Logic as The Calculus of Computer Science Phokion G. Kolaitis University of California, Santa Cruz Moshe Y. Vardi Rice University ## **Background** E.P. Wigner (1960): On the Unreasonable Effectiveness of Mathematics in the Natural Sciences - "The book of nature is written in the language of mathematics" (attributed to Galileo). - Numerous examples of the effectiveness of mathematics in the physical sciences - The empirical law of epistemology: The mathematical formulation of the laws of nature is both appropriate and accurate; mathematics is the correct language for formulating the laws of nature. **Question**: What is the correct language for computer science? ## **Mathematical Logic** Mathematical Logic was developed in an attempt to confront the crisis in the foundations of mathematics at the turn of the 20th Century. #### Hilbert's Program (1900-1928): Formalize mathematics and establish that: - Mathematics is consistent: a mathematical statement and its negation cannot ever both be proved. - Mathematics is *complete*: all "true" mathematical statements can be "proved". - Mathematics is *decidable*: there is a mechanical rule to determine whether a given mathematical statement is "true" or "false". #### Hilbert Hilbert firmly believed that these goals can be achieved: "Every mathematical problem must necessarily be susceptible to an exact statement, either in the form of an actual answer to the question asked, or by the proof of the impossibility of its solution." "Once a logical formalism is established one can expect that a systematic, so-to-say computational, treatment of logic formulas is possible, which would somewhat correspond to the theory of equations in algebra." ## The Demise of Hilbert's Program - K. Gödel (1931-3): - Incompleteness of ordinary arithmetic - Impossibility of proving consistency of set theory - A. Church and A. Turing (1936-1937): Undecidability of first-order logic: - The set of all valid first-order sentences is not recursive. - The set of all first-order sentences that are true in arithmetics is not recursively enumerable. ## Where Is Logic Today? ## AltaVista, January 21, 2001: - Logic and Mathematics: 30,460 hits - Logic and Philosophy: 43,515 hits - Logic and Computer Science: 44,331 hits ## Logic in Computer Science - During the past 30 years, there has been an extensive and growing interaction between logic and computer science. - Concepts and methods of logic occupy a central place in computer science, insomuch that logic has been called the calculus of computer science. - Logic has been much more effective in computer science than it has been in mathematics M. Davis (1988): Influences of Mathematical Logic on Computer Science: "When I was a student, even the topologists regarded mathematical logicians as living in outer space. Today the connections between logic and computers are a matter of engineering practice at every level of computer organization." ## Why? #### Alan Turing: "I expect that digital computing machines will eventually stimulate a considerable interest in symbolic logic ... The language in which one communicates with these machines .. forms a sort of symbolic logic." #### Logic provides: - formalisms to describe mathematical structures - languages to describe properties of mathematical structures - languages to describe dynamic processes - a clear distinction between syntax and semantics Michael Jackson: "Description is our business" ## **Computer Science Started as Logic** ### In the beginning, there was logic: - Outcome of Hilbert's program: formalization of algorithms (Church's Thesis) - Stored-progarm computer: universal Turing machine - Functional programming: λ -calculus - Recursive-function theory: precursor of complexity theory - Automata theory: finite-state automata #### That was then, this is now! ## **Logic and Computer Science** The goal of this workshop is to provide evidence in support of the unusual effectiveness of logic in computer science by highlighting a few of the areas of computer science in which logic has had a definite and lasting impact. #### **Formalisms** Several different logical formalisms are involved in the interaction between logic and computer science. We will briefly review the basics of three of them: - Propositional Logic (a.k.a. Boolean Logic) - First-Order Logic - Modal Logic ## **Propositional Logic** A formalism for modeling statements that are either true or false #### Syntax: - Propositional Variables: P, Q, R, \ldots - Propositional Formulas: variables + connectives (¬, ∨, ∧, →, . . .) Examples: $$P \vee \neg Q$$ $$(P \wedge (P \to Q)) \to Q$$ #### **Semantics**: - Truth assignment $\nu:\{P,Q,R,\ldots\}\mapsto\{0,1\}$ - Extend to propositional formulas $\nu(\psi)$ using truth tables. Examples: Given $\nu(P)=0$ and $\nu(Q)=1$, $$\nu(P \vee \neg Q) = 0$$ $$\nu((P \land (P \to Q)) \to Q) = 1$$ ## Algorithmic Problems in Propositional Logic #### Truth Evaluation Problem (Model Checking): Given a propositional formula ψ and a truth assignment ν , what is the value of $\nu(\psi)$? #### Satisfiability Problem: Given a propositional formula ψ , is there a truth assignment ν such that $\nu(\psi)=1$? #### Examples: - $(P\vee Q)\wedge (\neg P\vee Q)\wedge (P\vee \neg Q)$ is satisfied by $\nu(P)=1$, $\nu(Q)=1$. - $(P \lor Q) \land (\neg P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor \neg Q)$ is unsatisfiable. #### Remarks: - Truth evaluation is in PTIME. - The Satisfiability Problem is NP-complete. #### **Before Cook** #### Inference Problem: Given propositional formulas φ and ψ , is ψ a consequence of φ ? This problem is co-NP-complete. Ernst Schröder, 1890-1910: "The Algebra of Logic" "getting a handle on the consequences of any premisses, or at least the fastest method for obtaining these consequences, seems to me to be one of the noblest, if not the ultimate goal of mathematics and logic." ## First-Order Logic A formalism for specifying properties of mathematical structures, such as graphs, partial orders, groups, rings, fields, . . . For simplicity, we focus on Relational Structures $$\mathbf{A} = (A, R_1, \dots, R_k),$$ - A is a non-empty set; - R_i is an m-ary relation on A, for some m (that is, R_i is a set of m-tuples from A). #### Example: • Graph $\mathbf{G} = (V, E)$, where $E \subseteq V^2$ #### Remark: • A relational structure is essentially a relational database. ## First-Order Logic on Graphs #### Syntax: - First-Order Variables: x, y, z, \ldots - Atomic Formulas: E(x,y), x=y - Formulas: Atomic Formulas + Connectives + First-Order Quantifiers $\exists x, \forall x, \dots$ #### **Examples**: "node x has at least two distinct neighbors" $$(\exists y)(\exists z)(\neg(y=z) \land E(x,y) \land E(x,z))$$ Concept: x is free in the above formula "each node has at least two distinct neighbors" $$(\forall x)(\exists y)(\exists z)(\neg(y=z) \land E(x,y) \land E(x,z))$$ Concept: The above is a sentence, that is, a formula with no free variables. ## First-Order Logic on Graphs #### **Semantics**: - First-order variables and quantifiers range over elements of the universes of structures - To evaluate a formula φ , we need a graph G and an assignment ν that maps the free variables of φ to nodes of G Notation: $$\mathbf{G} \models \varphi(x_1/a_1, \dots, x_k/a_k)$$ • Formulas $\varphi(x_1,\ldots,x_k)$ define queries: $$Q_{\varphi}(\mathbf{G}) = \{(a_1, \dots, a_k) : \mathbf{G} \models \varphi(x_1/a_1, \dots, x_k/a_k)\}$$ • A sentence ψ is either true or false on a given graph G. In particular, sentences define *Boolean queries*, that is, they specify classes of graphs. $$Q_{\psi} = \{ \mathbf{G} : \mathbf{G} \models \psi \}$$ ## Algorithmic Problems in First-Order Logic Truth Evaluation Problem (Model Checking): Given a first-order formula $\varphi(x_1, \ldots, x_k)$, a graph G, and nodes a_1, \ldots, a_k , does $G \models \varphi(x_1/a_1, \ldots, x_k/a_k)$? **Satisfiability Problem**: Given a first-order sentence ψ , is there a graph G such that $G \models \psi$? #### Remarks: - Truth evaluation, which is query evaluation, is decidable. - The Satisfiability Problem is undecidable. ## **Modal Logic** A formalism for modeling necessity and possibility #### Syntax: Propositional Logic + Necessity Operator □ **Example**: $(\Box P \land \Box (P \rightarrow Q)) \rightarrow \Box Q$ #### **Possible World Semantics:** - Kripke structure $\mathbf{M} = (S, R, \pi)$: - S is the set of possible worlds and $R \subseteq S^2$ is the accessibility relation between worlds; - $-\pi(s)$ is a set of propositional variables, for every world $s \in S$. - $(\mathbf{M}, s) \models P$ if and only if $P \in \pi(s)$. - $(\mathbf{M},s) \models \Box \psi$ if and only if $(\mathbf{M},t) \models \psi$, for every world t such that $(s,t) \in R$. ## **Modal Logic** - $\Box \varphi$ may mean " φ is known" (epistemic logic), " φ is always true" (temporal logic), or " φ holds after the program is executed" (dynamic logic). - Modal logic can be translated into (a small fragment of) first-order logic. - Modal logic has good algorithmic properties; in particular, the satisfiability problem for modal logic is decidable. ## Impact of Logic in CS Logic has been effective in several different areas of computer science, including - Computer-Aided Verification (K. McMillan) - Database Systems (V. Vianu) - Computational Complexity (N. Immerman) - Programming Languages (P. Lee) - Computer Security (J.K. Millen) #### as well as - Artificial Intelligence - Digital Design - Distributed Systems - Logic Programming - Software Engineering - . . . ## **Computer-Aided Verification** #### Key Idea of Model Checking: - ullet Model design (HW or SW) as a finite Kripke structure M - ullet Express specification as a temporal logic formula ψ - Check that $M \models \psi$ - Use special data structures to handle very large state spaces - A negative answer is accompanied by a counterexample #### Impact: - Technology is spreading in the HW industry - Initial penetration of SW industry ## **Logic and Databases** #### A multibillion-dollar success: - First-order logic lies at the core of modern database systems (SQL,QBE) - Efficient query evaluation is based on relational algebra (a.k.a. cylindrical algebra) #### **Current challenge**: Semistructured data - XML: trees - Data Type Definition (DTD): tree automata - XML queries: tree transducers ## **Logic and Complexity** ### **Complexity:** - Computational Complexity: amount of resources, such as time or space, required by a machine that solves a problems - Descriptive Complexity: syntatic complexity of describing a problem in some logical formalism An amazing connection: computational complexity and description complexity are intimately related. ``` FO(TC) = NLOGSPACE FO(LFP) = PTIME SO\exists = NP FO(PFP) = SO(TC) = PSPACE ``` #### Remark: - right column: machine based - left column: machine independent ## **Logic and Programming Languages** **Coherence**: From Webster's Collegiate Dictionary: - The quality or state of cohering: as - systematic or logical connection or consistency - integration of diverse elements, relationships, or values Research in foundations of programming languages strives to bring coherence in software systems, in both senses. Logic has been the primary tool: - formal semantics - type theory - rewriting systems • . . . Logic is not only used to design languages and compilers, but is also applied directly to real software artifacts. ## **Logic and Computer Security** #### Pervasiveness and diversity ## Areas of applicability: numerous! - Multilevel OS security - Access control policies - Public-key infrastructure and trust management - Cryptographic-protocol analysis #### Means of application: numerous! - Authentication logics - Temporal logics - Linear logics - Model checking - Theorem proving - Logic programming ## **Logic from Computer Science** #### Computer science problems invigorate logic research: - Unlike traditional mathematical logic, primary focus on the study of logics on finite structures (e.g., databases): finite-model theory. - Powerful extensions of first-order logic are considered: e.g., fixpoint logics in databases. - Emphasis on connections between logic and automata, especially automata on infinite objects: e.g., Rabin tree automata in verification. - Major role for modal logics: e.g., description logics in Al. - New logics have to be invented: e.g., authentication logics in security - New notions of inference: e.g., non-monotonic inference in Al. ## **Logic in Computer Science** - Logic is mainly used as a formalism for describing objects and specifying their properties. - Logic in Computer Science is an *applied science*, combining foundational research with applications.