Learning Transformation Rules for Semantic Role Labeling

2004 CoNLL Shared Task

A highly non-state-of-the-art approach

Ken Williams, Christopher Dozier, Andrew McCulloh

Thomson Legal & Regulatory
{ken.williams|chris.dozier|andrew.mcculloh}@thomson.com
Motivation

- Need extremely high-precision extraction (~98%)
- Typically ~1 person-year per application spent hand-writing rules
- Need to integrate with human architects, human users, decrease time-to-application
Technique

• Transformation-Based Error-Driven Learning in the style of Eric Brill

• Similar to Derrick Higgins’ entry, but with different features

• No more hand-written rules - replaced by hand-written rule templates
Templates (verb)

Lengthen [shorten] the end of region V by one token if:

a,b) followed by chunk with tag=\(X\)

c,d) followed by token with POS=\(X\)

e,f) followed by chunk with tag=\(X\) and token with POS=\(Y\)

g,h) the verb token’s lemma is \(X\)
Templates (arguments)

A,B) If chunk with tag=X is followed [preceded] directly by region with tag=Y, mark chunk as Z

C,D) If token with POS=X is followed [preceded] directly by region with tag=Y, mark token as Z

E,F) If chunk with tag=X is followed [preceded] (perhaps indirectly) by region with tag=Y, mark chunk as Z

G,H) If region with tag=X is followed [preceded] by chunk with tag=PP, which is in turn followed [preceded] by chunk with tag=Y, extend X forward [backward] through Y

I,J) If verb’s first token has POS=X [and is preceded by POS=Y], switch A0 and A1

K) If region with tag=X is contained in a clause-starting verb phrase, and this is preceded by a clause-starting token with POS=Y, mark token Y as Z
Learning

- Iterative hill-climbing search through large space (optimization is crucial)
- Target measure is F_1
- To alleviate non-optimal dependencies, a "look-behind" window is used for re-ordering learned rules
- We trained first on verbs, then A0 & A1, then all argument types
- No lexical information used (for loose definition of "no")
- PropBank [almost] not used at all
Results

Basically created an automatically-trained baseline system

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dev</td>
<td>53.37</td>
<td>32.43</td>
<td>40.35</td>
</tr>
<tr>
<td>Test</td>
<td>58.08</td>
<td>34.75</td>
<td>43.48</td>
</tr>
</tbody>
</table>
• Much better when training separately on common verbs: $F_1 = 73.6\%$ on “say”, 56.6% on “have” (how does this compare?)

• Overall dev-set performance increases from 40.35% to 41.18% when isolating “say”; to 41.3% when isolating “say” and “have”

• Probably need more training data to continue this for other verbs – perhaps group verbs by class?
Thank You