Lógica en la Informática / Logic in Computer Science

Monday November 9th, 2020

Time: 1h20min. No books, lecture notes or formula sheets allowed.

1) (3 points)

Prove, using only the definitions of propositional logic, that the deduction rule of resolution in propositional logic is correct, that is, if from the two clauses C_{1} and C_{2} by resolution we can obtain a clause D, then $C_{1} \wedge C_{2} \models D$.
Answer: [Note: This question already appeared before; e.g., in the partial exam of Fall 2017.]
If from C_{1} and C_{2} by resolution we can obtain a clause D, then C_{1} must be of the form $p \vee C_{1}^{\prime}$, and C_{2} must be of the form $\neg p \vee C_{2}^{\prime}$ for some propositional symbol p, and D is $C_{1}^{\prime} \vee C_{2}^{\prime}$.
[Note: if you "prove" $C_{1} \wedge C_{2} \vDash D$ without using the previous fact, then you probably do not know what resolution is and you also "prove" something that is not true, so of course you can get no points.] We now prove that indeed it is true that $\left(p \vee C_{1}^{\prime}\right) \wedge\left(\neg p \vee C_{2}^{\prime}\right) \models C_{1}^{\prime} \vee C_{2}^{\prime}$. By definition of logical consequence, we have to prove that for all I, if $I \models\left(p \vee C_{1}^{\prime}\right) \wedge\left(\neg p \vee C_{2}^{\prime}\right)$ then $I \models C_{1}^{\prime} \vee C_{2}^{\prime}$.
We prove it by case analysis. Take an arbitary I. Assume $I \models\left(p \vee C_{1}^{\prime}\right) \wedge\left(\neg p \vee C_{2}^{\prime}\right)$.
Case A): $I(p)=1$.
$I \models\left(p \vee C_{1}^{\prime}\right) \wedge\left(\neg p \vee C_{2}^{\prime}\right)$ implies,
$\operatorname{eval}_{I}\left(\left(p \vee C_{1}^{\prime}\right) \wedge\left(\neg p \vee C_{2}^{\prime}\right)\right)=1$ which implies,
$\min \left(e v a l_{I}\left(p \vee C_{1}^{\prime}\right), \operatorname{eval}_{I}\left(\neg p \vee C_{2}^{\prime}\right)\right)=1$ which implies,
$\operatorname{eval}_{I}\left(\neg p \vee C_{2}^{\prime}\right)=1$ which implies,
$\max \left(e v a l_{I}(\neg p)\right.$, eval $\left._{I}\left(C_{2}^{\prime}\right)\right)=1$ which implies,
$\max \left(1-\operatorname{eval}_{I}(p), \operatorname{eval}_{I}\left(C_{2}^{\prime}\right)\right)=1$ which implies,
$\max \left(1-I(p)\right.$, eval $\left._{I}\left(C_{2}^{\prime}\right)\right)=1$ which implies,
$\max \left(0, \operatorname{eval}_{I}\left(C_{2}^{\prime}\right)\right)=1$ which implies,
$\operatorname{eval}_{I}\left(C_{2}^{\prime}\right)=1$ which implies,
$\max \left(e v a l_{I}\left(C_{1}^{\prime}\right), e v a l_{I}\left(C_{2}^{\prime}\right)\right)=1$ which implies,
eval $_{I}\left(C_{1}^{\prime} \vee C_{2}^{\prime}\right)=1$ which implies,
by definition of satisfaction, that by definition of evaluation of \wedge, that by definition of min, that by definition of evaluation of \vee, that by definition of evaluation of \neg, that by definition of $e \operatorname{eval}_{I}(p)$, that
since $I(p)=1$, that
by definition of max, that by definition of eval l_{I} and max, that by definition of evaluation of \vee, that
by definition of satisfiction, that
$I \models C_{1}^{\prime} \vee C_{2}^{\prime}$.
Case B$): I(p)=0$. The proof is analogous to Case A, with the difference that now from $\min \left(\operatorname{eval}_{I}(p \vee\right.$ $\left.\left.C_{1}^{\prime}\right), \operatorname{eval}_{I}\left(\neg p \vee C_{2}^{\prime}\right)\right)=1$ we obtain $\operatorname{eval}_{I}\left(p \vee C_{1}^{\prime}\right)=1$ and hence (since $\left.I(p)=0\right) \operatorname{eval}_{I}\left(C_{1}^{\prime}\right)=1$ which implies eval $\left(C_{1}^{\prime} \vee C_{2}^{\prime}\right)=1$ and hence $I \models C_{1}^{\prime} \vee C_{2}^{\prime}$.
2) (3 points)

Assuming you can use a SAT solver or any other algorithm, explain very briefly what you would do and what the computational cost would be and why, to decide the following two problems:
2a) Given a formula F in disjunctive normal form (DNF), decide whether F is a tautology.
2b) Given a formula F in disjunctive normal form (DNF), decide whether F is a satisfiable.
Answer: [Note: this problem is like problem 2 of the final exam of Fall 2014, and others.]
2a: No polynomial algorithm is known. If it exists, then SAT for CNF is polynomial too!, because a CNF F is unsatisfiable iff $\neg F$ is a tautology, and by moving the negations of $\neg F$ inward (using de Morgan and doble negation), in linear time we obtain a DNF G with $G \equiv \neg F$.
[Note: This problem is Co-NP-complete (its negation is NP-complete): NOT being a tautology is in NP since it has a short certificate, an interpretation I that is NOT a model.]

2b: A DNF has the form $C_{1} \vee \ldots \vee C_{n}$ where each C_{i} is a "cube", a conjunction of literals. It is satisfiable if some C_{i} is satisfiable, which is the case if it does not contain a literal and its negation. This can be checked in linear time.
3) (4 points)

Let \mathcal{P} be a set of propositional predicate symbols. Let S be a set of clauses over \mathcal{P} and let N be a subset of \mathcal{P}. We define flip (N, S) to be the set of clauses obtained from S by flipping (changing the sign) of all literals with symbols in N.

For example, $\operatorname{flip}(\{p, q\}, \quad\{p \vee \neg q \vee \neg r, \quad q \vee r\}) \quad$ is $\quad\{\neg p \vee q \vee \neg r, \quad \neg q \vee r\}$. A clause is called Horn if it has at most one positive literal. A set of clauses S is called renamable Horn if there is some $N \subseteq \mathcal{P}$ such that $\operatorname{flip}(N, S)$ is a set of Horn clauses.

3a) Explain in three lines: given S and N such that $\operatorname{flip}(N, S)$ is a set of Horn clauses, what would you do to efficiently decide whether S is satisfiable, and why?
Answer: [Note: this problem is like, e.g., problem 2 of the final exam of Spring 2018.]
Linear: computing fip (N, S) is linear, and deciding if it is satisifiable is linear too because it is Horn. S and $\operatorname{fip}(N, S)$ are equi-satisfiable because if I is a model of one of them, then I^{\prime} is a model of the other one, where $I^{\prime}(p)=I(p)$ iff $p \notin N$.

3b) Given an arbitrary set of clauses S, we want to decide whether it is renamable Horn and, if so, find the corresponding N. We will do this using an algorithm based on... SAT! For each $p \in \mathcal{P}$, we introduce a SAT variable flipped (p) meaning that symbol p is in N. Then we add clauses for every clause C of S and every pair of literals l and l^{\prime} in C, forbidding that after doing all fips, l and l^{\prime} both become positive.

Explain in three lines: which clauses do you need, what is the cost of the resulting SAT-based algorithm and why?

Answer: For every pair of literals appearing in the same clause of S :
a) if both are positive symbols p and q then we add the clause
b) if both are negative, of the form $\neg p$ and $\neg q$ then we add
flipped $(p) \vee$ fipped (q)
c) otherwise they are of the form $\neg p$ and q, and we add
\neg fipped $(p) \vee \neg$ flipped (q)
\neg flipped $(p) \vee$ fipped (q)
This gives a quadratic number of 2-SAT clauses, so using the linear 2-SAT algoritm we get a quadratic algorithm for deciding whether S is renamable Horn and, if so, finding the corresponding N.

