Lógica en la Informática / Logic in Computer Science

Friday April 16th, 2021
Time: 1 h 20 min . No books, lecture notes or formula sheets allowed.

1) (3 points) Prove your answers using only the formal definitions of propositional logic.

1a) Is it true that if F, G, H are formulas such that $F \wedge G \not \vDash H$ then $F \wedge G \wedge H$ is unsatisfiable?
1b) Let F be a tautology, and let G an unsatisfiable formula. Is it true true that $F \wedge \neg G$ is a tautology?
2) (2 points) The problem called "minOnes" takes as input a natural number k and a propositional formula F over propositional variables $\left\{x_{1} \ldots, x_{n}\right\}$. Its aim is to decide if there is any model I of F with at most k ones, that is, any model I such that $I\left(x_{1}\right)+\ldots+I\left(x_{n}\right) \leq k$. Answer in a few words: Is minOnes NP-hard? Why?
3) (2 points) Every propositional formula F over n variables can also expressed by a Boolean circuit with n inputs and one output. In fact, sometimes the circuit can be much smaller than F because each subformula only needs to be represented once. For example, if F is

$$
x_{1} \wedge\left(x_{3} \wedge x_{4} \vee x_{3} \wedge x_{4}\right) \quad \vee \quad x_{2} \wedge\left(x_{3} \wedge x_{4} \vee x_{3} \wedge x_{4}\right)
$$

a circuit C for F with only five gates exists. Giving names a_{i} to the output wires of each logical gate, and using a_{0} as the output of C, we can write C as:

```
a0 = or (a1,a2) a1 = and (x1,a3) a3 = or (a4,a4)
    a2 = and (x2,a3) a4 = and (x3, x4)
```

Explain very briefly what do you think is the best way to use a standard SAT solver for CNFs to determine whether two circuits C_{1} and C_{2}, represented like this, are logically equivalent.
Note: assume different names $b_{0}, b_{1}, b_{2} \ldots$ are used for the internal wires of C_{2}.
4) (3 points) Consider the cardinality constraint $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 4$ (expressing that at most 4 of the propositional symbols $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ are true).
4a) Write the clauses needed to encode this constraint using no auxiliary variables.
4b) In general, in terms of n and k, how many clauses are needed to encode a cardinality constraint $x_{1}+\ldots+x_{n} \leq k$ using no auxiliary variables? (give no explanations here).
4c) Write the names of any other encoding you know for cardinality constraints $x_{1}+\ldots+x_{n} \leq k$, an encoding that do use auxiliary variables. In terms of n and k, how many clauses are needed? (give no explanations here).

