Overview: One branch asks another branch if it agrees to transfer them cars.
Type: Primary and essential

Typical course of events:
Actor action System responsibility

1. The use case begins when a branch
manager decides to establish a
transfer agreement with another
branch.

2. The branch manager -receiver-
contacts with a branch manager —
transferor- from the other branch.
The branch manager asks the
transferor if they agree to transfer
cars to them when necessary.

3. The transferor agrees and introduces
the receiver branch.

4. Verifies that the transfer agreement
with the introduced branch doesn'’t
already exist.

5. A new transfer agreement is recorded.

6. If the transferor is not a receiver of the
receiver. section Introduce transfer
agreement data

SUCCESS EXIT
Extensions:

3a. The transferor doesn't agree: FAILURE EXIT
4a. The transferor agreement already exists: FAILURE EXIT

Section: Introduce transfer agreement data
Actor action System responsibility
1. The branch manager introduces
expected time to transfer cars and
distance between branches.

2. Distance and time is recorded for the
transfer agreement

Use case: Change transfer agreement data
Actors: Clerk, Branch Manager (initiator)
Overview: Distance to a receiver branch or/and transfer time is changed.
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when a branch
manager decides to update data
from a transfer agreement
2. A clerk introduces the receiver
branch, the new expected time to
transfer cars or/and the distance
between branches. 3. The new data about the transfer
agreement is recorded.
SUCCESS EXIT

Extensions:
3a. The transfer agreement doesn’t exist: FAILURE EXIT

Use case: Cancel a transfer agreement between branches
Actors: Transferor Branch Manager (initiator)
Overview: One transferor branch decides to cancel one of its agreements.
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when a branch
manager decides to cancel a transfer
agreement with another branch.
2. The branch manager introduces the
other branch name.

3. Verify that the transfer agreement
exists.
4. The transfer agreement is eliminated
for future transfers.
SUCCESS EXIT
Extensions:
3a. The transfer agreement doesn’t exist: FAILURE EXIT

Car preparation and maintenance

Use case: Get cars to be prepared
Actors: Head Mechanic (initiator)
Overview: A mechanic gets cars to be prepared.
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when the head
mechanic starts his/her working day.
2. The head mechanic asks for cars to
be prepared during that day

3. Returns cars to be prepared (that is,
available cars assigned to reservations
of that day). Cars are returned in order
of pick-up.

4. The head mechanic queues the cars
to be prepared.
SUCCESS EXIT

Use case: End of car preparation

Actors: Mechanic (initiator), Clerk, Customer
Overview: A car has been prepared for a rental.
Type: Primary and essential

45

Typical course of events:
Actor action
1. The use case begins when a

mechanic finishes the preparation of

a car to be rented.
2. The mechanic tells a clerk the

registration number of the car. The

clerk introduces the number.

4. |If there is a customer waiting for the

car, he/she is notified.
SUCCESS EXIT
Extensions:
3a. Car doesn't exist: FAILURE EXIT

Use case: End of car checking
Actors: Mechanic (initiator), Clerk

Overview: A car has been checked after a rental

Type: Primary and essential
Typical course of events:
Actor action
1. The use case begins when a

mechanic finishes the checking of a

car being rented.

2. If the car has been damaged and it is
liable to the renter, initiate Detect

damages
3. The mechanic tells a clerk the
current mileage of the car.

4. The clerk introduces the registration

number of the car and its new
mileage.

Extensions:
5a. Car doesn'’t exist: FAILURE EXIT

System responsibility

3. The status of the car is updated to

available.

System responsibility

Checks if the car needs to be serviced
(More than 3 months have passed
since the last maintenance or it has
accumulated 10,000 kilometres since
then).

a. If the car needs to be serviced,
service is scheduled. Status is
changed to maintenance
scheduled.

Checks if the car needs to be sold
(More than one year old or 40,000 km).

a. If the car needs so and no
repairs or maintenance are
needed, initiate Sell a car

If neither repairs, maintenance or
selling, checks if there is a today
reservation without car and the freed
car can be assigned to it.

SUCCESS EXIT

46

Use case: Detect damages
Actors: Mechanic (initiator), Clerk
Overview: A car has been checked after a rental and damages has been detected
Type: Abstract
Typical course of events:
Actor action System responsibility
1. A mechanic tells a clerk the rental
data corresponding to the car where
damages have been detected.
2. The clerk introduces the data.

3. Records a bad experience for the last
renter of the car (and the additional
drivers if there are). Credit card
company must be notified.

4. If the customer was member of the
Loyalty Incentive Scheme he loses his
membership.

5. Check criteria to be blacklisted

a. If they are achieved, initiate
Cancel all reservations of the
renter due to blacklisting

6. The credit card provided by the renter
is charged for the damages.

7. Reparation is scheduled and car status
is updated.

SUCCESS EXIT
Extensions:
3a. Car doesn't exist: FAILURE EXIT

Use case: Schedule maintenance
Actors: Clerk (initiator)
Overview: A clerk establishes a date and a service depot for car maintenance
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when a clerk
decides to schedule maintenance for
acar.
2. The clerk introduces de registration
number of the car and the beginning
date of the maintenance.

3. Checks if the car needs maintenance.
4. Checks if the corresponding service
depot has capacity for the beginning
date.
5. Maintenance is scheduled for the
indicated car.
SUCCESS EXIT
Extensions:
3a. Car doesn’t need maintenance: FAILURE EXIT
4a. The service depot doesn’t have capacity for the indicated day: FAILURE EXIT

47

Use case: End of car maintenance
Actors: Mechanic (initiator), Clerk
Overview: A car has been serviced.
Type: Primary and essential
Typical course of events:
Actor action
1. The use case begins when a
mechanic finishes the maintenance
of a car.
2. The mechanic tells a clerk the
registration number of the car. The
clerk introduces the number.

Extensions:
3a. Car doesn't exist: FAILURE EXIT

Use case: End of car repair
Actors: Mechanic (initiator), Clerk
Overview: A car has been serviced.
Type: Primary and essential
Typical course of events:
Actor action
1. The use case begins when a
mechanic finishes repairing a car.
2. The mechanic tells a clerk the
registration number of the car. The
clerk introduces the number.

Extensions:
3a. Car doesn't exist: FAILURE EXIT

System responsibility

Updates car mileage from last service
to current.
Checks if the car needs to be sold
(More than one year old or 40,000 km).
a. If the car needs so, initiate Sell
acar
b. Otherwise, the car is available
SUCCESS EXIT

System responsibility

The end of the repair is recorded.
Checks if the car needs to be sold
(More than one year old or 40,000 km).
a. If the car needs so and no
maintenance is booked, initiate
Sell a car
b. The car is available
SUCCESS EXIT

48

Car pick-up and return
Car pick-up

Use case: Pick-up a car
Actors: Customer (initiator), Clerk

Overview: A customer picks-up a car which was reserved.

Type: Primary and essential
Typical course of events:
Actor action
1. The use case begins when a
customer arrives to pick-up a car.
2. The customer shows his ID to a
clerk. The clerk introduces the
number

4. The customer waits until the car is
prepared.

5. Initiate Handover of the car
assigned to the rental

Extensions:

System responsibility

3. Verifies that there is reservation due to

pick-up for that customer that day and
the car is expected to be prepared
around fixed time.

If the car is given substantially late,
send an apologetic letter to the
customer and pay him/her the cost for
the non-served period

SUCCESS EXIT

3a. The reservation is not due to pick-up because it doesn’t exist, it has been cancelled
(either because the customer has arrived late and car has been assigned to another
rental or other reasons) or it is for a future day: FAILURE EXIT

3b. The car is expected to not be prepared at fixed time.

Actor action

3b.2. The clerk notifies the customer that
the car won'’t be prepared at fixed time.

3b.3.

b. The customer decides

wait. GOTO 4.

c. The customer decides
cancel the reservation with

no cost to him/her.

3b.4. The clerk introduces

customer’s choice.

System responsibility
3b.1. Notifies that the car won't be
prepared. Gives the expected time.

3b.5. The reservation is cancelled if so
decided and an apologetic letter is
sent.

SUCCESS EXIT

49

Use case: Handover
Actors: Customer (initiator), Clerk, Additional drivers
Overview: Verifies that the renter and the additional drivers can drive the car assigned to
their rental.
Type: Abstract
Typical course of events:
Actor action System responsibility
1. The clerk verifies that the customer
(driver) is in an appropriate condition
to drive the car
2. The customer tells the clerks who
are the additional drivers, if there are
any.
3. The clerk verifies that each
additional driver is in an appropriate
condition to drive the car.
4. An additional driver tells his ID to the
clerk and he/she introduces it

5. Checks if the driver is a person who
has had contact with EU-Rent.
a. If it exists, verifies that the
driver has not been blacklisted
b. Initiate Introduce a new EU-
rent costumer/driver, otherwise
6. The additional drivers sign an
‘additional drivers authorization’
7. Repeat 7,8 and 9 while there are
additional drivers.
8. The customer signs the rental
contract.
9. The clerk confirms the pick-up.
10. The status of the rental is changed to
open.
SUCCESS EXIT
Extensions:
la. The driver is not in an appropriate condition to drive the car (either appears to be under
the influence of alcohol or drugs, or is not physically able to drive the car safely): FAILURE
EXIT
3a. Any of the additional drivers is not in an appropriate condition to drive the car: FAILURE
EXIT
6a. Any of the additional drivers doesn't sign the authorization: FAILURE EXIT
8a. The renter doesn't sign the authorization: FAILURE EXIT

Use case: Free cars

Actors: -

Overview: At the end of each day, cars assigned to reservations which have not been
picked up are freed.

Type: Essential, temporal

50

Typical course of events:
Actor action
1. Atthe end of each working day, an
automatic process is initiated to free
all the cars assigned to reservations
which have not been picked up.

Car return

Use case: Return of a car
Actors: Customer (initiator), Clerk

System responsibility

Obtains reservations which have not
been picked up during that day.
Selects one reservation and change its
status to cancelled. The car assigned
is released.

If it was a guaranteed rental, one day’s
rental is charged to the guaranteeing
credit card.

Repeat 3 and 4 while there are not
cancelled reservations from 2.
SUCCESS EXIT

Overview: A car has been returned to an EU-Rent branch

Type: Primary and essential

51

Typical course of events:
Actor action System responsibility
1. The use case begins when a
customer returns the car that he/she
was renting.
2. The customer leaves the car to a
mechanic and starts the car
checking.
3. The customer tells a clerk his ID and
beginning date of the rental.

4. The system verifies that the rental
exists and stores actual ime as return
time.

5. Verifies that the car has been returned
to the agreed drop-off branch.

6. Verifies that the car has been returned
on time.

7. If the drop-off branch is different from
the pick-up branch, car ownership is
transferred.

8. Calculates basic cost of the rental (up
to the duration and car group): initiate
Calculate best price.

9. Add to the basic cost extras and
corresponding taxes to the country.

10. Shows total cost and asks for payment
type (cash, credit card)

11. The clerk asks the customer for
payment type and number of credit
card to be charged in case of car
damages.

12. The clerk introduces customer data
and the customer pays the rental.

13. The rental is closed.

SUCCESS EXIT
Extensions:
4a. The rental doesn't exist: FAILURE EXIT
5a. The car has not been returned to the agreed drop-off branch.
Actor action System responsibility

5a.1. Adds a drop-off penalty to the total

cost of the rental.
CONTINUE

6a. The car has been returned substantially before the agreed drop-off time/day.
Actor action System responsibility
6a.1. Takes it into account to calculate the
rental charge of the actual period of rental.
CONTINUE

52

6b. The car has been returned after the agreed drop-off time/day.

Actor action

Use case: Control late returns
Actors: Clerk, Customer,

System responsibility
6b.1. The cost is incremented by me of
this ways:
An hourly charge up to 6 hours
delay
A daily charge upon 6 hours delay
6b.2. A bad experience is recorded with
seriousness depending on the delay
interval.
6b.3. If the customer was member of the
Loyalty Incentive Scheme, he loses his
membership.
6b.4. Check criteria to be blacklisted
a. If they are achieved, initiate
Cancel all reservations of the
customer due to blacklisting
CONTINUE

Overview: At the end of each day, status of late returns is checked.

Type: Essential, temporal
Typical course of events:
Actor action
1. Atthe end of each working day, an
automatic process is initiated to

control the state of cars which should

have been returned and are not.

4. A clerk contacts with the customer.

8. The clerk contacts the police and
tells them the data of the
disappeared renters.

SUCCESS EXIT
Extensions:

System responsibility

2. Obtain rentals which should have been
returned during that day in that branch
and have not been returned to that or
any other.

3. Select one rental and show the details
(and also customer details).

5. Repeat 3 and 4 while there are rentals
from 2 whose renter has not been
contacted.

6. Obtain rentals which should have been
returned during 3 days before in that
branch and have not been returned to
that or any other.

7. Show their data.

4a. The customer can't be contacted: CONTINUE with the other rentals

53

Car management

Use case: Buy a car
Actors: Clerk (initiator)
Overview: A car is bought
Type: Abstract
Typical course of events:
Actor action
1. The use case begins when a car
need to be purchased.
2. The clerk specifies the model
required to buy.

Extensions:

System responsibility

3. Order a car of this model to the

supplier. Save order details.
SUCCESS EXIT

3a. The model is not in the authorization list: FAILURE EXIT

Use case: Receive a car
Actors: Clerk (initiator)
Overview: An ordered car arrives
Type: Primary and essential
Typical course of events:
Actor action
1. The use case begins when an
ordered car arrives to a branch.
2. The clerk specifies order ID and car
data (registration number)

Extensions:
3a. The order ID doesn'’t exist: FAILURE EXIT

System responsibility

Verifies that exists a pendant order and
the information is consistent. Close the
order.

A new car is recorded with the
information supplied. The car is
available and the branch has its
ownership.

SUCCESS EXIT

3b. The information is not consistent (existing registration number): FAILURE EXIT

Use case: Sell a car
Actors: -

Overview: A car is sold.
Type: Abstract

Typical course of events:
Actor action System responsibility
1. The use case begins when a car
need to be sold.

2. Verifies that branch has car ownership
and the car is not assigned to any
current rental.

3. The car is available to be sold.
SUCCESS EXIT

Extensions:

3a. The car doesn't exist: FAILURE EXIT

3b. Branch doesn’t have car ownership: FAILURE EXIT
3c. Car is assigned to a current rental: FAILURE EXIT

Use case: Control number of cars
Actors: Branch manager (initiator)
Overview: From time to time, number of cars in each branch is controlled: cars are bought,
sold or transferred if necessary.
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when the
branch manager decides to control
the number of cars of the branch.
2. The branch manager asks for car
number control.

3. Calculates number of cars which are
owned by the branch (taking also into
account ordered cars)

4. For each car group,

a. Ifthere is a surplus over 10%,
Initiate Reduce number of cars
b. If there is a lack over 10%,
Initiate Increase number of
cars
SUCCESS EXIT

Use case: Increase number of cars

Actors: Branch manager

Overview: Number of branch cars of a certain car group is increased by transferring cars
from other branches or buying new ones.

Type: Abstract

55

Typical course of events:
Actor action

6. The branch manager selects a
model of the car group

Use case: Reduce number of cars
Actors: -

© N

System responsibility

Obtain availability of branches with a
transfer agreement by distance/time
priority.
Select the first one with surplus of this
car group.
Order exceeding cars while there is
provider surplus and the receiver
branch is below 10% of its quota.
Notify the transferring branch.
Repeat 2 and 3 while the branch is still
below 10% of its quota and there are
branches with a transfer agreement
with surplus of the car group.
Check if the car group quota is below
10%:

a. Ifitis, asks for a model to buy.

b. SUCCESS EXIT

Initiate Buy a car of the model
GOTO 5.

Overview: Number of branch cars of a certain car group is decreased by transferring cars to

other branches or selling cars.

Type: Abstract

Typical course of events:
Actor action

System responsibility

Obtain availability of branches with a
transfer agreement by distance/time
priority.
Select the first one with lack of this car
group.
Mark cars as pending of transfer while
the provider branch is over 10% of its
quota (and there are available cars) of
that car group and the receiver has a
lack of this car group.
Repeat 2 and 3 while the branch is still
over 10% of its quota (and there are
available cars) and there are branches
with a transfer agreement with lack of
the car group.
While the car group quota is over 10%,
initiate Sell a car with the oldest car in
the car group.

SUCCESS EXIT

56

Use case: Confirm car sale
Actors: Manager (initiator)
Overview: The branch manager approves the sale of a car to be sold
Type: Primary, essential
Typical course of events:
Actor action System responsibility
1. The use case begins when
managers decide to sell a car.
2. The manager specifies the car he

wants to sell.
3. Checks that the car belongs to the
branch and that it is pending to be sold
4. The state of the car changes to sold,
with current date as disposal date.
Extensions:

3a. The car does not belong to the branch: FAILURE EXIT
3b. The car is not to be sold: FAILURE EXIT

Branch management

Use case: Create a branch
Actors: Manager (initiator)
Overview: EU-Rent decides to open a new branch
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when
managers decide to establish a new
branch.
2. A manager specifies the location of
the new branch. 3. Checks if information about the country

exists.
a. If it doesnt, initiate Record

country information.

4. The manager introduces the
characteristics of the new branch
(name, type, country, quota per car

group)
5. Verifies that the branch doesn’t already
exist.
6. Create a new branch with the
information provided.
SUCCESS EXIT
Extensions:

3a. The branch already exists: FAILURE EXIT

Use case: Record country information

Actors: Manager (initiator)

Overview: Record information of a new country with EU-Rent branches.
Type: Abstract

57

Typical course of events:
Actor action System responsibility
1. A manager specifies the
characteristics of the country of the
new branch (name, requirements for
mechanical condition and emissions)

2. Verifies that the country doesn't
already exist.
3. Create a new country with the
information provided.
SUCCESS EXIT
Extensions:

2a. The country already exists: FAILURE EXIT

Car group and models management

Use case: Create a new car group
Actors: Manager (initiator)
Overview: Record information of a new car group.
Type: Primary and essential.
Typical course of events:
Actor action System responsibility
1. The use case begins when
managers decide to create a new car
group
2. A manager specifies characteristics
of the new car group (name,
previous —immediately worse- group

if there is one) 3. Verifies that preceding car group
exists, unless it is not provided (then,
it's the first).

4. Verifies that the new car group doesn't
already exist.
5. Create the car group and insert it in the
appropriate place
6. Introduce one car model for the
group.
7. Check if the car model exists,
a. If it exists, changes the car
model of group
b. Initiate Add a car model and
establish as its car group the
newly created, otherwise.
8. Repeat 5 and 6 while more models
are wanted to be assigned.
9. For each branch, establish a (default)
minimum quota of the new car group.
SUCCESS EXIT
Extensions:

3a. The preceding car group doesn’t exist: FAILURE EXIT
4a. The car group already exists: FAILURE EXIT

58

Use case: Add a car model
Actors: Manager (initiator)
Overview: Record information of a new car model.
Type: Abstract
Typical course of events:
Actor action System responsibility
1. The use case begins when it is
decided to create a new car model
2. A manager specifies characteristics
of the new car model (name,
technical characteristics)

3. Verifies that the new car model doesn'’t
already exist.
4. Create the car model with the supplied
information
SUCCESS EXIT
Extensions:
3a. The car model already exists: FAILURE EXIT

Use case: Change a car model group
Actors: Manager (initiator)
Overview: Change car model group.
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when it is
decided to change a model of car
group
2. A manager specifies the model and
the new car group.

3. Change the car model of group.
SUCCESS EXIT
Extensions:
3a. The car model doesn’t exist: FAILURE EXIT
3b. The car group doesn'’t exist: FAILURE EXIT

Use case: Change car group quota
Actors: Branch manager (initiator)
Overview: Establish quota for a car group in an EU-rent branch
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when the
branch manager decides to change
a car group quota.
2. The manager specifies the car group
and the new quota.

3. Change the quota for the car group.

SUCCESS EXIT
Extensions:

3a. The car group doesn't exist: FAILURE EXIT

59

Performance indicators management

Use case: Add a performance indicator
Actors: Manager (initiator)
Overview: Add a performance indicator for a country and type of branch
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when
managers decide to introduce a new
performance indicator for a country
and type of branch.
2. A manager introduces the country
name and type of branch.

3. Verifies that the type of branch exists
in the country.
4. The manager introduces the
indicator’s name.
5. Checks if the indicator exists.
a. If it doesn’t exist, section Describe

indicator
6. The manager introduces target
value.

7. Verifies that the indicator hasn’'t been
already defined for this country and
type of branch

8. Record the information for the new
target value of the indicator.

SUCCESS EXIT

Extensions:

3a. The type of branch doesn’t exist in the country (or the country or type of branch don’t

exist): FAILURE EXIT
7a. The indicator has already been defined for this combination: FAILURE EXIT

Section: Describe indicator
Actor action System responsibility
1. The manager introduces a
description for the indicator.

2. Records new indicator information.

Use case: Change a target value for a performance indicator
Actors: Manager (initiator)
Overview: Change a target value for a performance indicator for a country and type of

branch
Type: Primary and essential

60

Typical course of events:
Actor action System responsibility
1. The use case begins when
managers decide to change target
value for a performance indicator for
a country and type of branch.
2. A manager introduces the country
name and type of branch.

3. Verifies that the type of branch exists
in the country.
4. The manager introduces the name
for the indicator and its new target

value.
5. Verifies that the indicator already
exists.
6. Modify the target value for the
indicator.
SUCCESS EXIT
Extensions:

3a. The type of branch doesn't exist in the country (or the country or type of branch doesn’t

exist): FAILURE EXIT
5a. The indicator doesn'’t exist: FAILURE EXIT

Use case: List information of a performance indicator
Actors: Branch Manager (initiator)
Overview: List information of a concrete performance indicator in a branch
Type: Primary and essential
Typical course of events:
Actor action System responsibility
1. The use case begins when the
branch manager wants to get
information of a certain performance
indicator.
2. The manager introduces the name of
the indicator

3. Verifies that the indicator exists.
4. List information of the concrete
indicator.
SUCCESS EXIT
Extensions:
3a. The indicator doesn't exist: FAILURE EXIT

Use case: Get alert indicators and execute actions

Actors: Branch Manager (initiator)

Overview: List indicator which doesn’'t meet the target and apply actions trying to solve the
problems

Type: Primary and essential

61

Typical course of events:
Actor action System responsibility
1. The use case begins when the
branch manager wants to get
indicators which don’t meet the
target.

2. List information of indicators which

doesn’t meet the target.
3. The branch manager decides to

apply a certain action to solve a
problem.
4. Executes the action
5. Repeat 3 and 4 while there are
problems to be solved.
SUCCESS
Note: Executes the action is a quite general term and could be: sell a car, buy a car, change
quota for a car group...

62

5. STATIC MODEL

Overview

The central part of the static model is the class diagram where concepts relevant to the
system and their relationships are represented.

On the other hand, a complete conceptual schema must include the definition of all relevant
integrity constraints. One simple way to do so is by assigning an operation with the
stereotype <<IC>> to each constraint, as suggested in [IC-OI03]. This technique is the one
applied in this project together with an analogous mechanism for the definition of derived
elements as described in [DR-OI03].

Diagrams

The class diagram is divided in thematic areas to ease understanding. These are the
following:

- Branch

- Rental Agreement

- Rental Agreement subclasses

- Cars, Discounts and Enumerations

63

Branch

Branc hTy e

vame B anchType Nam @

feel e mame b Ky &

Hi@ichType
1.0 I s AR e B T

contry

awnarn

wame : Strkg
mechan kaks ovditions Reguieme it 2 ST

'.?ITI Ezbons Requerime nts @ Setitring

calTai : Donbk

clrrelt!.'llleagp Dok

I &g F o Las t2m b 0 Dok
East!.lalmlamenate : Date
iUk oD ate @ Date

e |Gz pame By G

fzonntl B RIciType

Esfbishiadica br =

Concrete lkdicatr -

tagetvae : Oblect

|28 fh Type

DemandxGron

Fdemand : Natwral

ckmancli
=
-
CarG ol aota
|nota ; Natw @l
1]
+HAG Bp !
R s CarGogn
0.
CanG pp
El GO T

o

Caw allay kT o Bookan
C A ke o Bookan

Pemomance hakbator

ame S
ck £ oription @ Strieg

o S mame kB By &

SURsCEman

0.

FIRps Aualiah B How

Copnantty c hitecgr

l3ranch Ty pe
1 valiak 7
Ess Kpu el 7
+earcsvalabk How
Transte Breeme it =lpaEatt
dktance : Hatial
erpectedTm e @ Dovbk e
|| reclls tRTD N Ham e 1 Sting
r ; o.a
e o Pl e b bDneAss Knmentd
-‘9'*”?5‘"“ (L ko= BB tATD NN MM R Fey
A NG P
pHEceler EF'-'
Branch
[y & Sty
| G W AlKlAgE eme nE G PercarCamink
| e haAME 1S Ry G 1 =S O.u z Indra =
I cecle b A a ek ke Now i HESINEEET e
cars Ay allay b How i —]
ogron s A allal b N ow i et il it
carlode IDe mandi o
canG pap Demand i R — 4
wextDay R i 'S - L el
ok b Avallabk Now
s
'
Macle 18y alleh iy Carkile |
rame : Stdeg ;

A RCh ekt o oDe g e o Ctring

cuanthky o

o B2 e paAMme s Fay &

SUnsCemaaa i el

+carMedejDemand

Dem anclxMadel

FG Ay alla Ity

guantky @ Natral

TLET R

- [fdemandd : Hataral
-

ckm ancli

Rental Agreement

Car
registrationNumber : String
NsGrpup
<<IC>> onlyOneAssignment() Prepared
Branch telropSiffBranch +calGroup <<IC>> registrationNumberlsKey() actualTime : Time
carGroup()
i\\ /
+pickUpBrianch CarGroup Bf{l
\ DropOff Yy,
\ / -
+rentGy§up1- e AssignedCar
Pick- 0 /// Assignpdent — — — expectedPreparedTime : Time
/
\\ o // /// <<creationIC>> pickUpBbranchlsResponsible()
dn oln V4
RentalAgreement 0/1{ - -
Country CarGroupDurationPrice

/ basicPrice : Money

/ bestPrice : Money

/ lastModification : DateTime
/ onRentinterval : Duration

+bestDurationPrices

<<IC>> correctinterval() FaultSeriousness
<<I(;>>.V|5|tsBranchCountnes() o.n EU_RentPerson
basicPrice() —
bestPrice() IsAsDriver pa{ne . String R
lastModification() id : String Has
onRentinterval() 1.n |birthDate : Date 1
bestDurationPrices() +driver a?de551_5tfln9 o
agreedEnding() telephone : Integer Customer
applicableDiscountPerDuration()
rentGroup() <<IC>> ?sZSOrOIder()
\\ f«ll(t:» HEG +belongingBranch 1
n \ au s()_
\ belongingBranch() Branch
\\ 0.n
Discount
) \ Has
IAgregtiEnding RentalDuration
\ DrivingLicense
+agrgedEnding \ number : Natural
(9 \\ issue : Date
1 expiration : Date
DateTime | +beginning Mé{(esRental +renter Customer
\ <<|C>> validLicense()
Lln 0..n |<<IC>> rentalsDoNotOverlap() <<IC>> numberisKey()
Blacklisted
blacklistedDate : Date
LoyaltyMember <<IC>> noRentals()

membershipDate : Date
/ availablePoints : Natural

<<IC>> meetsLoyalPermanence()
availablePoints()

65

Rental Agreement subclasses

RentalAgreement

CarModel

/ basicPrice : Money

/ bestPrice : Money

/ lastModification : DateTime
/ onRentinterval : Duration

Branch

ReqyestedModel

<<IC>> correctinterval()

ot

INextDgyReservations

actualReturnBranch <IC>> visi i
/—————E> ; I_C p>' visitsBranchCountries()
—\ / asic rlceo
BadExperience \ // bestPrice() n N
- \ lastModification() V\ \ 1 [carGroup
type : BadExpType \ OpenedRental onRentinterval() Reservation
<<IC>> typelsKey() actualPick-upTime : Time bestDurationPrices) reservationDate : DateTime Mmﬁ_
A RetuN{edTo agreedEnding()
i \ }7 |\> applicableDiscountPerDuration() <<IC>> onTimeReservation()
e FaultSeriousness \ / “\ rentGroup() <<IC>> modellsinGroup() q\
1 degree : Level \t} / \ CanceledReservation
Ly // \ cancellingDate : DateTime
\
SiosedRena \ ReservationWithSpecialDiscount <<IC>> correctCancellation()
paymentType : PayType \
creditCardNumberDamages : Natural \\ bestPrice() A
/ rentalPriceWithTax : Money {frozen} \ guaranted?
~ \ ;
\\ _- rentalPriceWithTax() \\
N\ -
/CarDamage < QUﬁlifieW/ 0.n "/I\" A A PointsPaymentReservation
Py éé | &\n ExtendedRental CanceledCustomer
allinstances() 0.1 Subsy | \
// i \ <<IC>> trueExtensions() <<IC>>14DaysInAdvance()
/ I
DamageCost | \ T CanceledCompany
price : Money . I \ - motivation : CancellingMotivation
{disjointimcomptete} +actuaIRé\turn Ext ‘ GuaranteedReservation
\ N creditCardNumber : Natural
0.1 N
1\ AN
/ LateReturn / EarlyReturn \\
/ extralnterval : Duration Rentinterval(N
. . onRrentinterval
/ extraCostWithTax : Money {frozen} allinstances() Extension T ————
allinstances() extensionDone : DateTime u
extralnterval() / fine : Money {frozen}
EXTAEOSMANTE() / PaidWithPointsRental fine(
|aIIInstanceso

<<IC>> enoughinAdvance()

allinstances()
bestPrice()

<<creationIC>> customerlsLoyaltyMember()

66

Cars, Discounts and Enumerations

OwnCar /NeedsMaintenance MaintenanceScheduled
currentMileage : Double <_ beginningDate : Date
mileageFromLastService : Double R <<= OV CE) ————
lastMaintenanceDate : Date < =" allinstances() serviceDepot() +shorter Longer >
acquisitionDate : Date =
/ available? : Boolean <t n RentalDuration
/ assigned? : Boolean N T ToBeSoldCar . CarGroup name : String | 0.1
5 T minimumDuration : Natural
- <= ~ name : String " "
available?() ~J\\\\ <<IC>>notAssignedToReservation() 0.n maxEnquDF.urgnzn - Natural
gssionedzq YA < n <<IC>> namelsKey() o_,ﬁarGroule/;ationPrice [IOEC 8 e 01
i \\\ \\\\ <<IC>> totalOrder() / <<IC>> namelsKey() +onger
- <<IC>> quotaForAllBranches() / i
| N /NeedToBeSoldCar SoldCar 7 / <<IC>> coherentPrices()
I RepairsScheduled \\ disposalDate : Date /i 1n I/ <<IC>> totalOrder()
| |peginningDate : Date \\ allinstances() // 1 CarGroupDurationPrice Lln
|
| v \\ /I price : Money
| / - /
| // BeingTransferredCar 1 /
|€I7 % \M\ ServiceDepot / ApplicatpleDurations
5 rd 0.* +car§'T oBeReceived n “Iname : String /
2 - g . | - Branch 1 capacity : Natural /
registrationNumber : String | +desunaug1 | / . i
; | T B <<IC>> namelskey() / . EndDurationPrice
<<IC>> onlyOneAssignment() —_— / lendingDate : Date .n
<<IC>> registrationNumberlsKey() TransferredTo> / -
carGroup() // <<IC>> correctEnding() Discount
. name : String
O\n\ 0.n / effect : String
: BO{A g PendantCarOrder / description : String
NsGroup Ny _ OfModel _ | id : Integer / beglnmrnge_ne : Date
\\{ o / reservationTime? : Boolean
.n i
+cafGroup <<IC>> idIsKey() |S|H/ ApplicableGroups
CarModel <<IC>> namelsKey()
name : String /
carachteristics : Sequence(String) LA -
CarGroup
<<IC>>namelsKey()
ClosedDiscount
endingDate : Date
<<IC>>correctEnding()
<<enumeration>>
<<enumeration>> <<enumeration>> Level
<<enumeration>> <<enumeration>> BranchTypeName Period Very high -
PayType BadExpType lonTheRoad hour high <<engmerat|pn§>
Duration points \ateReturn bigCity day medium CancellingMotivation MaintenanceRequirements
unit : Period cash carDamage mediumCity week low no-show mileageForService : Double = 10,000
numberOfUnits : Natural creditCard paymentProblem airport month very low blacklisting timeForService : Duration = (month,3)

67

Complete specification of operations associated to derived
elements and integrity constraints

Branch
cont ext Branch:: val i dAgreenents() : Bool ean
post :
resul t=sel f.recei ver->excludes(self) and self.transferor->
excludes(self) and self.receiver->forAll (b|b.receiver->
i ncl udes(self) inplies
| et tAl: Transfer Agreenent =Tr ansf er Agreement . al | | nst ances() - >
select(tAl (tA. receiver=self and tA. transferor=b))
| et tA2: Transfer Agreenent =Tr ansf er Agreenent . al | | nst ances() ->
select(tAl tA transferor=self and tA receiver=b)
in
t Al. di stance(km) =t A2. di stance(kn) and tAl. expectedTi ne(h)=
t A2. expect edTi ne(h)
cont ext Branch:: nanel sKey() : Bool ean
post :
resul t =Branch. al | | nstances() - >
sel ect (b| b. nane=sel f. name) - >si ze() =1
cont ext Branch:: nodel sAvai | abl eNow() : Set (Car Model)
post:
result= sel f.carsAvail abl eNow. car Model - >asSet ()
cont ext Branch:: carsAvail abl eNow(car : Car) : Set (Car)
post:
resul t =sel f. car->sel ect (ocl | ski ndOf (OmnCar)) - >
select(c:Car| c.oclAsType(OmcCar). avail abl e?)
cont ext Branch:: groupsAvail abl eNow() : Set (Car Group)
post :
resul t =sel f. nodel sAvai | abl eNow. car G oup- >asSet ()
cont ext Branch:: car Model Denmand() : Set (Car Model)
post :
resul t =car Model . al | | nstances()
cont ext Branch:: car G oupDemand() : Set (Car G- oup)
post :
resul t =Car Group. al | I nstances()
cont ext Branch:: nextDayR() : Set (Reservati on)
post :
Reservation. all I nstances()->select(r|r.beginning.date()=
tonorrow())->select(r|r.pickUpBranch=sel f)
BranchType
cont ext BranchType:: nanel sKey() : Bool ean

68

post :
resul t =BranchType. al | I nstances() - >
sel ect (b| b. nane=sel f. nanme) - >si ze() =1

Country

cont ext Country:: nanel sKey() : Bool ean
post :
resul t=Country. alllnstances->
sel ect (b| b. name=sel f. nane) - >si ze() =1

cont ext Country:: branchType() : Set(BranchType)
post :
resul t =sel f. branch. branchType- >asSet ()

Performancelndicator

cont ext Per f or mancel ndi cator:: nanel sKey() : Bool ean
post :
resul t =Per f or mancel ndi cator. al |l I nstances() - >
sel ect (b| b. nane=sel f. name) - >si ze() =1

ModelAvailability

context Model Availability:: quantity() : Nat ur a
post :
resul t =sel f. branch. car sAvai | abl eNow- >
sel ect (car Mbdel =sel f. car Model) - >si ze()

GroupAvailability

cont ext G oupAvailability:: quantity() : I nt eger
post :
return= sel f.branch. nodel Avai l ability->
sel ect (mA | mA. car Model . car Group= sel f. carGroup) - >sun(quantity)

DemandXModel
cont ext DemandXMbdel : : dermand() : I nt eger
post :

| et pendant Res: Reservati on= Reservation.alllnstances()->
sel ect(r|r.beginning.date()=tonorrow())->select(r|
r.pi ckUpBranch=sel f. branch and r.car->i senpty())
in
resul t =pendant Res. r equest edModel - >sel ect (] m=d. car Model) - >si ze()

69

DemandXGroup

cont ext DemandXGr oup: : demand() : I nt eger
post :
| et pendant Res: Reservati on= Reservation. alllnstances()->
sel ect(r|r.beginning.date()=tonorrow())->select(r|
r.pi ckUpBranch=sel f. branch and r.car->i senpty())
in
resul t =pendant Res. r equest edGr oup- >sel ect (] m=d. car Gr oup) - >si ze()

RentalAgreement
cont ext Rent al Agreement:: correctinterval () : Bool ean
post :

resul t =sel f. begi nni ng< self.initEnding and sel f.actual Return>
sel f. begi nni ng
docunent ati on:
Endi ng date-tinme of a rental (actual and expected) nust be
after the begi nning dates-tines (actual and expected) of the

rent al
cont ext Rent al Agreenent:: visitsBranchCountries() : Bool ean
post :
result = self.Countries->includes(self.PickUpBranch. Country) and
sel f. Countri es->i ncludes(sel f. DropOf f Branch. Country)
cont ext Rent al Agreement:: basicPrice() : Money
post :

result= self.bestDurationPrices-> iterate(el em
tup : Tuple {acclnterval: Duration=self.onRentlnterval,
accPri ce: Money=0} |
l et timeMax: Duration= durationT(elemtinmeUnit,
el em maxi mnunDur at i on)
et timeM n:Duration= durationT(elemtinmeUnit,
el em ni ni munDur ati on)
et numint:Integer =
if tup.acclnterval >= tinmeMax then
tup. acclnterval /ti meMax
el se
tup.acclnterval/timeMn
in
Tupl e {acclnterval : Durati on=
(if tup.acclnterval >= tinmeMx then
tup. accl nterval % i meMax
el se
tup.acclnterval % i meMn
endif),
accPrice: Money= tup. accPrice+num nt*el em price}
).accPrice
docunent ati on:
Best price for the rental duration since the last nodification
(rental duration was changed) without discounts

70

cont ext
post :

cont ext
post :

cont ext
post :

Rent al Agreenent:: bestPrice() : Money

| et best Rent al Di scount PerDuration(rd: Rental Duration, basicPrice
Money) : Set (Di scount)= sel f.applicabl eDi scount PerDuration(rd)
->reject(di sAct: Discount|
sel f. appl i cabl eDi scount Per Duration(rd) ->
exi sts(di sC her: Di scount| apply(disQher, basicPrice) <
appl y(di sAct, basicPrice))
in
result= self.bestDurationPrices->iterate(el em
tup : Tuple {acclinterval: Duration=self.onRentlnterval,
accPri ce: Money=0} |

| et timeMax: Duration= durationT(elemtinmeUnit,
el em maxi nunDur ati on)
et timeM n: Duration= durationT(elemtinmeUnit,

el em mi ni nunDur ati on)
et numint:Integer =
if tup.acclnterval >= tinmeMax then
tup. acclnterval /ti meMax
el se
tup.acclnterval /timeeMn
in
Tupl e {acclnterval : Durati on=
(if tup.acclnterval >= tinmeMx then
tup. accl nterval % i meMax
el se
tup. acclnterval % i meMn
endif),
accPrice: Money= tup. accPrice+
num nt *sel f. best Rent al Di scount Per Dur ati on
(elemrental Duration, elemprice)->any()}).accPrice

Rent al Agreenent:: |astModification() : Dat eTi me
result =
if self.ocllsTypeOf (Resevation) then

sel f.reservationDate

el se

sel f. begi nni ng
end if

Rent al Agreenent:: onRentlnterval () : Duration

resul t= sel f.agreedEndi ng-sel f. begi nni ng

71

cont ext Rent al Agreenent:: bestDurationPrices()
Set (Car G- oupDur ati onPrice)
post :
| et applicabl eDuration: Set(CarG oupDurationPrice)=
sel f.rent Group. car GroupDurati onPrice->
sel ect (cg: CarG oupbDurationPrice | cg.beginning<= self.ending
and (cg.ocl|sTypeOf (EndDurati onPrice) inplies
cg. ocl AsType(EndDur ati onPri ce) . endi ngDat e >=
sel f.last Modification)
| et bestCurrentDuration: Set(CarG oupDurationPrice)=
appl i cabl eDur ati on->rej ect (cgCur: Car G oupDurationPrice|
appl i cabl eDurati on-> exi sts(cgQ her: Car GroupDurati onPri ce|
cgQt her.rental Duration=cgCur.rental Durati on and
cgQt her. car Group= cgCur.car G oup and
cgQt her. price<cgCur. price))
in
resul t= sel f.best CurrentDuration->
sortedBy(rental Duration. shorter)

cont ext Rent al Agreenent:: agreedEndi ng() : Dat eTi me

post :
result= initEnding

cont ext Rent al Agreenent:: applicabl eDi scount PerDuration(rd :
Rent al Duration) : Set(Di scount)
post:
| et rental Appli cabl eDi scount: Set(Di scount)=
sel f.rent Goup. di scount - >sel ect (di s: Di scount |
di s. begi nni ngDat e<= sel f. endi ng and
(dis.ocllsTypeOf (Cl osedDi scount) inplies
di s. ocl AsType(Cl osedDi scount) . endi nghate >=
sel f.last Modi fication and applicable(dis, self.renter)
in
result= self.rental Appli cabl eDi scount->
sel ect (di s: Di scount| dis.rental Durati on=rd)
docunent ati on:
Defining operation of the association applicable
Di scount

cont ext Rent al Agreenent:: rent Group() : carGroup
post :
if self.ocllsKindO (Reservation) then
if self.car->isEnpty() or self.car.carGoup<>
sel f.car Group. worse then
resul t=sel f.car G oup
el se
resul t=sel f. car G- oup. wor se
end if
el se
resul t=sel f.car.carG oup
end if

Reservation

cont ext
post :

Reservation:: onTi neReservation() : Bool ean

Resul t =sel f . reservati onDate < sel f. begi nni ng

docunent ati on:

cont ext
post :

Reservation date of a rental nust be previous to the
begi nni ng date.
Reservation:: nodellslnGoup() : Bool ean

resul t =sel f. car Model ->not Enpty() inplies
sel f. car Mbdel . car G oup=sel f. car G oup

PointsPaymentReservation

cont ext
post :

Poi nt sPaynent Reservati on:: 4Daysl nAdvance() : Bool ean

resul t =sel f. begi nni ng-sel f.reservati onDat e>=day(14)

ReservationWithSpecialDiscount

cont ext
post :

Reservati onW t hSpeci al Di scount:: bestPrice() : Money

| et reservationTi neDi scount PerDuration(rd: Rental Duration)
=sel f. appl i cabl eDi scount Per Dur ati on->sel ect (d| d. reservati onTi ne)
| et best Rent al Di scount PerDurati on(rd: Rental Durati on
basi cPrice: Money): Discount=
sel f.rental Appl i cabl eDi scount Per Duration(rd)->
reject (di sAct: Discount|
sel f.rental Appl i cabl eDi scount Per Duration(rd)->
exi sts(di sO her: Di scount |
apply(disOther, rd).isBetter(apply(disAct, rd)))->any()
in
result= self.bestDurationPrices->iterate(el em
tup : Tuple {acclnterval: Duration=self.onRentlnterval,
accPri ce: Money=0} |

[et timeMax: Duration= durationT(elemtinmeUnit,
el em maxi nunmDur at i on)
et timeMn:Duration= durationT(elemtinmeUnit,

el em m ni nunDur ati on)
et nunmint:Integer =
if tup.acclnterval >= tinmeMx then
tup. acclnterval /ti meMax
el se
tup.acclnterval /timeMn
in
Tupl e {acclnterval : Durati on=
(if tup.acclnterval >= tineMax then
tup. accl nterval % i meMax
el se
tup.acclnterval % i mneMn
endi f),
accPrice: Money= tup. accPri ce+num nt*
appl y(sel f. best Rent al Di scount PerDurati on(el em rental Durati on
elemprice), elemrental Duration)}).accPrice

73

CanceledReservation

cont ext Cancel edReservation:: correctCancellation() : Bool ean
post :
resul t =sel f. cancel | i ngDat e>=sel f. reservati onDat e and
sel f.cancel |l i ngDate <=sel f. begi nni ng
docunent ati on:
Cancel ling date of a reservation nust be after or equal to the
reservation date and before the begi nning date or equal to it.

GuaranteedCanceled

cont ext Guar ant eedCancel ed: : fine() : Money
post :
i f self.beginning=self.cancellingDate then
result= sel f.bestDurationPrices->sel ect(cGDP |
not (cGDP. ocl | sTypeOf (EndDur ati onPrice)) and
CcGDP. Rent al Duration.tineUnit= Period::day and
CGDP. Rent al Durati on. mi ni runDurati on=1)->first().price
el se
resul t =0
end if
docunent ati on:
A fine of one day rental nust be paid if the renta
was guaranteed and the cancelling date is the sane day
as the expected begi nning of the rental
Ot herwi se, no fine nmust be paid.

cont ext Guar ant eedCancel ed: : al |l I nstances()
Set (Guar ant eedCancel ed)

post :
resul t =Cancel edCustoner. al |l I nstances() - >
i ntersection(Guarant eedReservation.alllnstances())
ExtendedRental
cont ext Ext endedRent al : : trueExtensions() : Bool ean
post :
| et extensions: Extensi on=sel f. newEndi ngs
in
resul t = extensions. extensi on->sortedBy(e
e. ext ensi onDone. dat eTi ne) . newEndi ngs= ext ensi ons
and extensions->forAll (ext| ext.extensionDone > self.begi nning)
and sel f. newkndi ngs->forAll (d| d>sel f.initEnding)
cont ext Ext endedRental : : | ast Modification() : Dat eTi me
post :
resul t =sel f . Ext ensi on- >sor t edBy(ext ensi onDone) - >| ast ()
cont ext Ext endedRent al : : agreedEndi ng() : Dat eTi me
post :

resul t =sel f. newkndi ngs- >l ast ()

74

ClosedRental

cont ext Cl osedRental :: rental PriceWthTax() : Money
post :
result= self.bestPrice * self.actual ReturnBranch. country. car Tax

PaidWithPointsRental

cont ext Pai dW t hPoi nt sRent al : : enoughl nAdvance() : Bool ean
post :
result= self.ocllsTypeOf (Reservation) and (sel f.begi nning. day() -
sel f. ocl AsType(Reservation).reservationDate. day()) >=day(14)

cont ext Pai dWt hPoi nt sRental : : custonerlsLoyal tyMenber () : Bool ean
post :
result= self.renter.ocl|sType(Loyal tyMenber)

cont ext Pai dW t hPoi nt sRental : : alllnstances():
Set (Pai dW t hPoi nt sRent al)
post :
result= ClosedRental . alllnstances->sel ect (cR| cR paynent Type=

payType: : poi nts)

cont ext Pai dWt hPoi ntsRental :: bestPrice() : Mney

post :

resul t =basi cPri ce
LateReturn
cont ext LateReturn:: alllnstances() : Set(LateReturn)
post :

result= Cl osedRental . alllnstances()->sel ect(cR

cR actual Return > cR agreedEndi ng)

cont ext LateReturn:: extraCostWthTax() : Money
post :

et timeUnit: Period=
if self.extralnterval.unit=Period::hour and
sel f.extralnterval . numberOfUnits <= 6 then
Peri od: : hour
el se
Peri od: : day
endi f
in
| et durationPrice: Mney= self.bestDurationPrices->
sel ect (cGDP | not (cCGDP. ocl I sTypeOf (EndDur ati onPrice)) and
CGDP.timeUnit= tineUnit and m ninmunDuration=1)->first().price
| et extraPrice: Money= durationPrice*(extralnterval/
durationT(tinmeUnit, 1))+ durationPrice*(extralnterval %
durationT(tinmeUnit, 1))
in
result= extraPrice * self.actual ReturnBranch. country. car Tax

75

cont ext LateReturn:: extralnterval () : Duration
post :
result= sel f.actual Return-sel f.ending

EarlyReturn

cont ext Earl yReturn:: onRentlnterval () : Dur ati on
post :
resul t= sel f.actual Return-sel f. begi nning

cont ext Earl yReturn:: alllnstances() : Set(EarlyReturn)
post:
Cl osedRent al . al | nstances()->sel ect (i ni t Endi ng-
actual Return> hour (1))

BadExperience

cont ext BadExperience:: typelsKey() : DateTime
post :
resul t =BadExperi ence. al | | nst ances() - >sel ect (b|
b. nane=sel f. nane) - >si ze() =1

CarDamage
cont ext Car Damage:: alllnstances() : Set (Car Damage)
post :

resul t =BadExperi ence. al | | nst ances() - >
sel ect (b| b. t ype=BadExpType: : car Damage)

AssignedCar

cont ext Assi gnedCar:: pickUpBbranchl sResponsi bl e() : Bool ean
post :

result= (sel f.Rental Agreenent. ocl | sTypeOf (OpenedRental) and

not (ocl | sTypeOf (Cl osedRental)) inplies

sel f.car. branch= sel f.rental Agreenent. pi ckUpBranch
docunent ati on:

When a car is assignhed to a reservation, the pick-up

branch is resposible for it

Car

cont ext Car:: onlyOneAssignnent () : Bool ean
post :
resul t= car.rental Agreenent - >sel ect (rA |
not (rA. ocl I sTypeCOF (Cancel edReservati on) and
not (rA. ocllsTypeOf (Cl osedRental)))->size()<=1
docunent ati on:
A car can only be assigned to a reservation in a
certain date.

76

cont ext Car:: registrationNunberlsKey() : Bool ean
post:
resul t=Car.al |l nstances()->sel ect(b|b.regi strati onNunber=
sel f.regi strati onNunber)->si ze()=1

cont ext Car:: carGroup() : CarGoup

post :
resul t =sel f. car Mbdel . car G oup

OwnCar

cont ext OwncCar:: avail abl e?() : Bool ean

post :
result= not(self.ocllsTypeO (NeedsMi nt enance)) and
not (sel f. ocl | sTypeOf (Repai rsSchedul ed)) and
not (sel f. ocl I ski ndOf (ToBeSol dCar)) and not (sel f. assi gned?)
and not (sel f.ocl I sTypeOf (Bei ngTransferredCar)) and
not (sel f.ocl |1 sTypeOf (NeedToBeSol dCar))

cont ext OwncCar:: assigned?() : Bool ean

post :

result= car.rental Agreenent - >exi sts(rA
not (rA. ocl I sTypeOf (Cancel edReservati on) and
not (rA. ocl | sTypeOf (Cl osedRental)))

NeedToBeSoldCar

cont ext NeedToBeSol dCar:: alllnstances() : Set (NeedToBeSol dCar)
post :
OmnCar . al | I nstances()->sel ect (c|today()-c.acquisitionDate>=
year (1) or self.currentM | eage>=40, 000)

NeedsMaintenance

cont ext NeedsMai nt enance:: not Over 10Per Cent () : Bool ean
post :
result= currentM | eage -m | eageFroniast Service
<=1, 1*m | eageFor Service or Now() - |astMi ntenanceDate
<= 1, 1*ti nmeFor Servi ce

cont ext NeedsMai nt enance:: alllnstances() : Set(NeedsMi ntenance)
post :

result= OwnCar. al |l I nstances()->sel ect(currentM | eage

-m | eageFronlLast Servi ce >=

Mai nt enanceRequi renents. n | eageFor Servi ce or Now() -—

| ast Mai nt enanceDat e > Mai nt enanceRequi renents. ti meFor Servi ce)
docunent ati on:

A car needs mmintenance if it was serviced nore than 3

nont hs ago or has accunul ated nore than 10, 000 km

since the last service

77

ToBeSoldCar

cont ext
post :

ToBeSol dCar:: not Assi gnedToReservation() : Bool ean

sel f.rental Agreement->forAll (r| r.ocllsKindO(Cl osedRental) or
r.ocl | skKi ndOf (Cancel edReservation))

MaintenanceScheduled

cont ext
post :

Mai nt enanceSchedul ed: : servi ceDepot () : Ser vi ceDepot

| et sd: ServiceDepot =sel f.Branch. Servi ceDepot

in

| et occupati on: Nat ural =sd. Mai nt enanceSchedul ed- >

sel ect (ns| nms. begi nni ngDat e=sel f. begi nni ngDat e) - >si ze()
in

capaci ty>occupation inplies result=sd

ServiceDepot

cont ext
post :

CarModel

cont ext
post :

CarGroup

cont ext
post :

cont ext
post :

i s\Worse(w,

cont ext
post :

Servi ceDepot:: nanel sKey() : Bool ean

resul t =Servi ceDepot . al | I nstances() - >
sel ect (s| s. nane=sel f. nanme) - >si ze() =1

Car Mobdel : : nanel sKey() : Bool ean

resul t =Car Mbdel . al | | nst ances- >
sel ect (b| b. name=sel f. name) - >si ze() =1

Car Group: : nanel sKey() : Bool ean

resul t =Car Group. al | I nstances() - >
sel ect (b| b. nane=sel f. nane) - >si ze() =1

CarGroup:: total Order() : Bool ean

l et isWorse(w, b: Car G oup) : Bool ean= b. wor se=w or
b. wor se)
| et isBetter(b,w Car Group): Bool ean= w. better=b or

i sBetter(b,w better)
in
result = CarGoup.alllnstances()->one(cg|cg.worse->i senpty())
and CarGroup. alllnstances()->one(cg|cg. better->isenmpty()) and
CarGroup. all I nstances()->forall(cgl,cg2] isWrse(cgl, cg2)
inplies not isBetter(cgl,cg2) and isBetter(cgl,cg2) inplies
not isWorse(cgl, cg2))

Car Group: : quot aFor Al | Branches() : Bool ean

resul t =sel f. car GroupQuot a- >si ze() =Branch. al | I nst ances() - >si ze()

78

PendantCarOrder

cont ext Pendant Car Order:: idlsKey() : Bool ean
post :
resul t =Pendant Car Order. al | | nst ances() ->
sel ect(b|b.id=self.id)->size()=1

EU_RentPerson

cont ext EU_Rent Person:: is250rd der () : Bool ean
post :

result= (now()- self.birthdate) >=year(25)
docunent ati on:

Eu-rent persons nust be 25 years old or ol der

cont ext EU Rent Person:: idlsKey() : Bool ean
post :
resul t =EU_Rent Person. al | | nst ances()
->sel ect(p|p.id=self.id)->size()=1

cont ext EU Rent Person:: faults() : set (Faul t Seri ousness)
post :
l et faultsAsDriver: FaultSeriousness= self.rental sAsDriver->
sel ect (rA| rA ocllsTypeOf (Cl osedRental)). fault Seriousness
l et faultsAsRenter: FaultSeriousness= self.Rental Agreenent ->
sel ect (rA| rA ocllsTypeOf (Cl osedRental)). faul t Seri ousness
in

result= self.faultsAsDriver->ocl AsType(Set)->
uni on(sel f.faul tsAsRenter)->asSet ()

cont ext EU_Rent Person:: bel ongi ngBranch() : Branch

post:
l et firstRental:Rental Agreenment=self.rental sAsDriver->
uni on(sel f.rental sAsRent er)->sort edBy(begi nni ng)->first()
in
resul t=firsRental. pi ckUpBranch

Customer

cont ext Custoner:: rental sDoNot Overlap() : Bool ean
post :
resul t =sel f. Rent al Agreenent-> reject(rA]
rA.ocl I ski ndOf (Cancel edReser vati on) - >not Exi sts(rA |
sel f.rental Agreenent - >sel ect (rAG her | rAQ her. begi nni ng. day() >
r A. begi nni ng. day())->exists(rAQ her| rAQ her. begi nning. day() <=
r A. agr eedEndi ng. day()))
docunent ati on:
A custoner's rental periods cannot overl ap

79

LoyaltyMember

cont ext Loyal tyMenber:: avail abl ePoints() : Natura
post :
| et candi dateRentals: Set(Cl osedRental)= sel f.Rental Agreenent - >
sel ect(rAl rA ocllsTypeO (Cl osedRental) and (now()- rA. ending)<
year(3) and rA ending > (nenbershipDate - year(1l))->
ocl AsType(Set (Cl osedRental))
| et earnRental s: Set(C osedRental)= candi dat eRent al s->
reject(cR cR ocl | sTypeO (Pai dW t hPoi nt sRent al)
| et accunul atedPoints: Integer= earnRentals->forAll(r |
resul t->i ncl udi ng(poi nt searned(r. bestPrice)))->sun()
| et spendRentals: Set(Cl osedRental)=
candi dat eRent al - >sel ect (ocl | sTypeOf (Pai dW t hPoi nt sRent al))
| et spentPoints: |nteger= spendRental s->forAll(r
result->including (pointsSpent(r.bestPrice)))->sum)
in
resul t = accumul at edPoi nt s- spent Poi nt's

cont ext Loyal t yMenber:: neetsLoyal Per manence() : Bool ean
post :
resul t = sel f. Rent al Agr eement . begi nni ng- >exi sts(dT| dT>
(now()-year(1))) and self.faults->i sempty()
docunent ati on:
A nmenber of the loyalty incentive schene has done at
| east a rental during a year and has not recorded any
bad experience

Blacklisted

cont ext Bl ackl i sted:: noRental s() : Bool ean
post :
result= self.rental sAsDriver->sel ect(rA| rA. beginning
> sel f. bl ackli st edDat e) - >
forAll (rAlra.ocllsTypeO (Cancel edReservation))
docunent ati on:
Once an EU-rent person has been bl acklisted, cannot
participate in a rental or make a rental

DrivingLicense

cont ext DrivingLi cense:: validLicense() : Bool ean
post :
resul t =t oday()-sel f.issue>year (1) and
sel f. eu_Rent Person. rental sAsDri ver. agr eeEndi ng- >
forAll (d] d<sel f.expiration)

cont ext Drivi ngLi cense:: nunberlsKey() : Bool ean
post:
resul t =Dri vi ngLi cense. al | I nstances() - >
sel ect (d| d. nunber =sel f. nunber) - >si ze() =1

80

RentalDuration

cont ext
post :

cont ext
post :

cont ext
post :

Discount

cont ext
post :

Rent al Dur ati on:: nanel sKey() : Bool ean

resul t=Rental Duration.alllnstances()->
sel ect (b| b. nanme=sel f. name) - >si ze() =1

Rent al Duration:: coherentPrices() : Bool ean

| et curCGDPrices: Set(CarG oupDurationPrice) =
sel f. car G oupDurationPrice->reject(cgdp
cgdp. ocl | sTypeOf (EndDur ati onPrice))
in
result = cur CGDPrices->forAll (cgdp|cgdp. price>=
cur CGDPri ces. Car G oup. wor se. Car Gr oupDur ati onPri ce- >
sel ect(cg| cg. Rental Durati on=sel f).price)

Rent al Duration:: total Order() : Bool ean

| et isShorter(s,|:Rental Duration):Boolean= |.shorter=s or
i sShorter(s,|.shorter)
| et isLonger(l,s:Rental Duration): Bool ean= s.|onger=l or
i sLonger (|, s.longer)
in
result = Rental Duration.alllnstances()->one(rd|
rd.shorter->i senpty()) and Rental Duration.alllnstances()->
one(rd|rd. |l onger->iskEnpty()) and Rental Duration.alllnstances()
->forAll(rdl,rd2| isShorter(rdl,rd2) inplies not
i sLonger(rdl,rd2) and isLonger(rdi,rd2) inplies not
i sShorter(rdi, rd2))

Di scount:: nanel sKey() : Bool ean

resul t =Di scount . al | I nstances() ->
sel ect (b| b. name=sel f. name) - >si ze() =1

ClosedDiscount

cont ext
post :

Cl osedDi scount:: correct Ending() : Bool ean

result= sel f.endi ngDate >= sel f. begi nni ngDate

EndDurationPrice

cont ext
post :

EndDur ati onPrice:: correctEnding() : Bool ean

resul t= sel f. begi nning <= sel f.endi ngDat e

81

6. STATE MODEL

Overview

State diagrams are used to clarify the acceptable transitions between the states. Although it
is not a crucial part in the development of this project, it has been considered appropriate
and clarifying to define the state diagrams for some of the main entities of the system.

Diagrams

Car

/0

[BeingTransferred]

DoTrans%
[Available]

[Assigned J

OpenRental / MakeWalkinRental

[BeingUsed]

Recej

InUseCar

ar

MaintenanceNeeded

[Assigned H BeingUsed]
EndOfMair!Eqance

[MaintenanceScheduled]

RepairsScheduled

ExternalCar

SellCar
ToBeSoldCar

ConfirmCarSale

SoldCar

* CarAllocationAutomatic / CarAllocationExceptionOption / CarAllocationExtremisOption

82

EU_RentPerson

MakeRental

[not(meetsLoyalPerm

Renter
®

Eae

Rental

4i LoyaltyMember

AdditionalDriver

RecordDriverData

BlackligtCustomer

BlacklistCustomer Blacklisted

anence())] JoinLoyaltyIncentiveScheme[meetsLoyalCriteria)]

context Customer:: meetsLoyalCriteria(): Boolean AN
post:
let closedRentals: Set(ClosedRental)=
self.rentalAgreement->select(oclisTypeOf(ClosedRental))
in
result= self.faults->isEmpty() and self.closedRentals->select(cR| Now() -
cR.beginning < Year(1))->size() >=4
RentalAgreement
MakeReservation MakeWalkinRental
'd N\ .
Reservation Walk-in rental
Guaranteed NonGuaranteed
J OpenRental

\Spen\Rental

CancelReservation

CanceledCustomer

CanceledReservation

CancelNoShowR

CanceledCompany

~N

esen

OpenRental

ations

CarReturn

ClosedRental

(o

83

7. EVENTS MODELLING

Overview

Once the system use cases have been defined, system events are obtained analyzing
carefully and identifying the interactions between the system and the actors. The typical
approach to model events is via the so-called system operations.

However, in this document a different approach has been aimed to be tested. This approach
consists in modelling the events as objects as explained in [EE] and so, exploit the
characteristics of the OO to avoid, for example, the rewriting of the same constraint in
different events.

This technique has been combined with the already introduced ones to specify constraints
and derivation rules and so, being consistent with the static model.

Previous remarks

In EU-Rent Rentals case there are some events of a considerable difficulty and importance.
For convenience, this events have been split up in smaller events to favour understanding
and self-description, because otherwise would be almost impossible to describe some of the
events formally.

Event diagrams

The events modelling has been divided in packages, corresponding to thematic areas, in
order to ease understanding. These are the following:

]

Existance
Events

]]]

Reservation Customer Pricing and Discounting
Management Events Management Events Management Events

—] — —

Car Allocation Car Preparation and Car Pick-Up and
Events Maintenance Events

Return Events

Car Management Branch, CarGroup and Performance Indicators
Events Models Management Management Events

Events hierarchy

<<Levent>>>>
Event

time : DateTime

Performancelndicator

apply()
GeneratedDomainEvent GeneratedQueryEvent
ExternalDomainEvent ExternalQueryEvent ActionRequestEvent
Existance Events
ExistingPerformancelndicator <<<<event>>>> —
name : String Event N EX:tlngs(igr ! ldentifies Tor
time : DateTime regiiumber - String
perfind() car() rea
apply()
/ldgntifies ExistingRentalDuration
durationName : String
ExistingBranch
duration() branchName : String
/Idgntifies ExistingCarQroup ExistingPerson branch() ExistingTransferAgreement
carGroup : String id : String branchName1 : String
ExistingPendantOrder branchName2 : String
id : Integer carG() person()
— . transferAg()
pendantOrder() ExistingDiscount ExistingRental
discountName : Strin inning : i ifi
] ok ExistingCarModel beginning : DateTime /Identifies
entifies o /|dentifies
+duratibn discount() carModel : String rental()
Idenfifies 1 Ndentifies
carM()
RentalDuration +person / 1dentifies +brangh 4
/Identifies
+pendantDrder +carG [Identifies Branch
EU_RentPerson +transferAg
P— lo . CarGroup +rental | 1 12
endantCarOrder ;
. +discoun +carM 1 RentalAgreement TransferAgreement
+perfini
Discount CarModel

85

Reservation Management Events

ExternalQueryEvent

ExistingCarGroup

i

carGroup : String

1

ExistingPersonCheck

id : String
answerExists : Boolean

apply()

+answerPerson | .1

+pickUpBypédnch

/ DropOffjdentifies

ActionRequestEvent

EndWalkinRental

MakeRental

EU_RentPerson
(from EU-Rent entities)

rrenter
I

beginning : DateTime
ending : DateTime

pickUpBranch : String
dropOffBranch : String
countries : Set(String)

SwerRental

il

MakeWalkinRental

candidateCars()
apply()

/CandidateToBeAssigned

+candidateCars
1..n

Car
(from EU-Rent entities)

+answerRental

Branch
(from EU-Rent entities)
apply()
1
+dxopOffBranch
+rental EndCurrentRental
[1
RentalAgreement [t[ental

CancelCurrentRental

apply()

EndReservation

GuaranteeReservation

creditCard : Natural

<<IC>> countriesExists()

carModel : String

MakeWalkinRentalWithCarModel

candidateCars()

AnswerRental

+re ation +renta 1

Reservation

<<IC>> branchesInCountries() apply()
<<IC>> availability()
/V pickUpBranch()
dropOffBranch()
apply()
MakeReservation
ExistingCarModel

apply()

MakeReservationWithCarModel

apply()

(from EU-Rent entities)

1

+answerRental

86

ExternalQueryEvent
(from EU-Rent events)

ExistingRental

beginning : DateTime

ActionRequestEvent
(from EU-Rent events)

CheckTodayResWithoutCarBasic

CancelResevation

RentalExtension

GetReservation

/CancelGuaranteedReservation

newEnd : DateTime

apply()

<<IC>> reservationExists()
apply()

<<IC>> openedRentalExists()

apply()

<<IC>> maintenanceNotNeeded()

1 | +answerReservation

Reservation
(from EU-Rent entities)

<kevent>>>>

Event
(from EU-Rent events)

A

allinstances()
apply()

+reservation

GuaranteedReservation
(from EU-Rent entities)

/ CheckTodayReservationWithoutCar

| +reservatign ~ Reservation

CheckTodayResWithoutCarDerived

A (from EU-Rent entities)
allinstances() //. 1
apply() / Y
A S \
AN
NN
| NN
\ S
CheckTodayResWithoutCarBasic N SN
N
\
\
S~ \
~~ \
AN N\
ExistingCar N
N\

regNumber : String

87

Customer Management Events

RecordDriverData

ActionRequestEvent
(from EU-Rent events)

issue : Date

drivingLicenseNumber : Natural

expiration : Date

apply()

+person
1

RecordCustomer
id : String
name : String
address : String
birthdate : Date

apply()

EU_RentPerson
(from EU-Rent entities)

1
+answerPerson

ExternalQueryEvent
(from EU-Rent events)

N

GetTodayBlacklisted
GetLoyaltyCandidates
apply()
apply()
+answerCustomers +answerCy ers
0.* 0..*

EU_RentPerson

(from EU-Rent entities)

1 +person

ExternalDomainEvent
(from EU-Rent events)

ExistingPerson

ExistingRental
(from Existance Events)

DefaultingCustomer

problemSeriousness : Level
answerToBeBlacklisted : Boolean

—{>>1id : String

CancelLoyaltyMembership
<<IC>> isMember()
apply()

5 5 apply()
JoinLoyaltylncentiveScheme

apply()
GeneratedDomainEvent

(from EU-Rent events)

CancelCustomersReservations

motivation : CancellingMotivation

apply()

BlacklistCustomer

apply()

Pricing and Discounting Management Events

GeneratedQueryEvent
(from EU-Rent events)

el

ActionRequestEvent

(from EU-Rent events) ExistingDiscount

discountName : String

ShowBestPrice

K answerPrice : String

OfferSpecialAdvantatges

answerSOptions : Sequence(TupleType(id:String,desc:Money))

apply()

apply()

ShowBestBasePrice

answerPrice : Money

RecordNewRentalDuration

(from EU-Rent events)

apply()
+resenvation Lreservation
OfferPaymentWithPoints 1 1
- - - +reservation
answerOptions : Sequence(TupleType(id:String,desc:Integer))
Reservation
apply()
ActionRequestEvent ExistingCarGroup

carGroup : String

name : String
minimumDuration : Natural
maximumDuration : Natural
timeUnit : Period
previousName[0..1] : String

ChooseDiscountOption

selectedOption : String CloseDiscount

<<IC>> validOption() apply()

apply()

RecordNewDiscount

name : String

effect : String

description : String
reservationTime : Boolean
applicableDurations : Set(String)

+eservation . -
applicableGroups : Set(String)

<<IC>> durationsExist()
<<IC>> groupsExist()
apply()

RentalDuration
(from EU-Rent entities)

<<IC>> previousExists()
apply()

ExistingRentalDuration
(from Existance Events)

SpecifiyCarGroupDurationPrice

price : Money

+duragion

[> 1

ChangeCarGroupDurationPrice

NewCarGroupDurationPrice

NewCGDPForNewDuration

apply()

apply()

apply()

89

Car Allocation Events

ActionRequestEvent

IntroduceTransferData
distance : Natural CarAllocationExceptionOption CarAllocationExtremisOption
expectedTime : Double : ; ion : Stri
P +trandAg option : String option : String
1
apply() <<IC>> validOption() <<IC>> validOption()
TransferAgreement apply() apply()
ExistingBranch |JT
branchName : String +answerTransAg +reservafi
1 +reservati
Reservation

CreateTransferAgreement CarAllocationWithAnExtremisRule

answerDataNeeded : Boolean d answerOptions : Set(String)
CancelTransferAgreement on
<<IC>> notPreviousAgreement() apply()
<<IC>> transferAgEXxists() apply()
apply()
+receiverBranch ExternalQueryEvent
ExistingTransferAgreement ,
. Gt +receiverBranch
Erancmame; : gr!ng 1| Branch
fanciiamezEsting 1+branch ExternalDomainEvent
1

ChangeTransferAgreementData
distance : Integer L
expectedTime : Double ExistingCar

regNumber : String <F—<<ic>> validCar()
<<IC>> validBranch()
apply()

ﬁ +branch Z%

ExternalQueryEvent

TransferOwnership

apply()

GetCarsToBeTransferred
answerTransfers : Sequence(TupleType(carRegN: String, destination: String))

In many events, the branch where the
apply() transaction is done is pass_ed as an
entry parameter. However, it would be
logical that this could be obtained as a
"global" parameter in the environment
where the transaction is done.

CancelNoShowReservations

ExternalQueryEvent

ExtendedCarAllocationDefinitions

appl
PRIY0 | ———4[Branch |+branch
1 1
%h \ CarAllocationKind
- X answerKind : AllocationType
- SellCarsinNeed AllocationEstimators
ActionRequestEvent apply0
—~J
- - |
apply() CarAllocationAutomatic apply0
apply()
+answerGuaranteedResgrvation {ordered}
CarAllocationWithAnExceptionRul 0-n
arAllocationWithAnExceptionRule +answerloyaltyReservation {ordered} i
i + herR
ExternalQueryEvent answerOptions : Set(String) Reservation answefOtherReservation {ordered}
0..n 0..n
apply() 1
<<enumeration>>
i AllocationType
+ 1t
DemandXGroup DemandXModel reservation automatic
/ demand : Natural / demand : Natural exception
inExtremis
demand() demand()
Group 0.*
0.n +demXNodel
ExtendedCarAllocationDefinitions Branch
= - +curBranch
/ upWalkinPossible : Boolean CarAllocationDefinitions /
+d / 2upgradePossible : Boolean] dePossible - Bool 1
owngr / downgradePossible : Boolean upgraderossible - Boolean
0.1 / transferPossible : Boolean
= / servicePossible : Boolean EERIE, /GroupQuota
CarGroup curGroup() Natural
name : String downgradeGroup() —> upgradeGroup()
groupQuota() 1
2upgradeGroup() Avail
b.1 upWalkinPossible() groupAvail() ’
- . upgradePossible()
2upgradePossible() demxModel
downgradePossible() demXGO el() +upgraseGrouy]
+2upgradeGoup ransferPossible() emXGroup) e \ 0.
servicePossible()
/GroupAvail CarGroup

1 +groupAvail
| GroupAvailability

91

Car Preparation and Maintenance Events

Branch
(from EU-Rent entities)

ExternalQueryEvent
(from EU-Rent events)

ExternalDomainEvent
(from EU-Rent events)

ExistingRental
beginning : DateTime

RecordDamages

damageDegree : Level
cost : Money
answerToBeBlacklisted : Boolean

+brangh 1 EndOfRepairs ﬁ

answerSellCar? : Boolean CarPrepared
GetCarsToBePrepared <<IC>> carWasBeingRepaired() |
apply() apply()
apply() :&

- CheckTodayResWithoutCarDerived

+answerCar rderEd} DamageSEvaluatlon (from Reservation Management Events)

Car b n damagesDetected? : Boolean

(from EU-Rent entities)

+answerCar
1

answerOwnCar? : Boolean

apply()

N

ExistingCar

regNumber : String

7

ScheduleMaintenance

apply()

<<IC>> rentallsClosed()

ExternalQueryEvent
(from EU-Rent events)

beginning : Date

EndOfMaintenance

<<|C>> carNeedsMaintenance()
apply()

answerSellCar? : Boolean

<<IC>> carWasBeingMaintained()
apply()

e

ExternalDomainEvent
(from EU-Rent events)

RecordNewMileage

newMileage : Double
damagesDetected? : Boolean

<F—" answerSellCar? : Boolean

<<IC>> validMileage()

apply()
+Xar 1

OwnCar
(from EU-Rent entities)

1 \+answerCar

Car

(from EU-Rent entities)

92

Car Pick-up and Return Events

ExternalQueryEvent ActionRequestEvent
(from EU-Rent events) (from EU-Rent events)

NonReturned3DayRentals Z‘X %
answerDetalils : Sequence(TupleType) ExistingPerson e e e
id : String
apply()
apply()
NonReturnedRentals
+resepvation

apply() Reservation 1
(from EU-Rent entities)

RentalDetails
answerDetalils : TupleType 1
+ansyferReservation
apply() 1| 41 branch
Branch - ;
(from EU-Rent entities) ApologisePlusReimbursement
apply()
+rental
1 answerRentals
RentalAgreement
ExistingReservationForToday ApologisePlusCancelation
answerExpectLatePrep : Boolean
i i apply()
<<IC>> reservationExists()
apply()
Ext o Event ExternalDomainEvent
- xternalQueryeven from EU-Rent events;
ActionRequestEvent (from EU-Rent events) ¢ vens)
(from EU-Rent events)

ExistingRental
beginning : DateTime

CarReturn AddDriverToRental
OpenRental -
= answerCost : Money
answerLatePreparation : Boolean apply()
apply()
apply()
FreeCarsInNotPickedUpR Raymeniate driver
payType : PayType 1
apply() creditCardDamages : Integer EU_RentPerson
apply()
+branch 1 +9£aﬂch
Branch 1
(from EU-Rent entities)
1 | trental
ClosedRental
+rental 1 (from EU-Rent entities)
RentalAgreement +rental

(from EU-Rent entities)

1

Car Management Events

ExternalQueryEvent

+askingBranch

(from EU-Rent entities)

Branch

1

+other87/éh 1

{> (from EU-Rent events)

ActionRequestEvent
(from EU-Rent events)

ConfirmCarSale

Car

<<IC>> carToBeSold()

[y

(from EU-Rent entities)

MoveCars

neededCars : Natural
answerNeededCars : Natural

ExistingCarModel

apply()
ranch
1
SellCar
I__|> carModel : String
BranchesTransfers <<IC>> notAssigned()
answerTransfers : Sequence(TupleType) apply() OrderCar
apply()

carsOtherBranchCanMove : Natural tbranch
/ movedCars : Natural 1 Branch
e BranchesWithSurplusOfCarGroup CalculateOwnCars (from EU-Rent entities)
apply() / ownCars : Natural I
A apply() / quota : Natural tbranth
/ carsAvailable : Natural
+carfsroup answerSurpIL.Js : Boolean
+carGhup BranchesWithLackOfCarGroup answerLack : Boolean
1/1 +carGrou
RequestTransfer apply() CarGroup
CarGroup apply() ownCars() 1| (from EU-Rent entities)
apply() /ﬂ}q/ quota()
! carsAvailable()
Car
(from EU-Rent entities)
DoTransfer
- ExternalQueryEvent
apply() E)Efts,miltligg?gzﬁm (from EU-Rent events)
/WithSurplus /WithLack

V

ActionRequestEvent
(from EU-Rent events)

ExistingPendantOrder
id : Integer

ReceiveCar

regNumber : String

apply()

answerSurplusQ : Natural

answerlLackQ : Natural

allinstances()
apply()

apply()

allinstances()

94

Branch, Car Group and Models Management Events

ActionRequestEvent -
l> (from EU-Rent events) ExistingCarModel

CreateCarGroup /

carModel : String

carGroupName : String
previousGroupName[0..1] : String CreateBranch RecordCountrylnformation
defaultQuota - Natural branchName : String name : String ChangeModelGroup

| branchType : BranchTypeName mechanicalCondReq : Set(String)

—1appPly0 quotas : TupleType emissionsReq : Set(String) apply()
carTax : Double
<<IC>> branchesExists()
apply() apply()
+answerNewCarGroup EX|st|ng'CarF3roup
+previelisCarGroup carGroup : String
1 0.1 +country 1 pafiswerCountry C.reateCarModeI
CarGroup o 1 name : String _
(from EU-Rent entities) EtY, techChars : Sequence(String)
1
+answerModel apply() ChangeCarGroupQuota
1 newQuota : Natural
AddModelToGroup +modé&l
' CarModel
apply()
apply() 1
ExternalQueryEvent 4/ +branch
{> (from EU-Rent events) <} 1
Branch
ﬁ \ (from EU-Rent entities)
+answerCountry ExistingCountryCheck ExistingCarModelCheck
Country countryName : String modelName : String 0.11 CarModel
(fromECERentientites) answerCountryExists : Boolean answerCarModelExists : Boolean (omJECERententities)
0.1
appl appl
Poy0 PRlyO +answerModel

Performance Indicators Events

ExternalQueryEvent
(from EU-Rent events)

/\7

ExistingCountryBranchType

ActionRequestEvent
(from EU-Rent events)

countryName : String
branchType : BranchTypeName

PerfomancelndicatorCheck

name : String

<<IC>> CountryBranchTypeExists()

answerPerformancelndExists : Boolean

Createlndicator
name : String

description : String

DefineTargetForConcretelndicator

ExistingPerformancelndicator

name : String

apply() apply() 2000
+answerPerformanc
+answerPerformanc8lntlicator
Performancelndicator target : Object
renswerCountryBranchType prperfindicator | oo hotpreviousTarget()
1 apply()
/ CountryBranchType
(from EU-Rent entities) +countryBranchType
1

+cauntryBranchType

ChangeTargetForConcretelndicator
newTarget : Object

apply()

96

Complete specification of defining event operations and their
auxiliary associated to derived elements and integrity
constraints

EXISTANCE EVENTS

ExistingBranch

cont ext Exi stingBranch:: branch() : Branch
post :
| et br: Set(Branch)=Branch.alllnstances()->
sel ect (b| b. name=sel f . br anchNane)
in
br->not Enpty() inplies result=br->any()

ExistingTransferAgreement

cont ext Exi stingTransferAgreenent:: transferAg() : TransferAgreenment
post:
I et transAg: Set(TransferAgreenment)=Transfer Agreenent.
al | I nstances()->sel ect (tA|
(tA. transferor.nanme=sel f. branchNanel and tA.receiver. nane=
sel f. branchNane2) or (tA. transferor.nanme= self.branchNanme2
and tA. receiver.nanme= sel f.branchNanel))
in
transAg->i sNot Enpty() inplies result=transAg->any()

ExistingPerson

cont ext Exi stingPerson:: person() : Branch
post :
| et euPerson: Set (EU_Rent Person) =
EU _Rent Person. al | I nst ances()
->select(p | p.id= self.id)
in
euPer son->not Enpty() inplies result=euPerson->any()

ExistingRental

cont ext Exi stingRental:: rental () : Rent al Agr eenent
post :
et rent: Set(Rental Agreenment)= sel f.person. Rent al Agr eenent
->sel ect (r|r.begi nni ng=sel f. begi nni ng)
in
rent->not Enpty() inplies result=rent->any()

ExistingCar

cont ext Exi stingCar:: car() : Car

post :
let carl: Set(Car)=Car.alllnstances()->
sel ect(c|c.registrati onNunmber =sel f.regNunber)
in

97

carl->not Enpty() inplies result=carl->any()

ExistingCarGroup

cont ext Exi stingCarGroup:: carQ@) : Car Group
post :
| et carG: Set(CarGoup)= carGoup.alllnstances()->
sel ect (c§g cG nane=sel f.car G oup)
in
carG->not Enpty() inplies result=carG ->any()

ExistingCarModel

cont ext Exi stingCar Model :: carM) : Car Mode
post :
| et carMd: Set(CarModel)=Car Model . al | I nstances()->
sel ect(cM cM nane=sel f. car Mbdel)
in
car Mod->not Empty() inplies result=carMd->any()

ExistingDiscount

cont ext Exi stingDi scount:: discount() : Di scount
post :
l et dis: Set(Discount)= Discount.alllnstances()->
sel ect (d| d. nane=sel f. di scount Nane)
in
di s->not Enpty() inplies result= dis->any()

ExistingRentalDuration

cont ext Exi stingRental Duration:: duration() : Rent al Dur ati on
post:
| et rentDuration: Set (Rental Duration)=Rental Duration
al l I nstances()->sel ect(rd| rd.nane=sel f.durati onNane)
in
rent Durati on->not Enpty() inplies result= rentDuration->any()

ExistingPendantOrder

cont ext Exi sti ngPendant Order:: pendant Order() : Pendant Car Or der
post:
| et pendant Ord: Set(pendant Car Order) =
pendant Car Order . al | | nstances()->sel ect(p| p.id=self.id)
in
pendant Ord->si ze()=1 inplies result=pendant Ord->any()

ExistingPerformancelndicator

cont ext Exi stingPerformancel ndi cator:: perflnd()
Per f or mancel ndi cat or
post :
| et perf: Set(Performancel ndi cator)= Performancel ndi cator
al I I nstances()->sel ect (pi| pi . name=sel f. nane)

98

in
perf->not Enpty() inplies result=perf->any()

RESERVATION MANAGEMENT EVENTS

MakeRental

cont ext MakeRental :: countri esExi sts() : Bool ean
post :
self.countries-> forAll (name | Country.alllnstances()->
exi sts(c| c. nane=nane))

cont ext MakeRent al : : rancheslnCountries() : Bool ean
post:
| et pickUpCountryN: String= self.pickUpBranch. country. name
| et dropOff CountryN: String= self.dropOfBranch. country. nane
in
result = self.countries->includes(pickUpCountryN) and
sel f.countries->includes(dropCOf f CountryN)

cont ext MakeRental :: availability() : Bool ean
post :
| et todayAvailability: Integer= self.pickUpBranch
groupAvai l ability->sel ect (gA| gA. car G oup=
self.carG.quantity
| et validRental: Rental Agreenment =Reservation. all I nstances()
->reject(r|r.ocllsTypeOr(Cancel edReservation))->
select(r|r.car G oup=sel f.car G oup) -
>forAll (r|r.car=i senpty)->
uni on(Rent al Agreenent . al | I nstances()->sel ect(r.car->
i sSNot Enpty() and r.isG oup=self.carQ
| et sumReservation=val i dReservati on->
sel ect (r| not (r. pi ckUpBranch=sel f. pi ckUpl d)
and r.dropOf f Branch=sel f. pi ckUpld and
r.agreedEndi ng. dat e()
< sel f. beginning and not(r.ocl|sTypeO (Cl osedRental))
| et decReservation=val i dReservation->select(r|r.beginning >
now() and r. pi ckUpBranch=sel f. pi ckUpld and
(not (r.dropOf fBranch=sel f. pi ckUpl d) or
r.agreedEndi ng. date() < self.date))
in
resul t =(todayAvail ability+sunmReservation) > decReservation

cont ext MakeRent al : : pi ckUpBranch() : Br anch
post:
| et branches: Set (Branch) = Branch. al |l | nstances()->
sel ect (nane=sel f. pi ckUpl d)
in
branches->si ze()=1 inplies result=branches->any()

cont ext MakeRent al : : dropOffBranch() : Branch
post :
| et branches: Set (Branch) = Branch. al || nstances()->
sel ect (nanme=sel f. dropCOffld)

99

in
branches->si ze()=1 i nplies result=branches->any()

cont ext MakeRent al : : appl y()
post :

| et getCountries: Set(Country) =self.countries-> forAll (nane

Country. all I nstances()->sel ect(c| c. nane=nane))
in
renter.ocl|sTypeOf (Custonmer) and rental.ocllsNew) and
rental . ocl | sTypeOf (Rent al Agreenent) and
rental . begi nni ng=begi nning and rental.renter=renter and
rental .initEndi ng=sel f.endi ng and
rental . pi ckUpBranch=sel f. pi ckUpBranch and
rental .dropOf f Branch=sel f. dropOf f Branch and
rental .country= getCountries and answer Rent al =r

MakeWalkInRental

cont ext MakeWal kl nRent al : : candi dateCars() : CarG oup
post :
| et carsAv: Set(Car)= self.pickUpBranch. carsAvail abl eNow
| et carsFreed: Set(Car)= self.pickUpBranch. car->
sel ect(c| c. assigned? and c.rental Agreenent - >
exi sts(r]|r.beginning. date()=today() and
not (r.ocl I sTypeOf (OpenedRental)) and
not (r.ocl I sTypeOf (Guar ant eedRental)) and now —begi nni ng
>(m nute(90))))
resul t = car sAv->uni on(sel f.carsFreed)->sel ect(c|c.carGoup=
sel f.car G

cont ext MakeWal kl nRent al : : appl y()
post :
sel f.ocl AsType(MakeRental). *apply and sel f. begi nning >
self.time and sel f.begi nning. day()=self.tinme.day()
and sel f.answer Rental . car=
candi dat eCar s- >sort edBy(ni | eageFromlLast Servi ce)->first()

MakeWalkInRentalWithCarModel

cont ext MakeWal kIl nRent al Wt hCar Model : : candi dateCars() : CarModel
post:
| et carsAv: Set(Car)= self.pickUpBranch. carsAvail abl eNow
in
| et carsMobdAv: Set(Car)= carsAv-
>sel ect (c| c. car Model =sel f.carM

in
result=
i f carsMbdAv->not Enpty() then
car sMbdAv
el se
carsAv-> select(c|c.carGoup= self.carQ
end if

100

MakeReservation

cont ext MakeReservation:: apply()

post :
sel f.ocl AsType(MakeRental). *appl y() and
sel f. answer Rent al . reservati onDate=sel f.time and
sel f.answer Rent al . car Gr oup=car G

MakeReservationWithCarModel

cont ext MakeReservati onW t hCar Model : : appl y()

post :
sel f.ocl AsType(MakeReservati on). ~appl y() and
sel f.answer Rent al . car Mbdel =sel f. carM

ExistingPersonCheck

cont ext Exi stingPersonCheck:: apply()
post :
| et pers: Set(Person)= EU Rent Person. al | I nst ances() - >
sel ect (p| p.id=self.id)
in
sel f.answer Exi st s=per s->i sNot Enpty() and pers->i sNot Enpty()
i nplies self.answerPerson=pers->any()

CancelCurrentRental

cont ext Cancel CurrentRental :: apply()
post :
Rent al Agreenent . al | I nstances() - >excl udes(sel f.rental)

GuaranteeReservation

cont ext Guar ant eeReservation:: apply()

post:
sel f.reservation.ocl|sTypeO (Guarant eedReservati on)
and sel f.reservation. ocl AsType(Guar ant eedReservati on).
credit CardNunber =sel f.creditCard

EndWalkinRental

cont ext EndVval kI nRent al : : apply

post :

GetReservation

cont ext Get Reservation:: reservationExists() : Bool ean
post :

result=self.rental.ocll|sKindOf(Reservation) and
not (sel f.rental . ocl | sKi ndOf (Cancel edReservati on))

cont ext Get Reservation:: apply()
post :

101

answer Reservati on= sel f.person. Renta
Agr eenent - >sel ect (r| r.begi nning=sel f. begi nni ng)

RentalExtension

cont ext Rent al Ext ensi on:: openedRent al Exi sts() : Bool ean
post :
result=sel f.rental.ocll|sKi ndO(OpenedRental) and
not (sel f.rental . ocl|sKindOf (Cancel edReservati on))

cont ext Rent al Ext ensi on:: mai nt enanceNot Needed() : Bool ean
post :
resul t=not (self.rental.car.ocl|sTypeO (NeedsMi nt enance))

cont ext Rent al Ext ensi on:: appl y()
post :
| et newExt ensi on: Extension =
sel f. openedRent al . newEndi ngs. | ast (). extension
in
sel f.rental.ocl|sTypeO (Ext endedRental) and
sel f. newkxt ensi on. ocl I sNew() and sel f. newExt ensi on. ext ensi on
Done=sel f.ti me and sel f. newExt ensi on. dat eTi me=sel f. newEnd

CancelReservation

cont ext Cancel Resevation:: apply()
post :
sel f.reservation. ocl | sTypeO (Cancel edCust oner)

CancelGuaranteedReservation

cont ext Cancel Guar ant eedReservation:: alllnstances() : Bool ean
post :
Cancel Reservation. al |l | nstances()->sel ect(cr
| cr.reservation. ocl | sKi ndOf (Guar ant eedReservati on) and
cr.reservation. begi nni ng. dat e() =t oday())

cont ext Cancel Guar ant eedReservation:: apply()

post :
sel f. ocl AsType(Cancel Reservation).apply() and
charge(sel f.reservation. ocl AsType(Guar ant eedCancel ed) . fi ne,
sel f. ocl AsType(Guar ant eedReservati on). credi t Car dNunber)

CheckTodayReservationWithoutCar
cont ext CheckTodayReservati onWthout Car:: alllnstances() : Bool ean
post:

resul t =CheckTodayResW t hout Car Basi c. al | | nst ances() - >
uni on(CheckTodayResW t hout Car Deri ved. al | I nst ances())

102

cont ext CheckTodayReservati onWt hout Car:: apply()
post :
| et pendant Reservation: Set(Reservation)=
Reservation. al | | nst ances-
>sel ect(r]|r.beginning. date()=today() and
r.car->i senpty)-> select(r|r.pickUpBranch=
sel f.reservation. pi ckUpBranch)
l et carG CarGoup=self.reservation.car.car G oup
| et pendG oupR Set (Reservati on)=sel f. pendant Reservati on
->select(r|r.carGoup=self.carG or
r.car G oup=sel f.carG better or
r.car Group=sel f.car G wor se)
in
if self.reservation. beginning. date()=today and
sel f. pendGr oup->i sNot Enpty() then
sel f. pendG oup->any().car=sel f.reservation. car
end if

CUSTOMER MANAGEMENT EVENTS

RecordCustomer

cont ext Recor dCust oner:: apply()

post :
p.ocl I sNew() and and p.ocl|sTypeOf (EU _Rent Person) and
p.id=self.id and p. nane=sel f.name and p. address=sel f. addr ess
and p. birthdate= self.birthdate and answer Person=p

RecordDriverData

cont ext RecordDriverData:: apply()

post:
dl . ocl I sNew() and dl.ocl|IsTypeO(DrivingLi cense) and
dl . nunber=sel f.drivi ngLi censeNunber and
dl . i ssue=sel f.issue and dl.expiration=self.expiration
and dl . EU_Rent Person = sel f. person

JoinLoyaltylncentiveScheme

cont ext Joi nLoyal tyl ncentiveSchene:: apply() : Branch
post :
sel f. person. ocl | sTypeOf (Loyal t yMenber) and
sel f. person. ocl AsType(Loyal t yMenber). nenber shi pDat e=t oday()

CancelLoyaltyMembership
cont ext Cancel Loyal t yMenber shi p:: isMenber() : Bool ean

post :
sel f. person. ocl | sTypeOf (Loyal t yMenber)

cont ext Cancel Loyal t yMenbershi p:: apply() : Bool ean
post :
not (sel f. person. ocl | sTypeO (Loyal t yMenber))

103

DefaultingCustomer

cont ext Def aul ti ngCust oner:: apply() : Bool ean
post :
et fault: FaultSeriousness= self.rental.faultSeriousnes->
sel ect (f| f. badExperi ence.type=paynent Probl em
in
self.fault.ocllIsNew and self.fault.degree= self.problem
Seriousness and sel f.answer ToBeBl ackl i st ed=
bl ackl i stingCriteriaAchi eved(sel f.person)
and not sel f.person.ocl|sTypeO (Loyal t yMenber)

CancelCustomersReservations

cont ext Cancel Cust omer sReservations:: apply()
post:
| et openRes: Reservation= sel f.person.rental sAsRent er @r e- >
select(r| r.ocllsTypeOf (Reservation))->
reject(r.ocl!sTypeO (OpenedRental) or
r.ocl | sTypeOf (Cancel edReservati on))
in
openRes->forAll (r| r.ocllsTypeO (Cancel edReservati on)
and r.ocl AsType(Cancel edReservation). notivati on=
sel f.notivation)

BlacklistCustomer

cont ext Bl ackl i st Custoner:: apply()
post :

sel f. person. ocl | sTypeOf (Bl ackl i sted) and

sel f. person. ocl AsType(Bl ackl i sted). bl ackl i st edDat e=t oday()
and

sel f. ocl AsType(Cancel Cust oner sReservati ons). *appl y()

GetLoyaltyCandidates

cont ext Get Loyal t yCandi dates:: apply()
post :
| et curBranch: Branch= Branch. al | I nstances()->
sel ect (b| b. name=cur r ent BranchNane())
| et cl osedRent al sLast Year (p: EU_Rent Person) =
p. Rent al Agr eenent - >
sel ect (ocl I sTypeCOf (Cl osedRental))->sel ect (cR| Now() -
cR begi nning < Year (1))
in
answer Cust onmer s= cur Branch. branchCust oner - >r e ect (
ocl I sTypeO (Loyal t yMenber) or ocl|sTypeO (Bl acklisted))->
select(p| p.faults->isEnmpty() and
sel f. cl osedRent al sLast Year (p)
->count>=4 and sel f.cl osedRent al sLast Year (p) . act ual Return->
col l ect(d| d.date())->i ncludes(today()))

GetTodayBlacklisted
cont ext Get TodayBl ackl i sted:: apply()

post :
answer Cust orer s= Bl ackl i st ed. al

104

I nstances()->sel ect (b| b. bl ackl i st edDat e=t oday())

PRICING AND DISCOUNTING MANAGEMENT EVENTS

OfferSpecialAdvantatges

cont ext
post :

O f er Speci al Advant at ges:: appl y()

| et basePr: Money=sel f.reservation. basicPrice
| et bestPrice: Money=sel f.reservation. bestPrice
| et reservationTi neDi scount PerDuration(rd: Rental Duration)
=sel f.reservation. appli cabl eDi scount PerDurati on
->sel ect (d| d. reservati onTi ne)
| et best Rental Di scount PerDurati on(rd: Rent al Durati on,
basi cPrice: Mney) : Discount=
sel f.rental Appl i cabl eDi scount Per Duration(rd)->
reject(di sAct: Discount|
sel f.rental Appl i cabl eDi scount Per Duration(rd)->
exi sts(di sO her: Di scount| apply(disCher,
rd).isBetter(apply(disAct, rd)))->any()
| et bestSpD: Money = self.bestDurationPrices->iterate(elem
tup : Tuple {acclnterval: Duration=self.onRentlnterval,
accPri ce: Money=0} |
et timeMax: Duration= durationT(elemtimeUnit,
el em maxi munDur at i on)
et timeM n:Duration= durationT(elemtinmeUnit,
el em m ni munDur at i on)
l et numnt:Integer =
if tup.acclnterval >= tinmeMx then
tup. acclnterval /ti meMax
el se
tup.acclnterval /timeMn
in
Tupl e {acclnterval : Durati on=
(if tup.acclnterval >= tinmeMx then
tup. accl nterval % i meMax
el se
tup.acclnterval % i meMn
endi f),
accPrice: Money= tup. accPrice+
nuni nt *appl y(sel f. best Rent al Di scount Per Dur ati on
(elemrental Duration, elemprice),
elemrental Duration)}).accPrice
in
answer SOpt i ons=Sequence{}->append(Tupl e{i d="Base price",
desc= basePr.toString})->
append(Tupl e{i d="Best price", desc=bestPr.toString}) ->
append(Tupl e{desc="Speci al Advant at ges", desc=hest SpD})

105

OfferPaymentWithPoints

cont ext O fer Payment Wt hPoi nts:: appl y()

post :

| et basePr: Money=sel f.reservation. basicPrice

| et points: | nteger=points(basePr)

in

sel f.ocl AsType(Of f er Speci al Advant at ges) . “appl y() and

if (self.reservation.renter.ocllsTypeO (LoyaltyMenber)

and sel f.ocl AsType(Loyal t yMenber) . avai | abl ePoi nt s>=poi nts
and

(sel f.reservation. begi nni ng. day() -
sel f.reservation.reservati onDate. day()) >=day(14))
sel f.answer Opti ons=sel f. answer SOpti ons->
append(Tupl e(i d="Poi nts", desc=points)
el se
sel f.answer Opti ons=sel f. answer SOpti ons
end if
docunent ati on:
Accuracy is difficult to define in this operation
because of a non automatic definition of
di scounts...etc

ChooseDiscountOption

cont ext ChooseDi scount Option:: validOption() : Bool ean
post:
result= (self.selectedOption="Special Advantatges") or
(sel f.sel ectedOpti on="Best Price") or
(sel f.sel ectedOption=
"Poi nts")

cont ext ChooseDi scount Option:: apply() : Bool ean
post :
if (selectedOption="Special Advantatges") then

sel f.reservation.ocl|sTypeO (Reservati onWthSpeci al Di scount)
el se
if (selectedOption=" Points") then

sel f.reservation. ocl | sTypeO (Poi nt sPaynent Reservati on)
end if
end if

ShowBestBasePrice

cont ext ShowBest BasePrice:: apply() : Bool ean
post :
sel f.answer Price=sel f.reservation. bestPrice.toString()

ShowBestPrice
cont ext ShowBest Price:: apply() : Bool ean

post :
sel f.answer Price=sel f.reservation. basi cPrice

106

RecordNewDiscount

cont ext Recor dNewDi scount:: durationsExist() : Bool ean
post :
sel f. appl i cabl eDurati ons->forAll (dur
Rent al Durati on. al | I nstances() ->exists(d|d.name=dur))

cont ext Recor dNewDi scount:: groupsExist() : Bool ean
post :
sel f. appl i cabl eGroups->forAll (group
Car Group. al I nstances()
- >exi st s(g| g. nane=gr oup))

cont ext Recor dNewDi scount:: apply() : Bool ean
post :
| et getDurations: Set (Rental Duration)=
sel f. appl i cabl eDurati ons->
forAll (name| Rental Duration.alllnstances()-
>sel ect (r| r. name=nane)
| et get Groups: Set(CarGroup) = self.applicabl eGoups->
forAll (name| Car G oup.alllnstances()-
>sel ect (cg| cg. name=nane)
in
di s.ocl I sNew() and dis.ocllsTypeO (Di scount) and di s. nane=
sel f.name and dis.effect=self.effect and dis. description=
sel f.description and
di s.reservationTi me=sel f.reservationTi me
and di s. begi nni ngDat e=sel f.tine.date() and dis.carG oup=
sel f.get Goups and dis.rental Durati on=sel f.getDurations

CloseDiscount

cont ext Cl oseDi scount:: apply() : Bool ean
post :
sel f.di scount. ocl | sTypeO (Cl osedDi scount) and
sel f. di scount. ocl AsType(Cl osedDi scount) . endi ngDat e
=sel f.tinme.date()

RecordNewRentalDuration

cont ext Recor dNewRent al Duration:: previ ouskxi sts() : Bool ean
post :
previ ousNanme- >not Enpty() inplies
Rent al Duration. al | | nst ances()
->exi sts(rd| rd.nanme= sel f.durati onNane)

cont ext Recor dNewRent al Duration:: apply() : Bool ean
post:
| et previ ousRC:. Rental Durati on= Rental Duration.alllnstances()
->sel ect(r|r.name=sel f. previ ousNane)
in
rc.ocllsNew() and rc.ocl|sTypeOf (Rental Duration) and
rc. nane=
sel f.name and rc. m ni munDur ati on=sel f. m ni runmbDur ati on and
rc. maxi munbur ati on= sel f. maxi munDur ati on and
rc.timeUnit=self.tinmeUnit and

107

i f previousRC->not Enmpty() then
rc.shorter=sel f.previ ousRC- >any() and

rc.longer=sel f.previ ousRC >any().| onger @re

el se
rc.shorter->i senpty() and rc.| onger=Rent al Cat egory.
all I nstances() ->any(r|r.shorter @re->i senpty)

end if

NewCarGroupDurationPrice

cont ext NewCar Gr oupDur ati onPrice:: apply() : CarG oup
post :
cgdp. ocl I sNew() and cgdp. ocl I sTypeOf (Car GroupDur ati onPri ce)
and
cgdp. price=self.price and cgdp. car Group=sel f.carG and
cgdp. rent al Dur ati on=durati on

NewCGDPForNewDuration

cont ext NewCGCDPFor NewDur ati on: : appl y()
post :
cgdp. ocl I sNew() and cgdp. ocl I sTypeOf (Car GroupDur ati onPri ce)
and
cgdp. price=sel f.price and cgdp. car Group=sel f.carG and
cgdp. rent al Dur ati on=duration

ChangeCarGroupDurationPrice

cont ext ChangeCar GroupbDur ationPrice:: apply()

post :
Car GroupbDur ati onPrice. all I nstances()->sel ect (cgdp
cgdp. car G oup=sel f.car G and
cgdp. rental Durati on=duration).price=self.price

CAR ALLOCATION EVENTS

CarAllocationWithAnExceptionRule

cont ext Car Al | ocati onW t hAnExcepti onRul e:: appl y()
post :
i f upwal kl nPossi bl e then
answer Opti ons->i ncl udes("wal k-in")
end if
i f 2upgradePossi bl e then
answer Opti ons- >i ncl udes(" bunped- upgrade")
end if
i f downgradePossi bl e then
answer Opti ons->i ncl udes("downgr ade")
end if

i f transferPossible then

answer Opti ons->i ncl ude("transfer™)
end if

i f servicePossible then

answer Opti ons- >i ncl ude("service")
end if

108

CarAllocationAutomatic

cont ext Car Al | ocati onAutomatic:: apply()
post :
| et nodel Avai | (m Car Mbdel): Model Avail ability=
sel f. curBranch.
nodel Avai |l abi | i ty@re-> sel ect (mA| mA. car Mbdel =n)
in
i f (groupAvail (self.curGoup)->isenpty() or (groupAvai
(sel f.curGroup).quantity@re<(sel f.demXG oup->sel ect
(sel f.curGoup).demand@re)) and sel f.upgradePossi bl e then
-- Do upgrade
sel f.reservation. car->i sNot Enpty() and sel f.curBranch
car sAvai | abl e@r e- >sel ect (c| c. car G oup=
sel f. upgradeG oup) - >i ncl udes(sel f.reservation. car)
el se
i f self.curMdel->isNotEmty() and
sel f. nodel Avai | (sel f. curModel) then
-- Model desired
sel f.reservation. car->i sNot Enpty() and self.curBranch
car sAvai | abl e@r e->sel ect (c| c. car Model =
sel f.curMdel)->i ncludes(sel f.reservation.car)
el se
-- Model with | ower denand
if self.avail Goup(curG oup)->i sNot Enpty then
sel f.reservation. car->i sNot Enpty() and
sel f.reservation. car. car Model =
sel f.cur Group. car Model s->
sortedBy(cM sel f. avai | Model (cM @r e-sel f. demXModel - >
sel ect (d| d. car Mbdel =cM . demand@r e) - >f i rst ()
end if
end if
end if

CarAllocationKind

cont ext Car Al | ocati onKind:: apply()
post:
i f self.upgradePossible or self.groupAvail (sel f.curG oup)
t hen
answer Ki nd=Aut omati c
el se
i f upwal kl nPossi bl e or 2upgradePossi bl e or
downgr adePossi bl e or
transferPossible or servicePossible then
answer Ki nd=Excepti on
el se
answer Ki nd=I nExtrem s
end if
enf if

CarAllocationExceptionOption

cont ext Car Al | ocati onExcepti onOption:: validOption() : Bool ean
post :
resul t=(option="wal k-i n* and upWal kl nPossi ble) or
(opti on="bunped-upgrade" and 2upgradePossi ble) or
(option= "downgrade" and downgradePossi bl e) or
(option="transfer" and transferPossible) or

109

(option="service" and servi cePossi bl e)

cont ext Car Al | ocati onExcepti onOption:: apply()
post :
| et curGroup: Car Group=sel f.reservation. car G oup
| et upgradeG oup: Car Group=sel f.reservation. carG oup. better
| et downgradeGroup: Car Group=sel f.reservati on. car G oup. wor se
| et 2upgradeG oup: Car Group=
i f upgradeG oup->i senpty then {}
el se upgradeG oup. better
| et curBranch: Branch= self.reservation. pi ckUpBranch
in
if option="wal k-in" then
sel f.reservation. car->i sNot Enpty() and sel f.curBranch.
avai |l abl eCar s@r e- >sel ect (c| car G oup=sel f. upgradeG oup) - >
i ncl udes(sel f.reservation.car)
end if
i f option="bunped-upgrade” then
sel f.reservation. car->i sNot Enpty() and
sel f.reservation. car.carG oup=sel f.upgradeG oup and
I et internedi ateR: Reservation=sel f.curBranch. next DayR- >
select(r|r.car@re= self.reservation.car)

in

sel f.intermedi ateR car. car G oup=sel f. 2upgradeG oup
and

not (sel f.intermedi ateR renter. ocl|sKi ndOf (Loyalty
Menmber)) i mpli es self.curBranch. next DayR-

>sel ect(r|r.carG oup=

upgradeG oup and r.renter.ocl|sKi ndOf (Loyal t yMeneber)) - >
forAll (r|r.car.cargroup=2upgradeG oup)

end if

i f option= "downgrade" then
sel f.reservation. car->i sNot Enpty() and

sel f.reservation. car.carGoup= sel f.downgradeG oup

end if

if option="transfer" then

sel f.reservation. car->i sNot Empty() and

sel f.curBranch. transfer Agreement[transferor]->sel ect(

t A.transferor. GoupAvail ability->sel ect (gA| ga. car Group=

sel f.curGoup).quantity> tA. transferor.denmandXG oup- >

sel ect (d| d. car Group=sel f. cur Group) . denand) - >sort edBy

(tAlt A expectedTime < self.reservation. begi nni ng-now() -

preparingTime())->first().car-

>sel ect (c| c. car Goup=sel f. cur G oup)
->i ncl udes(sel f.reservation.car)
end if

if option="service" then
sel f.reservation. car->i sNot Enpty() and
sel f.reservation. car.ocl | sKi ndOf (mai nt enance
Schedul ed) @re and self.reservation.car.ocl!| AsType
(Mai nt enanceSchedul ed@r e. begi nni ngbat e <>t onorrow())
and not (sel f.reservation. car.ocl|sKi ndOf
(mai nt enanceSchedul ed))
and self.reservation. car.carGoup=sel f.reservation. car G oup
end if

110

CarAllocationExtremisOption

cont ext Car Al | ocati onExtrem sOption:: validOption() : Bool ean
post:
result=(option="delay" or option="conpetitor")

cont ext Car Al | ocati onExtrem sOption:: apply()
post :
if option="delay" then
sel f.reservation. car->i senpty()
end if
if option="conpetitor" then
not (sel f.reservation. car.ocl|sTypeOr(OwncCar))
end if

CarAllocationWithAnExtremisRule

cont ext Car Al | ocati onWt hAnExtrem sRul e:: apply()
post :
sel f.answer Options.includes("delay") and
sel f.answer Opti ons. i ncludes("conpetitor™)

CreateTransferAgreement
cont ext CreateTransfer Agreenent:: not Previ ousAgreenent ()

Bool ean
post :

resul t=sel f.recei verBranch. transferor->excludes(sel f.branch)

cont ext Creat eTransfer Agreenent:: apply()
post:
| et reverseTransAg: Set (Transf er Agreenent) =
Transf er Agr eenent .
all I nstances()->select(taJta.receiver=self.branch and
ta.transferor=sel f.recei verBranch)
in
ta.oclIsNew() and ta.ocl|sTypeO (TransferAgreenent)
and ta.transferor=self.branch and
ta.receiver=self.receiverBranch
and answer Tr ansAg=t a
and
i f reverseTransAg->not Enpty then
answer Dat aNeeded=f al se and
ta. di stance=reverseTransAg. di st ance
and ta. expectedTi me=reverseTransAg. expect edTi ne
el se
answer Dat aNeeded=t r ue
end if

CancelTransferAgreement

cont ext Cancel Transfer Agreement:: transfer AgExists() : Bool ean
post :
resul t =Transfer Agreenent. al | | nstances() ->exi sts(ta]
ta.transferor=sel f.branch and
ta.recei ver=sel f.receiverBranch)

111

cont ext Cancel Transfer Agreement:: apply()

post :
Transf er Agreenent . al | | nst ances() - >excl udes(t a|
ta.transferor=sel f.branch and

ta.receiver=sel f.receiverBranch)

ChangeTransferAgreementData

cont ext ChangeTr ansf er Agreenent Dat a: : appl y()

post :
sel f.transfer Ag. di stance(km =sel f. di stance and
sel f.transfer Ag. expect edTi me(h) =sel f. expect edTi ne
IntroduceTransferData
cont ext I ntroduceTransferData:: apply()
post :

sel f.transAg. di stance=sel f. di stance and
sel f.transAg. expect edTi me= sel f. expect edTi nme

GetCarsToBeTransferred

cont ext Get CarsToBeTransferred:: apply()
post :
| et carsToBeTrans: Set(Car)= sel f.branch. car-
>sel ect(c|c.rental
Agr eement - >exi sts(r|r.begi nni ng=tonmorrow() and
not (r. ocl I ski ndCOf (Cancel edReser vati on) and
r. pi ckUpBranch<>sel f. branch)
in
sel f. answer Tr ansf er s=car sToBeTrans->for Al | (c| Tupl e(car
RegN=c. regi strati onNunber, destination= c.rental Agreenent ->
sel ect(r|r.beginning=tomorrow()). pi ckUpBranch. nane))

TransferOwnership

cont ext Transfer Owership:: validCar() : Bool ean
post :
resul t =sel f.car.rental Agreenment - >exi sts(r| not(r.ocl|sKindOf
(Cancel edReservation)) and not(r.ocl|sKi ndOf (OpenedRental))
and
r.pi ckUpBranch=sel f. branch))

cont ext Transf er Omershi p:: validBranch() : Bool ean
post :
result = self.car.Branch<>sel f.branch

cont ext Transfer Omership:: apply()
post :
sel f.car. branch@re<>sel f.car. branch and
sel f.car. branch=sel f. branch

112

SellCarsinNeed

cont ext Sel | Carsl nNeed: : appl y()
post :
sel f. branch. carsAvail abl e@r e->sel ect(c
(today()-c.acquisitionbDate>=year(1)) or
(c.current M| eage>40. 000)) -
>forAll (c|c.ocllsTypeO (ToBeSol dCar))

CancelNoShowReservations

cont ext Cancel NoShowReser vations:: apply()
post :
Reservati on. al
I nst ances- >sel ect (r| r. begi nni ng=t oday())->forall (
r.ocl I sTypeOr (Cancel edConpany) and r.ocl AsType(

Cancel edConpany) . noti vati on= Cancel | i ngMbTi vati on: : no- show)

CarAllocationDefinitions

cont ext Car Al | ocationDefinitions:: curBranch() : Br anch
post :
result= self.reservation. pi ckUpBranch

cont ext Car Al | ocationDefinitions:: curGoup() : Car Group
post :
resul t=sel f.reservation. carG oup

cont ext Car Al | ocationDefinitions:: upgradeG oup() : Car Group
post :
resul t=sel f.reservation. carG oup. better

cont ext Car Al | ocati onDefinitions:: groupQuota(b : Branch)
I nt eger
post:
result= cur G oup. car G oupQuot a-
>sel ect (branch=cur Branch). quota

cont ext Car Al | ocationDefinitions:: groupAvail (g : CarG oup)
GroupAvai l ability

post :
result= sel f.curBranch. groupAvail abi |l ity@re-> sel ect
(9gA] gA. car Group=g)
cont ext Car Al | ocationDefinitions:: upgradePossible() : Bool ean
post :

resul t =sel f. groupAvail (sel f.upgradeG oup) - >i sNot Enpt y()
and sel f.groupAvail (sel f.upgradeG oup).quantity@re -
sel f. demXGr oup-
>sel ect (d| d. car Group=sel f. upgradeG oup) . demand@r e
>0. 1*groupQuot a(sel f. curBranch)

cont ext Car Al | ocationDefinitions:: demXModel () : DemandXMode

113

post:
resul t=sel f.reservation. pi ckUpBranch. demandXVbde

cont ext Car Al | ocationDefinitions:: demXG oup() : DemandXGr oup
post :
resul t=sel f.reservation. pi ckUpBranch. demandXG oup

ExtendedCarAllocationDefinitions

cont ext Ext endedCar Al | ocati onDefinitions:: downgradeG oup()
Car Group
post :
result= self.reservation.car G oup. worse

cont ext Ext endedCar Al | ocati onDefinitions:: 2upgradeG oup()
Car G oup
post:
result=
i f upgradeG oup->i senmpty then {}
el se upgradeG oup. better

cont ext Ext endedCar Al | ocati onDefinitions:: upWl kl nPossi bl e():
Bool ean
post :
result=if self.upgradeG oup->i sNot Enpty() then
sel f. groupAvail (sel f. upgradeG oup)->i sNot Enpty and
sel f. groupAvail (sel f.upgradeG oup).quantity@re -
sel f. demXG oup- >sel ect
(d] d. car Group=sel f. upgr adeGroup) . demand@re >0
el se
Fal se

cont ext Ext endedCar Al | ocati onDefinitions:: 2upgradePossible():
Bool ean
post :
result=
if self.2upgradeG oup->i sNot Enmpty() then
(sel f.curBranch. next DayR. car->col | ect (car Group) - >i ncl udes
(upgradeGroup) or self.groupAvail (sel f.upgradeG oup)) and
sel f. groupAvail (sel f.2upgradeG oup) - >i sNot Enpty and
sel f. groupAvail (sel f.2upgradeG oup).quantity@re -
sel f. demXGr oup- >sel ect (d| d. car Group=sel f. 2upgr adeGr oup) .
demand@re >0.1*self.groupQuota(self.curBranch
sel f. 2upgradeG oup)
el se
Fal se

cont ext Ext endedCar Al | ocati onDef i nitions::
downgr adePossi bl e() : Bool ean
post :
result=
if self.downgradeG oup->i sNot Enpty() then
sel f. groupAvail (sel f. downgradeG oup) - >i sNot Enpty and
sel f. groupAvail (sel f. downgradeG oup).quantity@re -
sel f. demXGr oup- >sel ect (d| d. car G oup=sel f. downgr adeG oup) .

114

demand@re >0.1*self.groupQuota(self.curBranch
sel f. downgr adeG oup)

el se
Fal se

cont ext Ext endedCar Al | ocationDefinitions:: transferPossible():
Bool ean
post:
resul t =sel f.curBranch. transferAgreenent[transferor]->exists
(tAl tA expectedTine < self.reservation. begi nni ng-now() -
preparingTinme() and tA transferor. G oupAvailability-
>sel ect (
gA| ga. car Group=sel f.curGoup).quantity >
t A. transferor.demandXG oup-> sel ect (d| d. car Group
=sel f. curGoup) . demand)

cont ext Ext endedCar Al | ocati onDefinitions:: servicePossible()
Bool ean
post :
result= sel f.curBranch.car-> exists(c
c. ocl I sKi ndOf (Mai nt enanceSchedul ed) and
c. ocl AsType(Mai nt enanceSchedul ed) . begi nni ngDat e
<>tonmorrow())

cont ext Ext endedCar Al | ocati onDefinitions:: downgradeG oup()
Car G oup
post:
result= self.reservation.car G oup. worse

cont ext Ext endedCar Al | ocati onDefinitions:: 2upgradeG oup()
Car G oup
post :
result=
i f upgradeG oup->i senmpty then {}
el se upgradeG oup. better

cont ext Ext endedCar Al | ocati onDefinitions:: upWl kl nPossi bl e():
Bool ean
post :
result=if self.upgradeG oup->i sNot Enpty() then
sel f. groupAvail (sel f. upgradeG oup) - >i sNot Enpty and
sel f. groupAvail (sel f.upgradeG oup).quantity@re -
sel f. demXGr oup- >
sel ect (d| d. car Group=sel f. upgradeG oup). denmand@re >0
el se
Fal se

cont ext Ext endedCar Al | ocati onDefi nitions:: 2upgradePossi bl e():
Bool ean
post :
result=
i f self.2upgradeG oup->i sNot Enpty() then
(sel f.curBranch. next DayR. car->col | ect (car Group) - >i ncl udes
(upgradeGroup) or self.groupAvail (sel f.upgradeG oup)) and
sel f. groupAvai l (sel f. 2upgradeG oup) - >i sNot Enpty and

115

sel f. groupAvail (sel f.2upgradeG oup).quantity@re -
sel f. demXGr oup- >sel ect (d| d. car G oup=sel f. 2upgr adeG oup) .
demand@re >0.1*self.groupQuota(self.curBranch
sel f. 2upgradeG oup)
el se
Fal se

cont ext Ext endedCar Al | ocati onDef i nitions::
downgr adePossi bl e() : Bool ean
post :
result=
if self.downgradeG oup->i sNot Enpty() then
sel f. groupAvai l (sel f. downgradeGr oup) - >i sNot Enpty and
sel f. groupAvail (sel f. downgradeGroup). quantity@re -
sel f. demXGr oup- >sel ect (d| d. car G oup=sel f. downgr adeG oup) .
demand@re >0.1*self.groupQuota(self.curBranch
sel f. downgr adeG oup)
el se
Fal se
cont ext Ext endedCar Al | ocati onDef i nitions::
t ransf er Possi bl e() : Bool ean
post :
resul t =sel f.curBranch. transferAgreement[transferor]->
exi sts(t Al t A expectedTinme < self.reservation. begi nni ng-
now() -
preparingTinme() and tA transferor. G oupAvailability-
>sel ect (
gA| ga. car G- oup=sel f. cur G oup). quantity>
t A.transferor.demandXG oup ->
sel ect (d| d. car Group=sel f. cur Group) . denand)
cont ext Ext endedCar Al | ocati onDefinitions:: servicePossible()
Bool ean
post :

result= sel f.curBranch. car-> exists(c|c.ocllsKindX
(mai nt enanceSchedul ed) and
c.ocl AsType(Mai nt enanceSchedul ed). begi nni ngDat e
<>tonmorrow())

AllocationEstimators

cont ext
post :

Al l ocationEstimators:: apply()

| et next DayR: Set (Reservation)= sel f. branch. next DayR

in

sel f.answer Loyal t yReservati on=sel f. next DayR- >
select(r|r.renter.ocl|sKindOf(Loyal tyMenber))

->sortedBy(reservati onDate) and

sel f. answer Guar ant eeReservati on= sel f. next DayR- >
select(r|r.ocllsKindOf(CGuarant eedRental))->
reject(r]|self.answerlLoyal tyReservati on->i ncl udes(r))->
sortedBy(reservationDate) and

sel f.answer O her Reservati on= sel f. next DayR->reject(r

sel f. answer Loyal t yReservati on->i ncl udes(r) or

sel f. answer Guar ant eeReservati on->i ncl udes(r)) ->
sort edBy(reservati onDat e)

116

CAR PREPARATION AND MAINTENANCE EVENTS

GetCarsToBePrepared
cont ext Get CarsToBePrepared:: apply() : Set(Reservation)
post :

answer Car =sel f. branch. car->sel ect (c| c. rent al Agr eenent - >
exi sts(r| .beginning.date()=today())->sortedBy (c|c.renta
Agr eement . begi nni ng- >sel ect (d| d. date() =t oday()))

CarPrepared

cont ext Car Prepared: : apply()

post :
Assi gnedCar. al | | nst ances- >sel ect (ac| ac. car =sel f. car
and

c. rent al Agreenent . begi nni ng=t oday()). ocl | sKi ndCf (Pr epar ed)

RecordNewMileage

cont ext Recor dNewM | eage: : validM | eage() : Bool ean

post :
sel f.newM | eage > self.car.currentM | eage@re

cont ext Recor dNewM | eage: : apply() : Bool ean
post :
sel f.car.ocl AsType(OmcCar).current M | eage=newM | eage
and
sel f. answer Sel | Car =(not (sel f. car. ocl | ski ndOf (NeedMai nt encance)
and not (damagesDet ect ed?) and
sel f.car.ocl | sKi ndOf (NeedToBeSol dCar)) and
if self.car.ocllsKindOf(NeedMai nt enance) then
sel f. car.ocl|sKi ndOf (Mai nt enanceSchedul ed) and
sel f.car.ocl AsType(Mai nt enanceSchedul ed) . begi nni ngbDat e=
get Mai nt enanceDat e()
end if

DamagesEvaluation

cont ext DamagesEval uation:: apply() : CarGoup

post :
sel f.answer OwnCar ?=sel f. car. ocl | sKi ndOf (OwnCar) and
sel f. answer Car=sel f. car

RecordDamages
cont ext RecordDamages:: rental I sClosed() : CarG oup
post :

result=self.rental.ocll|sKindO(Cl osedRent al)

cont ext Recor dDamages:: apply() : CarGoup

117

post :
| et car Dam BadExperi ence= Car Damages. al | | nst ances() - >any()
| et closedR cl osedRental =
sel f.rental . ocl AsType(cl osedRent al)
in
sel f. answer Car=sel f.rental . car and
-- cost to the renter
sel f. cl osedR. badExp->i ncl udes(carDan) and sel f.cl osedR
faul t Seri ousness->sel ect (fs|fs. badExp=car Dam . degree=
sel f. damageDegree and sel f. cl osedR damageCost =sel f. cost and
charge(sel f.cl osedR creditCar Nunber Damages, self.cost) and
-- schedul e reparations
sel f.rental.car.ocl|sKi ndOf (Repai r sSchedul ed) and
sel f.rental.car.ocl AsType(Repai rsSchedul ed) . begi nni ngDat e=
schedul eReparations(self.rental) and
sel f. answer ToBeBl ackl i st ed=bl ackl i stingCriteriaAchi eved
(self.rental.renter) and not
sel f.rental .driver.ocl|sTypeO (Loyal t yMenber)

ScheduleMaintenance

cont ext Schedul eMai nt enance: : car NeedsMai nt enance() : Bool ean
post:
resul t=sel f.car.ocllsTypeO (NeedsMai nt enance)

cont ext Schedul eMai nt enance:: apply() : Bool ean
post :

sel f.car.ocl | sTypeOf (Mai nt enanceSchedul ed) and

sel f.car. ocl AsType(Mai nt enanceSchedul ed) . begi nni ngDat e=
begi nni ng

EndOfMaintenance

cont ext EndOf Mai nt enance: : carWasBei ngMai nt ai ned() : Bool ean
post :
resul t=sel f.car.ocl|sTypeO (Mi nt enanceSchedul ed) and
sel f.car.ocl AsType(Mai nt enanceSchedul ed) . begi nni ngDat e<

now())

cont ext EndCf Mai nt enance: : apply() : Bool ean
post :
sel f.car.m | eageFronliast Servi ce= self.car.currentM | eage and
sel f.car.| ast Mai nt enanceDat e= today() and
not (sel f.car. ocl | sKi ndOf (NeedMai nt enance)) and

sel f.answer Sel | Car=(not (sel f.car. ocl | sKi ndOf (Repai r sSchedul ed)
and sel f.car.ocl|sKi ndOf (NeedToBeSol d))

EndOfRepairs
cont ext EndOf Repai rs:: carWasBei ngRepaired() : Bool ean
post:

resul t=sel f.car.ocl|sTypeO (Repai rsSchedul ed) and
sel f.car.ocl AsType(Repai r sSchedul ed) . begi nni ngbat e< now())

118

cont ext EndOf Repairs:: apply() : Bool ean
post:
not (sel f.car. ocl | sKi ndOf (Repai r sSchedul ed)) and

sel f.answer Sel | Car=(not (sel f.car. ocl | sKi ndOf (Mai nt enanceSchedul ed)
and sel f.car.ocl|sKi ndOf (NeedToBeSol d))

CAR PICK-UP AND RETURN EVENTS

ExistingReservationForToday

cont ext Exi sti ngReservati onFor Today:: reservati onExi sts()

Bool ean
post :
Reservation. al | | nst ances- >exi sts(r|r.begi nni ng=t oday() and
r.renter=self.person and
r.ocl I sNot Ki ndOf (Cancel edReservati on))
cont ext Exi sti ngReservati onFor Today:: apply() : Bool ean
post :

| et res: Reservation= Reservation.alllnstances()->
sel ect(r|r.begi nning=today() and r.renter=self.person)
in
sel f.answer Reservation=res and sel f. answer Expect Lat ePrep?=
not (sel f. answer Reservati on. assi gnedCar - >not Enpty() and
(sel f.answer Reservati on. assi gnedCar . expect edPr epar edTi ne<=
sel f.rental . begi nni ng) and
sel f. answer Reservati on. assi gnedCar
ocl I sKi ndOf (Prepared) inplies self.answerReservation
assi gnedCar . ocl AsType(Prepared). act ual Ti ne<=
self.rental . beginning))))

AddDriverToRental

cont ext AddDri ver ToRental :: apply() : carGoup
post :
self.rental .driver->includes(sel f.driver)

OpenRental

cont ext OpenRental :: apply() : Money
post :
sel f.rental.ocl|sKindOf (OpenedRental) and
sel f.rental.ocl AsType(OpenedRent al). act ual Pi ck- UpTi me=now()
and
not (sel f.rental.ocl|sKindOf (Cl osedRental)) and
not (sel f.rental . ocl|sKi ndOf (Ext endedRental)) and
sel f. answer Lat ePreparati on= self.rental . Assi gnedCar
ocl AsType(Prepared). actual Ti ne-sel f.rental . begi nni ng
>hour (1)

ApologiseForLatePreparation

cont ext Apol ogi seFor Lat ePreparation:: apply() : Bool ean
post :

119

sendApol ogi seLetter(sel f.reservation.renter)

ApologisePlusReimbursement

cont ext Apol ogi sePl usRei nbursenent:: apply() : Boolean
post :
| et hourlyPaid: Mney= self.reservation. bestDurationPrices->
sel ect (b| b. rental Durati on. i ni munDur ati on=1
and b.rental Duration.timeUnit=hour).price
I et hours: Integer= self.reservation. Assi gnedCar
ocl AsType(Prepared). actual Tine -
sel f.reservation. beginning. Tine()).floor()
in
sel f. ocl AsType(Apol ogi seFor Lat ePreparati on). ~appl y()
and rei nburse(sel f.reservation.renter
sel f. hours*sel f. hourl yPai d)

ApologisePlusCancelation

cont ext Apol ogi sePl usCancel ation:: apply() : Bool ean

post :
sel f. ocl AsType(Apol ogi seFor Lat ePreparati on). ~appl y()
and self.reservation.ocl!|sKindOf (Cancel edReservati on)

RentalDetails

cont ext Rental Details:: apply() : carGoup
post:
answer Det ai | s=Tupl e(begi nni ng=sel f.rental . begi nni ng,
agreedEndi ng= sel f.rental . agreedEndi ng, pickUpBranch=
sel f.rental . pi ckUpBranch. nane,
rentersl D=sel f.rental .renter.id,
ot her BadExp=sel f.rental .renter.faul ts->size()>1)

FreeCarsinNotPickedUpR

cont ext FreeCar sl nNot Pi ckedUpR: : apply() : Set(Reservation)
post :
Rent al Agreement . al | | nstances()->select(r| r.pickUpBranch=
sel f. branch and r. begi nni ng=today())->reject(r|
r @re. ocl I ski ndOf (OpenedRental) or
r @re. ocllsKindOF (Cancel edReservation)) ->forAll(r]
r.ocl I skKi ndOrf (Cancel edConpany) and
r.ocl AsType(Cancel edConpany) . noti vati on=
Cancel I i ngMoti vati on: : no- show and
r.ocl | ski ndOF (Guar ant eedReservation) inplies
charge(r.ocl AsType(Guar ant eedReservati on). credit Car dNunber,
r.ocl AsType(Guar ant eedCancel ed) . fi ne)

NonReturnedRentals
cont ext NonRet ur nedRental s:: apply() : carGoup
post :

sel f. answer Rent al s=Rent al Agr eenent . al
I nstances->sel ect(r|r.returnBranch=sel f.branch and

120

r.agr eedEndi ng=t oday() and
not (r. ocl I ski ndOf (Cancel edReser vati on))
and not(r.ocl|sKindOf (Cl osedRental))) and
sel f.answer Rental s->forAll (r]|rd. ocllsNew) and
rd. ocl I skindOf (Rental Details) and rd. rental =r)

NonReturned3DayRentals

cont ext NonRet ur ned3DayRent al s:: apply() : Set(Reservation)
post:
let rentals: Set(OpenedRental)= OpenedRental. al
I nstances()->sel ect(r|r.returnBranch=sel f. branch and
not (sel f. ocl I sKi ndOf (Cl osedRental)) and not
sel f.ocl I sTypeOf (Cancel edReservati on) and today()-
sel f. agreedEndi ng. date() =3)
in
Sequence{l..rental s->size()}->forall (i]|answerDetails->at(i)=
Tupl e(begi nni ng=rental s->at (i) .begi nni ng, agreedEndi ng=
rental s->at (i).agreedEndi ng, pickUpBranch=
rental s->at (i).pi ckUpBranch. nane, renterslD=
rental s->at(i).renter.id, rentersNane
=rental s->at(i).renter.nane, rentersTel ephone=
rental s->at(i).renter.tel ephone)

CarReturn

cont ext CarReturn:: apply() : Set(Reservation)
post :
| et closedR cl osedRental =
self.rental .ocl AsType(Cl osedRent al)
in
| et | ateRCost: Money= self.cl osedR rental Pri ceWthTax+
sel f.cl osedR. ocl AsType(Lat eRet urn). extraCost Wt hTax
| et dropPenalty: Bool ean= self.rental.returnBranch<>
sel f.rental . actual Ret urnBranch
in
sel f.rental.ocl|sKindOf(Cl osedRental) and
sel f.cl osedR. act ual Return= now() and
sel f. cl osedR. act ual Ret ur nBr anch=sel f. branch and
sel f.cl osedR. act ual Ret urnBranch<> sel f. cl osedR. pi ckUpBranch
i mplies self.branch. car->includes(self.closedR car) and
if (self.closedR ocllsKindO(LateReturn)) then
Faul t Seri ousness. al | I nst ances-
>exi st s(fs. badExperi ence. type=
| ateReturn and fs.cl osedRent al =sel f. cl osedR and fs. degree=
degree(self.rental.ocl AsType(LateReturn).extralnterval))
and
not self.closedR driver.ocl|sTypeO (LoyaltyMenber) and
if dropPenalty then
sel f. answer Cost =sel f. | at eRCost +dr opOf f Penal t y()
el se
sel f. answer Cost =sel f . | at eRCost
end if
el se
i f dropPenalty then
sel f.answer Cost =sel f. cl osedR. rental Pri ceWt hTax+
dropOf f Penal ty()
el se
sel f. answer Cost =sel f. cl osedR rental Pri ceW t hTax

121

end if

end if
PaymentData
cont ext Payment Data: : apply() : Money

post :
sel f.rental . paynent Type=sel f. payType and
sel f.rental.creditCarNumber Damages=sel f. credi t Car dDamages

CAR MANAGEMENT EVENTS

MoveCars
cont ext MoveCars:: novedCars() : Bool ean
post :
if sel f.neededCars>sel f.carsOQ her BranchCanMve t hen
resul t=sel f.carsQ her BranchCanhbve
el se
resul t =neededCar s
cont ext MoveCars:: apply() : Bool ean
post :
sel f. answer NeededCar s=sel f . neededCar s-sel f. novedCar s
ReceiveCar

cont ext Recei veCar:: apply() : CarModel
post :
c.ocllsNew() and c.ocllsKindOf(OwmCar) and
c.registrati onNunber=sel f.regNurmber and
self.currentM | eage=0 and
sel f. m | eageFronLast Servi ce=0 and
sel f. | ast Mai nt enanceDat e=t oday() and
sel f. acqui sitionDat e=t oday() and sel f.branch. car-
>i ncl udes(c)

RequestTransfer
cont ext Request Transfer:: apply() : Bool ean
post :

sel f.ocl AsType(MwveCars). *apply() and sel f.otherBranch
carsAvai |l abl e@r e->i ntersection(sel f.otherBranch. car->
sel ect (c| c.ocl | skKi ndOf (Bei ngTransferredCar) and
c.ocl AsType(Bei ngTransferredCar) . destinati on=

sel f. aski ngBranch)) - >si ze() =novedCar s

DoTransfer
cont ext DoTransfer:: apply() : Boolean
post :

sel f.ocl AsType(MoveCars) . *appl y() and sel f.aski ngBranch
carsAvai |l abl e@r e->i ntersection(sel f.askingBranch. car->

122

sel ect (c| c.ocl I skKi ndOf (Bei ngTransferredCar) and
c.ocl AsType(Bei ngTransferredCar) . destinati on=
sel f. ot herBranch))->si ze() =novedCar s

CalculateOwnCars

cont ext Cal cul at eOmnCars:: apply() : Bool ean
post :
answer Lack=sel f. ownCars< 1. 1*sel f. quota and answer Super pl us=
sel f.ownCars >1.1*self.quota and carsAvail abl e>0
cont ext Cal cul at eOmCars:: ownCars() : Bool ean
post:
resul t =sel f. branch. car->sel ect (c| c. ocl | ski ndOf (OmCar)
and c.carGroup=sel f.car G oup)->si ze()
cont ext Cal cul at eOmnCars:: quota() : Bool ean
post:
resul t =sel f. branch. car G oupQuot a- >sel ect (cGQ
cgQ car G oup= sel f.car G oup).quota
cont ext Cal cul at eOmCars:: carsAvail able() : Natural
post :
sel f. branch. groupAvai l ability->sel ect(ga
ga. car G oup=sel f.carGoup).quantity
WithSurplus
cont ext Wt hSurplus:: alllnstances() : Bool ean
post:
Cal cul at eOmnCars. al | I nstances() - >sel ect (c| c. answer Sur pl us)
cont ext WthSurplus:: apply() : Boolean
post:
sel f.ocl AsType(Cal cul at eOmCars) . *appl y() and
sel f.answer Sur pl usQ@= sel f.carsAvail abl e. mi n(sel f. ownCars
-sel f.quota*1.1)
WithLack
cont ext W thLack:: alllnstances() : Bool ean
post :
Cal cul at eOmnCars. al | I nst ances() - >sel ect (c| c. answer Lack)
cont ext Wt hLack:: apply() : Bool ean
post:

sel f.ocl AsType(Cal cul at eOmCars) . *appl y() and
sel f.answer Sur pl usQ=sel f. quota*1. 1- self.ownCars

123

BranchesWithSurplusOfCarGroup

cont ext BranchesW t hSur pl usOf Car Group: : apply() : Natura
post :
| et own(b: branch)=b. car->sel ect(c|c.ocl|skindO(OwmCar) and
c.car G oup=sel f. car G oup) - >si ze()
| et quant (b: Branch, cg: carGroup): Natural = GroupAvail ability.
al l I nstances()->sel ect(gal ga. branch=b and
ga. car Goup=cg) . quantity
| et CGquot a(b: Branch, cg: car Group) : Nat ural = Car Gr oupQuot a.
al I I nstances- >sel ect (ga| ga. branch=b and
ga. car G oup=cg) . quot a
in
| et branches: Set(Branch)=self.branch.receiver->
sel ect (quant (b, sel f. car Group) >0 and
own(b) <C&uot a(b, sel f.car))
in
Sequence{ l. . branches->size()}->forall (i|answersTransfers->
at (i) =Tupl e(branch=branches->at (i), nuntCars=
(Cxquot a(branches->at (i), sel f.car)-
qguant (branches->at (i).self.car)))

BranchesWithLackOfCarGroup

cont ext BranchesW t hLackCOf Car Group:: apply() : Natura
post :
I et own(b: branch) =b. car->sel ect(c|c.ocl|skindOf (OmCar) and
c.car G oup=sel f. car G oup) - >si ze()
| et quant (b: Branch, cg: carGroup): Natural = GroupAvail ability.
al Il I nstances()->sel ect(ga| ga. branch=b and
ga. car Group=cg).quantity
| et CGquot a(b: Branch, cg: car Group) : Nat ur al = Car Gr oupQuot a.
al I I nstances() - >sel ect (ga| ga. branch=b and ga. car G oup=cqg)
. quot a
| et branches: Set(Branch)=self. branch.receiver->
sel ect (own(b) >CGquot a(b, sel f.car))
in
Sequence{1l.. branches->size()}->forall (i| answersTransfers->
at (i) =Tupl e(branch=branches->at (i), nuntCars=
(own(branches->at(i).self.car) -
CGquot a(branches->at (i).self.car)))

OrderCar

cont ext OrderCar:: apply() : Pendant Car O der

post :
pco. ocl I sNew() and pco. ocl | sKi ndOf (Pendant Car Or der)
and sel f. branch->i ncl udes(pco) and pco.id=

Pendant Car Or der . get Newl d()

SellCar

cont ext Sel | Car:: not Assigned() : Bool ean

post :

resul t =sel f. Car. Rent al Agreenent - >sel ect(ra
ra.ocl | sTypeOf (OpenedRent al) - >i sEnpty()

124

cont ext Sell Car:: apply() : Boolean
post:
sel f.car.ocl|sTypeO (ToBeSol dCar)

ConfirmCarSale

cont ext ConfirmCar Sal e:: car ToBeSol d() : Bool ean
post :
result = self.Car.ocllsTypeO (ToBeSol dCar)

cont ext ConfirmCar Sal e:: apply() : Bool ean

post :
sel f. Car.ocl|IsTypeOf (Sol dCar) and sel f. Car. ocl As
Type(Sol dCar) . di sposal Dat e=t oday()

BRANCH, CAR GROUP AND MODELS MANAGEMENT EVENTS

ExistingCountryCheck

cont ext Exi stingCountryCheck:: apply() : Set(BranchType)
post :
I et count: Set(Country)=Country.alllnstances()->
sel ect (c| c. name=sel f. count r yName)
in
sel f. answer Count r yEXi st s=count - >not Enpty() and

count->not Enpty i nplies self.answerCountry=count->any()

RecordCountrylnformation

cont ext RecordCountryl nformation:: apply() : Set(BranchType)

post :
c.ocllsNew() and c.ocll|sTypeOf (Country) and

c. name=sel f. name and c. mechani cal Condi ti onsRequi rement s=

sel f. mechani cal CondReq and c. eni ssi onsReqg=sel f. em ssi onsReq

and
c.car Tax=sel f.carTax and answer Country=c

CreateBranch

cont ext CreateBranch:: branchesExists() : Bool ean
post:
sel f. quot as->forAll (g| Car G oup->al | I nstances()->
exi sts(cg| cg. nanme=q. car G oupNane))

cont ext CreateBranch:: apply() : Boolean
post :
br.oclIsNew() and br.ocl|sTypeOf(Branch) and

br. nane=sel f. branchNanme and br. branchType=BranchType.

al l I nstances()->sel ect (bt]| bt. name=sel f. branchType)
and sel f.quotas->forAll (q| br.carG oupQuot a->
i ncl udes(cgq| cgq. ocl I sNew() and
cgg. ocl I sTypeOf (Car G oupQuot a)
and cgq. car Group=Car G oup. al | I nst ances() - >

sel ect(cg| cg.nane=qg. car GroupNane) and cgp. branch=br)

125

CreateCarGroup

cont ext CreateCarGroup:: apply() : Bool ean
post:
| et previousCar Group: Car G oup=Car Group. al | I nst ances() - >
sel ect (cg| cg. nane=sel f. previ ousG oupNane)
in
cg.ocllIsNew() and cg.ocl|sTypeO (Car Group) and
cg. name=sel f. car G oupNane and
if (self.previousCarG oup->notEnpty()) then
sel f. previ ousCar G oup. better=cg and cg. better=
sel f. previ ousCar G oup. better @re
else -- is the worst
cg. better=CarGroup. al | I nstances()->
sel ect(cg| cg. worse@r e->i senpty())
end if

--assign default quota of the new car group to all branches

and Branch->all I nstances()->forall (b]cgqg.ocl|sNew)
and cgg. ocl | sTypeOf (Car G oupQuot a) and

cgg. quot a=sel f. defaul t Quota and cgq. car G oup=cg
and answer Car Gr oup=cg

CreateCarModel
cont ext CreateCarModel :: apply() : Bool ean
post :

sel f.answer Model . ocl | sNew() and sel f.answer Model . nanme=
sel f.name and sel f.answer Model . characteristics=techCars

ExistingCarModelCheck

cont ext Exi sti ngCar Model Check:: apply() : Bool ean
post :
| et car M Set (Car Model) = Car Model . al | I nstances() ->
sel ect (cM cM nane=sel f. nodel Nane)
in
sel f. answer Car Mbdel Exi st s= sel f.carM >not Enpty() and
sel f. answer Mbdel =sel f. car M >any()

AddModelToGroup
cont ext AddModel ToGroup: : apply() : Bool ean
post :

sel f. group. car Model - >i ncl udes(sel f. nodel)

ChangeModelGroup
cont ext ChangeModel Group:: apply() : Bool ean
post:

sel f.car G car Model - >i ncl udes(sel f.carM

ChangeCarGroupQuota

cont ext ChangeCar GroupQuota:: apply() : Set(Reservation)

126

post :

sel f. branch. car G oupQuot a- >any(cgq| cgg. carG oup=self.carQ.

guot a=sel f. newQuot a

PERFORMANCE INDICATORS EVENTS

ExistingCountryBranchType

cont ext Exi stingCountryBranchType:: CountryBranchTypeExi sts()
Bool ean

post :
resul t =Count ryBranchType. al | | nst ances() - >exi st s(chbt |
cbt. branchType. nane=sel f. branchType and
cbt. country. name=sel f. count r yNane)

cont ext Exi stingCountryBranchType:: apply() : Bool ean

post :

sel f. answer Count ryBranchType=Count ryBranchType. al | | nst ances()

->sel ect (cbt| cbt. branchType. nane=sel f. branchType and

cbt.country. name=sel f. count r yNane)

PerfomancelndicatorCheck

cont ext Per f omancel ndi cat or Check: : apply() : Bool ean
post :

| et perflnd: Set (Performancel ndi cat or)=Perf or mancel ndi cat or

al Il I nstances()->sel ect(pi| pi.nanme=sel f. nane)
in

sel f. answer Per f or mancel ndExi st =per f | nd- >not Enpty() and

perflnd->not Enpty() inplies
sel f. answer Per f or mancel ndi cat or = perf |l nd->any()
Createlndicator

cont ext Createlndicator:: apply() : Bool ean
post :

pi.ocllsNew() and pi.ocllsTypeCO (Performancel ndi cator)
and pi.nane=sel f.name and pi.description=self.description

and
sel f. answer Per f or mancel ndi cat or =p

DefineTargetForConcretelndicator

cont ext Def i neTar get For Concr et el ndi cator:: notPrevi ousTarget ()

Bool ean
post:
resul t =sel f. perflndi cator.countryBranchType->
excl udes(sel f.countryBranchType)
cont ext Def i neTar get For Concret el ndi cator:: apply() : Bool ean
post:

ci.ocllsNew() and ci.ocllsKindO (Concretelndicator)
and ci.countryBranchType=sel f.countryBranchType and

127

ci . performancel ndi cat or=sel f. perflndi cator and

ci . target Val ue=sel f.target
ChangeTargetForConcretelndicator
cont ext ChangeTar get For Concretel ndi cator:: apply() : Bool ean

post :
sel f. perflnd.targetVal ue=sel f. newTar get

128

8. SEQUENCE DIAGRAMS

Notation

To elaborate the sequence diagrams | have considered appropriate and interesting to
adopt UML 2.0 style. The main contribution, respect UML 1.5, for this project needs is
the definition of an easy-to-use and clear mechanism to represent include relationships
from use cases (which as far as | am concerned there was not a standard notation for it
before). Moreover, this mechanism is part of an homogeneous frame to represent
loops, alternatives and exception among others, via the definition of a general frame of
interaction (the combined fragment) and a descriptor of the specific type of interaction
(the interaction operator).

However, UML 2.0 mechanisms have not been enough for the expressivity and clarity
aimed for this project. As a consequence, a few non-standard extensions have been
used trying to follow, as far as possible, UML 2.0 style. A note is attached the first time
is used a non-standard structure.

The basic extension is an “interaction operator” forEach to allow defining a loop respect
a set of elements and having in each iteration a current element to be used as an entry
parameter in any of the events of the fragment.

Previous remarks

At the beginning of the events section, it was stated that events would be modelled as
objects. This modelling decision has an effect also in the sequence diagrams
appearance because instead of invoking so-called system operations, objects (the
events) will be created. However, it should be noticed that the basic semantic or what
both representations pretend is exactly the same.

Apart from this appearance change, the reader should be aware of the implicit
parameter passing between events via the attributes of the object as explained in [EE].
Concretely, it is assumed that “entrance” attributes or restriction expressions can take
its values from data entered by the actor, by an “answer” attribute of a previous event
or by the variable bind to a forEach structure.

However, it is not clear how to concisely write an expression in a loop (or forEach)
fragment where an attribute takes its value from a different instance in each iteration. In
these cases, the instance to which the attribute belongs to has been omitted of the
diagrams. It should be assumed that, this implicit instance corresponds to the event
instance just created before the loop in the first iteration, and to the last event instance
created in the loop for the rest of iterations (that is, what is logical).

Additionally, in some cases difficulty has been found to establish who sparks off an
event, belonging to a sequence of actions which are initially sparked off by a system
user, but where user interaction is really scarcely needed (only if some non common
conditions are achieved). Finally, the following convention has been decided: the first
action will be shown to be sparked off by the user, will return the result to the system
and the next events will be created by and returned to the system until user interaction
is needed.

However, it is not clear how this logical convention is applied when the first action is
inside a loop (or forEach structure). In this latter case, it has been decided that events

129

inside the loop are shown to be created by and returned to the system, unless user
interaction needed. Moreover, to graphically show that the sequence of actions is
sparked off by a system user, a non standard notation is used consisting in an arrow

from the actor to the fragment.

130

Reservation management

sd Make a reservation

L Cleds

ePC:_ExistingPersonCheck

opt [not(ePC.answerExists)]
ref Introduce a new EU-RentCustomer/Driver

p| : MakeReservation

: GuaranteeReservation

ref
Offer points payment

alt

: EndReservation

P : CancelCurrentRental

sd Extend arental aareement

=
D
=

P : RentalExtension

131

sd Cancel areservation by customer demand

L Cledk

. GetReservation

1 J
i

. CancelReservation

P
sd Make a walk-in rental
L Cledk
> ePC:_ExistingPersonCheck
I
opt [not(ePC.answerExists)]
ref Introduce a new EU-RentCustomer/Driver
1
> : MakeWalkinRental
1
alt
1
: EndWalkinRental
> : CancelCurrentRental
ref
Handover

132

Customer management

sd Introduce a new EU-Rent customer/driver

L Clerk

opt [EU-COPerson.allinstances->notExists(c|c.id=id))] (*)

ref Introduce a new EU-Corporation Customer

>

D : RecordDriverData
I

(*) We are assuming that there exists a class EU-CoPerson in the common information system
of EU-Corporation, which encapsulates data of people who have had (or have) a contact with
any of the companies of the corporation.

sd Introduce a new EU-Corporation Customer

L Cledk

ﬁ(» : RecordCustomer
i

sd Join the lovalty incentive scheme

=
D
=

P : JoinLoyaltylncentiveScheme

133

sd Cancel membership of the lovalty incentive scheme

X

C Cledk

|j< P . CancelLoyaltylMembership
:

sd Get candidates for membership of the lovalty incentive scheme

X

L Cledk

ﬁ(P : GetLoyaltyCandidates
i

sd List customers beina blacklisted

|j< P . GetTodayBlacklisted
|

134

sd Cancel all reservations

L Cledk

|j< P : CancelCustomersReservations
-
sd Record defaultina customer
Cled
P dC: DefaultingCustomer

I

opt [dc.answerToBeBlacklisted]

: BlacklistCustomer

135

Pricing and discounting management

sd Offer points payment

. System
Cletk
I
j(E] > ;. OfferPaymentWithPoints
__________ o
‘« : ChooseDiscountOption
Jl\ P

sd Offer special advantataes

i)
/A\

: ChooseDiscountOption

|
@ ________ Jj_____________________: : OfferSpecialAdvantatges
oY

I

sd Show best base price

|j< P : ShowBestBasePrice
|

136

sd Show best price

L Clerk

ref
Show best base price

: RecordDriverData

sd Introduce a new discount

cEU-Fent
Manager

P : RecordNewDiscount

sd Eliminate a discount

cEU-Fent
Manager

P : CloseDiscount

137

sd Create a new rental duration

cEU-Fent
Manager

|

P : RecordNewRentalDuration

* : NewCGDPForNewDuration

sd Create a car group duration price

cElL-Rent
hlanager

H\ > : NewCarGroupDurationPrice

sd Change price for a car aroup duration price

cElL-Rent
hlanager

> : ChangeCarGroupDurationPrice

138

Car allocation

sd Allocate cars to reservations

P : CancelNoShowReservations

>: :_SellCarsIinNeed

.-

P aFE : AllocationEstimators

] .
forEach reservation:Reservation

from aE.answerLoyaltyReservation (*)

ref

Allocate a car for a reservation

forEach reservation:Reservation

from aE.answerGuaranteedReservation (*)

ref

Allocate a car for a reservation

forEach reservation:Reservation

from aE.answerGuaranteedReservation (*)

ref

Allocate a car for a reservation

(*) Note the use of the non-standard UML 2.0 forEach as well as the use of the system

actor.

139

sd Allocate a car for a reservation

X

. System
K > cAK: CarAllocationKind
I
I
1
alt [cAK.answerKind=Automatic]
1
> . CarAllocationAutomatic
[cAK.answerKind =Exception]
Clet
1
3 » . CarAllocationWithAnExceptionRule
_l D
1 | _ . ——
> : CarAllocationExceptionOption
L e
|J [cAK.answerKind =InExtremis]
[L P : CarAllocationWithAnExtremisRule
I [
L > . CarAllocationExtremisOption
|

sd Transfer cars

L
e
=

P : GetCarsToBeTransferred

140

sd Receive cars beinag transferred

L
e
=

. TransferOwnership

sd Establish a transfer aareement between branches

: Branch

Manager
I

P cTA: CreateTransferAgreement

opt [cTA.answerDataNeeded]

. IntroduceTransferData

i sd Change data from a transfer agreement :

: Branch

Manager

|
P} :_ ChangeTransferAgreementData I
|

141

sd Cancel a transfer agreement

: Branch
Manager

ﬂ .

:_CancelTransferAgreement

142

Car Preparation and maintenance management

sd End of car checkinag

Cler
D\ » dE:_DamagesEvaluation
I
opt [dE.damagesDetected?]
ref Detect damages
opt [dE.answerOwnCar?]
n > rNM:_RecordNewMileage
I
opt [FNM.answerSellCar?]
ref Sell a car
sd Detect damaaes
Cler ;(%
: System
D\ P D:_ RecordDamages
|
opt I' [rD.answerToBeBlacklisted]
n\ P : BlacklistCustomer
L
I I

143

| sd Get cars to be prepared :

: Mechanic

Cler
|
™~ L __ I

| .
I sd End of car maintenance :

——————— — — e

———— e —

144

sd End of car repairs

X

L Clerk

I

P eOR:_EndOfRepairs

opt [eOR.answerSellCar]

ref

Sell car

145

Car pick-up and return management

sd Pick-up a car

L Clerk

|JL eRFT:_ExistingReservationForToday

alt [not(eRTF.answerExpectLatePrep)]

|_|r >
i.

ref
Handover

opt [oR.answerlLatePreparation]

. ApologisePlusReimbursement

Handover

opt [oR.answerLatePreparation]

. ApologisePlusReimbursement

H * : ApologisePlusCancellation

(*) Note: Handover will not begin until the car is prepared- the customer will wait-.
Consequently, the following expression will be satisfied on Handover:
eRFT.answerReservation.assignedCar.oclisKindOf(Prepared)

146

sd Handover

/_ \ An additional driver is added

. System jn each iteration
Clerds T
loop lJ -
L/ T ePC : ExistingPersonCheck

opt [hot(ePC.answerExists)]

| ref Introduce a new EU-Rent customer
4 : AddDriverToRental
OR : OpenRental
D P
I
sd Return of a car
Clet
. CarReturn
P

: PaymentData

147

sd Free cars

: FreeCarsInNotPickedUpR

sd Control late returns

nRR:_NonReturnedRentals

S

: NonReturned3DaysRentals

148

Car Management

sd Buy a car

X

C Cledk

%

: OrderCar

sd Receive a car

X

L Cledk

%

: ReceiveCar

sd Sell a car

: SellCar

149

sd Control number of cars

Q)
¥
: Branch /A\
Manager
: System
I
I
I
]
forEach group:CarGroup from CarGroup.allinstances()
I
|
4 cOC : CalculateOwnCars
I
alt [cOC.answerSurplus]
ref Decrease number of cars
[cOC.answerLack]
ref Increase number of cars

(*)Note the use of the non-standard UML 2.0 way to show that the sequence of events is
sparked off by a system user (the branch manager in this case)

sd Increase number of cars

A
/A\
7/ N
: System
'I > bWS : BranchesWithSurplusinCarGroup
1
loop [answerNeededCars >0]
> T : RequestTransfer
1
loop [answerNeededCars >0]
ref Buy a car

150

sd Decrease number of cars

X

. System

bWS : BranchesWithLackOfCarGroup

! P

1
loop [answerNeededCars >0]

tC : DoTransfer

| g

I
loop [answerNeededCars >0]

ref Sell a car

151

Branch, Car Group and Models management

sd Create a branch

CEl-Rent %

Manager
. System

eCC ; ExistingCountryCheck

opt [not(eCC.answerCountryExists)]

ref RecordCountrylnformation
[\ p - CreateBranch
I
sd Create a new car aroup
P
L
 EU-Rent AN
Manager
: System
I
! : CreateCarGroup
| P
I
loop
D P eCMC : ExistingCarModelCheck
[

opt [not(eCMC.answerCarModelEXxists)]

ref Add a car model

[/ J} : AddModelToGroup
I

152

CEU-Rent
Manager

/N
N__

CEl-Rent
Manager

N\
N__

sd Chanae car aroup auota

: Branch
Manager

I : ChangeCarGroupQuota

153

Performance indicators management

sd Add a performance indicator

CEU-Rent

Manager
ﬁ . ExistingCountryBranchType
t > pIC : PerformancelndicatorCheck
[

opt [not(plC.answerPerformancelndExists)]

ref Create indicator

: DefineTargetForConcretelndicator

sd Chanae a taraet value for a performance indicator

CEU-Rent
Manager
ﬁ . ExistingCountryBranchType
t > : ChangeTargetForConcretelndicators

154

9. CONCLUSIONS

When starting working with the case, the first problem to be solved was to clearly
define the case. However, the final version was not obtained until the use cases were
written, because it was not until then that we were conscious of the real needs of the
system and so, what should be clearly defined. As commented in the corresponding
section, the decisions made have tried to be as consistent as possible with the original
case and keep the size of the case treatable. Even so, when elaborating the
specification one should be very careful to be consistent with what was stated before
because the complexity of the case turned out to be considerable.

During the specification, the proposals made by Antoni Olivé in [IC-OI03], [DR-OI03]
and [EE] were generally useful, economic and easy-to-use.

For example, the approach to define the derivation rules associated to derived
elements based on operations definition, allowed the exploit of redefinition mechanism
in non-trivial attributes such as the calculation of the corresponding best price of a
rental agreement. Besides the mechanism was also useful for defining hybrid types
such as driver.

An analogous approach to define integrity constraints also proved to be useful in
defining integrity constraints in general, and creation time in particular, which otherwise
could not have been defined.

Furthermore, these techniques proved to be also very convenient when used jointly
with the proposal of modelling system events as objects, suggested in [EE].

One of the main advantages of this different approach to model events is the ease of
reuse of constraints such as existence constraints, which are very common. However,
the approach is also convenient to encapsulate “apply actions” (that is, postcondition
elements) by a hierarchy definition. This hierarchy takes basically two forms in the
project. In the first structure, the parent is abstract (or could be so) and defines some
conditions or changes common to possibly several events, which inherit this object.
While in the second structure, the parent is not abstract and defines some basic
conditions, which a derived child with special characteristics extends (and therefore we
minimize the use of conditional structure and clarify the model).

On the other hand, one difficulty found when defining the system events was how to
classify some of them. One example is in the context of car allocation, where the
system can request the user to choose among some options if an exception or an in
extremis rule has to be applied. In this case, it is not the user who decides to perform
an action, but the system, and so, it cannot be considered an action request event
strictly; however it has been considered so in this document. The idea to do it is taking
into account that the overall sequence of events, to which the event belongs, is
sparked off by the user and so, all the component events are, in a sense, caused by
the user. Anyway, it makes rethinking if a more accurate classification may be
convenient.

Finally, it should be noticed one drawback related to derived elements. The problem is
that in one system such as EU-Rent Rentals case, many convenient derived elements
or which just make sense can be defined. Therefore, the representation of these
elements joined with all the rest (the non-derived) can considerably enlarge the size of
the model and so, make the representation unclear or excessively heavy for a human
eye. This situation forces the specifier either to divide the model in coverable pieces or

155

alternatively, have some way (preferably offered by the modelling tool) of hiding them
when convenient.

To sum up, we believe that this project not only has been generally successful on its
original objectives but has also served to experiment with some highly topical subjects
such as UML 2.0. and remark the importance of a clear diagram structure.

One possible future work line could consist on refining the event approach to be widely
used in practice. This refinement should consider the inclusion of new types or
subtypes of events, as well as some criteria or tips to split the events and determine
split events generating actor (in fact, this is a common problem of any event modelling
approach).

156

10. REFERENCES

Original Case Study:

[BRG95] Appendix D of the paper "Defining Business Rules ~ What Are They
Really?", produced by the Business Rules Group, 1995.
(http://www.businessrulesgroup.org/first_paper/brOlad.htm)

Case Study Extensions:

[BRFO3] Business Rules Forum

(http://www.businessrulesforum.com/derby.html).

[EBRCO3] European Business Rules Conference, June 2003
(http://www.eurobizrules.org/eurent.htm)

[PSZ00] Advances in object-oriented data modelling, M.P. Papazoglou, S.

Spaccapietra, Z. Tari Ed.), Cambridge, Massachusetts, USA, MIT Press, 2000.

- Use Cases:

[Coc00] Writing Effective Use Cases. Alistair Cockburn, Octuber 2000.

[Wei03] Adopting use cases. Part I: Understanding types of use cases and
artifacts. Pan-Wei Ng. The rational edge, May 2003.
http://www.therationaledge.com/may 03/m_ng.jsp

[Gel03] Precise Use Cases. David Gelperin. Live Specs software.
http://www.livespecs.com/modules.php?op=modload&name=News&file=index&
catid=14&topic=&allstories=1&POSTNUKESID=57c8939a70d06566fd4ee4a69
cbdlaac

SpeC|f|cat|on (general):

[Lar02] UML y Patrones. Craig Larman. Prentice Hall, second edition, 2002.
[OMGO01] OMG. Unified Modelling Language Specification, version 1.5. March
2003. http://www.omg.org/technology/documents/formal/uml.htm

[UMLSO03] Unified Modelling Language: Superstructure. Version 2.0. (3rd
revised submission to OMG RFP ad/00-09-02), April 2003.

[OCLO3] Response to the UML 2.0 OCL RfP (ad/2000-09-03). Revised
Submission, Version 1.6, January 6, 2003. (OMG Document ad/2003-01-07).
[XMLO1] XML Schema Part 0: Primer. W3C Recommendation, 2 May 2001.
http://www.w3.0rg/TR/xmlschema-0/

[IC-0I03] Integrity Constraints Definition in Object-Oriented Conceptual
Modelling Languages. Antoni Olivé, 2003.

[DR-OI03] Derivation Rules in Object-Oriented Conceptual Modelling
Languages. Antoni Olivé, 2003.

[EE] Events and their effects.(Not definitive version) Antoni Olivé.

157

12. ACKNOWLEDGEMENTS

This work has been patrtially supported by the Ministerio de Ciencia y Tecnologia and
FEDER under project TIC2002-00744.

158

11. SUMMARY

1. Introduction and MOtIVatioN............cc.viieiiiiii e, 1

2. THE CASE STUDY: EU-RentCar Rentals...............c.cocvvnnen. 2

3. General commentaries about the specification........................ 16
A, USE CASES.....eiuiiiiiitiie ittt e 17
5. Static MOEL.......ceiii 63
6. State Model...... ... 82
7. Events Modelling ..o 84
8. SequencCe Diagrams...........vuveiuiiie it eeie e 136
9. CONCIUSIONS. ...t e e 162
10. RETEIENCES. ... o i e 164
11. ACKNOWIEAgMENTS.veiieie e e 165
12, SUMIMAIY ...t e e e e 166

159

