
Lógica en la Informática / Logic in Computer Science

Monday November 9th, 2020

Time: 1h20min. No books, lecture notes or formula sheets allowed.

1) (3 points)
Prove, using only the definitions of propositional logic, that the deduction rule of resolution in propo-
sitional logic is correct, that is, if from the two clauses C1 and C2 by resolution we can obtain a clause
D, then C1 ∧ C2 |= D.

Answer: [Note: This question already appeared before; e.g., in the partial exam of Fall 2017.]
If from C1 and C2 by resolution we can obtain a clause D, then C1 must be of the form p ∨ C ′

1, and
C2 must be of the form ¬p ∨ C ′

2 for some propositional symbol p, and D is C ′
1 ∨ C ′

2.
[Note: if you “prove” C1 ∧ C2 |= D without using the previous fact, then you probably do not know
what resolution is and you also “prove” something that is not true, so of course you can get no points.]
We now prove that indeed it is true that (p ∨ C ′

1) ∧ (¬p ∨ C ′
2) |= C ′

1 ∨ C ′
2. By definition of logical

consequence, we have to prove that for all I, if I |= (p ∨ C ′
1) ∧ (¬p ∨ C ′

2) then I |= C ′
1 ∨ C ′

2.
We prove it by case analysis. Take an arbitary I. Assume I |= (p ∨ C ′

1) ∧ (¬p ∨ C ′
2).

Case A): I(p) = 1.
I |= (p ∨ C ′

1) ∧ (¬p ∨ C ′
2) implies, by definition of satisfaction, that

evalI((p ∨ C ′
1) ∧ (¬p ∨ C ′

2)) = 1 which implies, by definition of evaluation of ∧, that
min(evalI(p ∨ C ′

1), evalI(¬p ∨ C ′
2)) = 1 which implies, by definition of min, that

evalI(¬p ∨ C ′
2) = 1 which implies, by definition of evaluation of ∨, that

max(evalI(¬p), evalI(C ′
2)) = 1 which implies, by definition of evaluation of ¬, that

max(1− evalI(p), evalI(C ′
2)) = 1 which implies, by definition of evalI(p), that

max(1− I(p), evalI(C ′
2)) = 1 which implies, since I(p) = 1, that

max(0, evalI(C ′
2)) = 1 which implies, by definition of max, that

evalI(C ′
2) = 1 which implies, by definition of evalI and max, that

max(evalI(C ′
1), evalI(C ′

2)) = 1 which implies, by definition of evaluation of ∨, that
evalI(C ′

1 ∨ C ′
2) = 1 which implies, by definition of satisfiction, that

I |= C ′
1 ∨ C ′

2.

Case B): I(p) = 0. The proof is analogous to Case A, with the difference that now from min(evalI(p∨
C ′
1), evalI(¬p ∨C ′

2)) = 1 we obtain evalI(p ∨C ′
1) = 1 and hence (since I(p) = 0) evalI(C ′

1) = 1 which
implies evalI(C ′

1 ∨ C ′
2) = 1 and hence I |= C ′

1 ∨ C ′
2.

2) (3 points)
Assuming you can use a SAT solver or any other algorithm, explain very briefly what you would do
and what the computational cost would be and why, to decide the following two problems:
2a) Given a formula F in disjunctive normal form (DNF), decide whether F is a tautology.
2b) Given a formula F in disjunctive normal form (DNF), decide whether F is a satisfiable.

Answer: [Note: this problem is like problem 2 of the final exam of Fall 2014, and others.]
2a: No polynomial algorithm is known. If it exists, then SAT for CNF is polynomial too!, because

a CNF F is unsatisfiable iff ¬F is a tautology, and by moving the negations of ¬F inward (using de
Morgan and doble negation), in linear time we obtain a DNF G with G ≡ ¬F .
[Note: This problem is Co-NP-complete (its negation is NP-complete): NOT being a tautology is in
NP since it has a short certificate, an interpretation I that is NOT a model.]

2b: A DNF has the form C1 ∨ . . . ∨ Cn where each Ci is a “cube”, a conjunction of literals. It is
satisfiable if some Ci is satisfiable, which is the case if it does not contain a literal and its negation.
This can be checked in linear time.



3) (4 points)
Let P be a set of propositional predicate symbols. Let S be a set of clauses over P and let N be a
subset of P. We define flip(N,S) to be the set of clauses obtained from S by flipping (changing the
sign) of all literals with symbols in N .

For example, flip( {p, q}, { p ∨ ¬q ∨ ¬r, q ∨ r } ) is { ¬p ∨ q ∨ ¬r, ¬q ∨ r }.
A clause is called Horn if it has at most one positive literal. A set of clauses S is called renamable
Horn if there is some N ⊆ P such that flip(N,S) is a set of Horn clauses.

3a) Explain in three lines: given S and N such that flip(N,S) is a set of Horn clauses, what would
you do to efficiently decide whether S is satisfiable, and why?

Answer: [Note: this problem is like, e.g., problem 2 of the final exam of Spring 2018.]
Linear: computing flip(N,S) is linear, and deciding if it is satisifiable is linear too because it is Horn.
S and flip(N,S) are equi-satisfiable because if I is a model of one of them, then I ′ is a model of the
other one, where I ′(p) = I(p) iff p /∈ N .

3b) Given an arbitrary set of clauses S, we want to decide whether it is renamable Horn and, if so,
find the corresponding N . We will do this using an algorithm based on... SAT! For each p ∈ P, we
introduce a SAT variable flipped(p) meaning that symbol p is in N . Then we add clauses for every
clause C of S and every pair of literals l and l′ in C, forbidding that after doing all flips, l and l′ both
become positive.

Explain in three lines: which clauses do you need, what is the cost of the resulting SAT-based
algorithm and why?

Answer: For every pair of literals appearing in the same clause of S:
a) if both are positive symbols p and q then we add the clause flipped(p) ∨ flipped(q)
b) if both are negative, of the form ¬p and ¬q then we add ¬flipped(p) ∨ ¬flipped(q)
c) otherwise they are of the form ¬p and q, and we add ¬flipped(p) ∨ flipped(q)
This gives a quadratic number of 2-SAT clauses, so using the linear 2-SAT algoritm we get a quadratic
algorithm for deciding whether S is renamable Horn and, if so, finding the corresponding N .


