Master in Data Science

Sequence-tosequence Models

Attention

The Transformer

Mining Unstructured Data 11. Attention and Transformers

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
 - Attention
 - Attention
 - Attention Types
 - Advantages of Attention
 - The Transformer
 - Issues with RNNs
 - The Transformer Model
 - Self-Attention
 - Positional Encoding
 - The attention block, Training Tricks
 - Masked Attention
 - Encoder-Decoder Attention

Sequence-tosequence Models

Attention

Outline

Sequence-to-sequence Models
 Introduction

- Neural Machine Translation
- Strengths and Limitations
- Attention
 - Attention
 - Attention Types
- Advantages of Attention
- The Transformer
 - Issues with RNNs
 - The Transformer Model
 - Self-Attention
 - Positional Encoding
 - The attention block, Training Tricks
 - Masked Attention
 - Encoder-Decoder Attention

Sequence-tosequence Models Introduction

Attention

Sequence-to-Sequence Tasks

Many NLP tasks can be phrased as sequence-to-sequence:

- Summarization (long text \rightarrow short text)
- Dialogue (previous utterances → next utterance)
- Parsing (input text → output parse as sequence)
- Code generation (Natural Language \rightarrow Python Code)
- Translation (source sentence \rightarrow translation)

Sequence-tosequence Models Introduction

Sequence-to-Sequence Model

Sequence-to-Sequence Model

The Transformer Encoder RNN

Decoder RNN is a Language Model that generates target sentence, conditioned on encoding.

Note: This diagram shows **test time** behavior: decoder output is fed in as next step's input

Outline

1 Sequence-to-sequence Models

- Introduction
- Neural Machine Translation
- Strengths and Limitations
- Attention
 - Attention
- Attention Types
- Advantages of Attention
- The Transformer
 - Issues with RNNs
 - The Transformer Model
 - Self-Attention
 - Positional Encoding
 - The attention block, Training Tricks
 - Masked Attention
 - Encoder-Decoder Attention

- Sequence-tosequence Models
- Neural Machine Translation

Attention

Neural Machine Translation

- Sequence-tosequence Models Neural Machine
- Translation
- Attention
- The Transformer

- The sequence-to-sequence model is an example of a Conditional Language Model.
- Language Model because the decoder is predicting the next word of the target sentence y.
- Conditional because its predictions are also conditioned on the source sentence x.

$$p(y|x) = \prod_{t=1}^{T_y} p(y_t|y_{< t}, x)$$

- NMT computes the conditional probability distribution p(y|x).
- We train these models with a parallel corpus.

Sequence-tosequence Models Neural Machine Translation

Attention

The Transformer

Teacher Forcing

During training, we use a technique called teacher forcing:

- We feed the network the correct target sequence as input for each time step, rather than the predicted output from the previous time step
- This helps to stabilize the training process and improve the quality of the final translation

Greedy Decoding

- During inference, we use a technique called greedy decoding:
 - At each time step, we choose the word with the highest probability as the next output word
 - This can lead to suboptimal translations, as the network may get stuck in local optima

Decoder RNN is a Language Model that generates target sentence, conditioned on encoding.

Note: This diagram shows **test time** behavior: decoder output is fed in as next step's input

Sequence-tosequence Models Neural Machine Translation

Attention

Exhaustive Search Decoding

Sequence-tosequence Models Neural Machine

Translation

Attention

- To find the optimal translation, we could track all possible sequences
- This means that on each step t, we track possible partial translations, where V is the vocabulary size
- However, this complexity is too expensive

$$\arg\max_{y} P(y|x) = \arg\max_{y} \prod_{t=1}^{|y|} P(y_t|y_{< t}, x)$$

Beam Search Decoding

Sequence-tosequence Models Neural Machine Translation

Attention

- Beam search is a more efficient decoding algorithm than exhaustive search
- On each step of the decoder, we keep track of the k most probable partial translations (which we call hypotheses)
- Each hypothesis has a score, its log probability
- We search for high-scoring hypotheses, tracking top k on each step
- Beam search doesn't guarantee an optimal solution, but is more efficient than exhaustive search

$$score(y_{1:t}) = \sum_{i=1}^{t} \log P(y_i | y_{\le i}, x)$$

Sequence-to- sequence	
Models	
Neural Machine Translation	
Attention	
The	
Transformer	<start></start>
	Calculate prob

For each of the *k* hypotheses, find top *k* next words and calculate scores

Of these k^2 hypotheses, just keep k with highest scores

Backtrack to obtain the full hypothesis

Beam Search Decoding - Stopping Criterion

In greedy decoding, usually we decode until the model produces an END token:

- **START** he hit me with a pie END
- In beam search decoding, different hypotheses may produce tokens on different timesteps.
- When a hypothesis produces END, that hypothesis is complete.
- Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:
 - We reach timestep T (where T is some pre-defined cutoff), or
 - We have at least *n* completed hypotheses (where *n* is pre-defined cutoff).

Sequence-tosequence Models Neural Machine

Translation

Beam Search Decoding - Selecting the Best Hypothesis

Sequence-tosequence Models Neural Machine Translation

Attention

The Transformer

- Each hypothesis in our list of hypotheses has a score.
- Problem with this: longer hypotheses have lower scores.
- Fix: Normalize by length. Use this to select top one instead:

$$\hat{y} = \arg\max_{y \in \mathcal{Y}} \frac{1}{|y|^{\alpha}} \log p(y|x)$$
(1)

More negative terms are added for longer hypotheses.

Outline

1 Sequence-to-sequence Models

- Introduction
- Neural Machine Translation

Strengths and Limitations

- 2 Attentic
 - Attention
 - Attention Types
 - Advantages of Attention
- The Transformer
 - Issues with RNNs
 - The Transformer Model
 - Self-Attention
 - Positional Encoding
 - The attention block, Training Tricks
 - Masked Attention
 - Encoder-Decoder Attention

Sequence-tosequence Models

Strengths and Limitations

Attention

About the Success of NMT

Sequence-tosequence Models

Strengths and Limitations

Attention

The Transformer Neural Machine Translation went from a fringe research attempt in 2014 to the leading standard method in 2016.

• 2014: First seq2seq paper published.

- 2016: Google Translate switches from SMT to NMT
- 2018+: Transformers have become the dominant architecture for NMT. Examples include:
 - BART (Facebook AI Research) (2019)
 - T5 (Google AI) (2020)
 - UNILM (Microsoft Research Asia) (2020)

NMT is far from solved

NMT picks up biases in training data

Sequence-to-				
sequence Models	Malay - detected -	.↓→	English -	
Strengths and Limitations				
Attention	Dia bekerja sebagai jururawat. Dia bekerja sebagai pengaturcara. Edit		She works as a nurse. He works as a programmer.	
The				
Transformer	Î			

Didn't specify gender

NMT is far from solved (II)

Hard to interpret systems do strange things

 Somali •
 Image: Constraint of the cons

Open in Google Translate

Feedback

Sequence-tosequence Models Strengths and

Limitations

Attention

Sequence-to-sequence: the bottleneck problem

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations

Sequence-tosequence Models

Attention

The Transformer

2 Attention

- Attention
- Attention Types
- Advantages of Attention
- The Transforme
 - Issues with RNNs
 - The Transformer Model
 - Self-Attention
 - Positional Encoding
 - The attention block, Training Tricks
 - Masked Attention
 - Encoder-Decoder Attention

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
- 2 Attention
 - Attention
 - Attention Types
 - Advantages of Attention
 - The Transformer
 - Issues with RNNs
 - The Transformer Model
 - Self-Attention
 - Positional Encoding
 - The attention block, Training Tricks
 - Masked Attention
 - Encoder-Decoder Attention

Sequence-tosequence Models

Attention

Attention

Sequence-tosequence Models

Attention Attention

- Attention provides a solution to the bottleneck problem.
- Core idea: on each step of the decoder, use direct connection to the encoder to focus on a particular part of the source sequence

Attention (II)

Attention (III)

Attention (IV)

Attention (V)

Sequence-tosequence Models Attention Attention The Transformer

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
- 2 Attention
 - Attention
 - Attention Types
 - Advantages of Attention
 - The Transformer
 - Issues with RNNs
 - The Transformer Model
 - Self-Attention
 - Positional Encoding
 - The attention block, Training Tricks
 - Masked Attention
 - Encoder-Decoder Attention

Sequence-tosequence Models

Attention Attention Types
Basic Attention (with no parameters)

Suppose we have a sequence of n items, represented as x_1, x_2, \ldots, x_n , and we want to compute the attention weights for each item based on a query q.

$$s_i = x_i^T q$$
$$w_i = \frac{\exp(s_i)}{\sum_{j=1}^n \exp(s_j)}$$

Attention
$$(q, x_1, x_2, \dots, x_n) = \sum_{i=1}^n w_i x_i$$

This gives us a weighted representation of the sequence based on the query. Note that the attention weights are computed based solely on the query and the representations of the items, with **no learned parameters**.

Sequence-tosequence Models Attention Attention Types

Generalization of Attention

 We can use attention in many architectures (not just seq2seq) and many tasks (not just MT)

- General definition of attention:
 - Given a set of vector values and keys, and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query and keys.

Intuition:

- The weighted sum is a selective summary of the information contained in the values, where the query and keys determine which values to focus on.
- Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values), dependent on some other representation (the query).

Sequence-tosequence Models

Attention Types

Generalised Dot-Product Attention Formulas

In the dot-product attention mechanism, we compute the attention weights as follows:

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V,$$

where Q, K, and V are the query, key, and value matrices, respectively, and d_k is the dimensionality of the key vectors.

- Q is of size (batch size $\times n_q \times d_k$)
- K is of size (batch size $\times n_k \times d_k$)
- V is of size (batch size $\times n_k \times d_v$)

Here, n_q and n_k denote the number of queries and keys, respectively, and d_v is the dimensionality of the value vectors.

Sequence-tosequence Models Attention Attention Types

Generalised Dot-Product Attention Formulas (II)

Sequence-tosequence Models Attention Attention Types The Transformer We can also write the attention function as a weighted sum of the value vectors, where the attention weights are given by the dot product of the query and key vectors:

$$\mathsf{Attention}(Q,K,V) = \sum_{i=1}^{n_k} \alpha_i v_i,$$

where $\alpha_i = \frac{\exp(qk_i/\sqrt{d_k})}{\sum_{j=1}^{n_k}\exp(qk_j/\sqrt{d_k})}$ is the attention weight for the *i*-th key, and v_i is the corresponding value vector.

Generalised Attention Formulas

We can generalise to other attention models:

```
\alpha_i = \operatorname{softmax}(\operatorname{score}(q, h_i))
```

sequence Models Attention Attention Types

Sequence-to-

- score is a function that computes the similarity between the query vector and each input vector. Common choices for the score are:
 - Dot product: $score(q, h_i) = q^T h_i$
 - Scaled dot product: score $(q, h_i) = \frac{q^T h_i}{\sqrt{d}}$
 - General: $\operatorname{score}(q, h_i) = q^T W h_i$
 - Concat: $\operatorname{score}(q, h_i) = v^T \tanh(W[q; h_i])$
 - Additive: $\operatorname{score}(q, h_i) = v^T \tanh(W_1 q + W_2 h_i)$
- Where d is the dimensionality of the query and input vectors, W and v are learned parameter matrices, and [q; h_i] denotes the concatenation of the query and *i*-th input vector.

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
- 2 Attention
 - Attention
 - Attention Types
 - Advantages of Attention
 - The Transformer
 - Issues with RNNs
 - The Transformer Model
 - Self-Attention
 - Positional Encoding
 - The attention block, Training Tricks
 - Masked Attention
 - Encoder-Decoder Attention

Sequence-tosequence Models

Attention

Advantages of Attention

Sequence-tosequence Models

Attention

Advantages of Attention

The Transformer

Advantages of Attention

- Attention significantly improves NMT performance
- Attention provides more "human-like" model of the MT process
 - We look back at the source sentence while translating, rather than remembering it all
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with the vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we see what the decoder was focusing on
 - The network learns alignment by itself

Attention Solves the Bottleneck Problem

e

In a traditional seq2seq model, the decoder receives a **fixed-length vector** (the context vector) that summarizes the entire source sequence. This creates a bottleneck, as the decoder must use this one vector to generate the entire target sequence.

$$\alpha_{i,j} = v_a^T \tanh(W_a s_{i-1} + U_a h_j)$$
$$\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_{k=1}^n \exp(e_{i,k})}$$
$$c_i = \sum_{j=1}^n \alpha_{i,j} h_j$$

where s_{i-1} is the decoder hidden state at the previous time step, h_j is the *j*-th encoder hidden state, v_a , W_a , and U_a are learned parameters, and c_i is the context vector at time step *i*. The attention weights $\alpha_{i,j}$ determine which parts of the source sequence to focus on at each step.

Sequence-tosequence Models

Attention Advantages of Attention

Attention Solves the Bottleneck Problem (II)

Sequence-tosequence Models

Attention

Advantages of Attention

The Transformer This allows the decoder to attend to different parts of the source sequence at each step, and thus avoid the bottleneck problem.

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
- Attention
 - Attention
 - Attention Types
 - Advantages of Attention
- 3 The Transformer
 - Issues with RNNs
 - The Transformer Model
 - Self-Attention
 - Positional Encoding
 - The attention block, Training Tricks
 - Masked Attention
 - Encoder-Decoder Attention

Sequence-tosequence Models

Attention

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
 - Attention
 - Attention
 - Attention Types
 - Advantages of Attention
- 3 The Transformer
 - Issues with RNNs
 - The Transformer Model
 - Self-Attention
 - Positional Encoding
 - The attention block, Training Tricks
 - Masked Attention
 - Encoder-Decoder Attention

Sequence-tosequence Models

Attention

The Transformer Issues with RNNs

Issues with RNNs: Linear interaction distance

Linear locality

RNNs encode linear locality, which is useful since nearby words often affect each other's meaning.

Problem

However, RNNs take O(sequence length) steps for distant word pairs to interact, which makes it hard to learn long-distance dependencies due to vanishing gradients. Additionally, the meaning in sentences doesn't necessarily follow a *linear order*.

- This linear interaction distance limitation can be problematic for some NLP tasks, such as machine translation or sentiment analysis.
- This motivates the use of alternative models that can capture non-linear dependencies more effectively, such as transformers.

Sequence-tosequence Models

The Transformer Issues with RNNs

Issues with RNNs: Lack of parallelizability

Parallelizability

Forward and backward passes in RNNs have O(sequence length) unparallelizable operations.

- GPUs can perform a bunch of independent computations at once, which is great for speeding up training.
- However, future RNN hidden states can't be computed in full before past RNN hidden states have been computed.
- This lack of parallelizability inhibits training on very large datasets, which can be a major issue in modern NLP applications.

Solution

Transformers are highly parallelizable, allowing for much faster training on larger datasets.

Sequence-tosequence Models

Attention

The Transformer Issues with RNNs

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
 - Attention
 - Attention
 - Attention Types
 - Advantages of Attention

3 The Transformer

- Issues with RNNs
- The Transformer Model
- Self-Attention
- Positional Encoding
- The attention block, Training Tricks
- Masked Attention
- Encoder-Decoder Attention

Sequence-tosequence Models

Attention

The Transformer

The Transformer Model

Source: https://jalammar.github.io/illustrated-transformer/

The Encoding and Decoding Components

- The Transformer consists of an encoding component, a decoding component, and connections between them.
- The encoding component is a stack of encoders, and the decoding component is a stack of decoders.
- The encoders and decoders are connected by attention layers.

Sequence-tosequence Models

Attention

The Transformer

The Encoder Sub-Layers

- Each encoder has two sub-layers: a self-attention layer and a feed-forward neural network.
- The self-attention layer helps the encoder look at other words in the input sentence as it encodes a specific word.
- The feed-forward network is applied independently to each position.
- The exact same structure is used for all encoders, but they do not share weights.

Sequence-tosequence Models

Attention

The Transformer

The Decoder Sub-Layers

Sequence-tosequence Models

Attention

The Transformer

- The decoder has both the self-attention and feed-forward layers, but between them is an attention layer that helps the decoder focus on relevant parts of the input sentence.
- The attention layer helps the decoder generate the output sequence.

The Input Embedding

- Each input word is turned into a vector using an embedding algorithm.
- The embedding size is typically 512.
- The embedding only happens in the bottom-most encoder.
- Each encoder receives a list of vectors, the size of which is a hyperparameter we can set.

Figure: Word embeddings for input sequence.

Sequence-tosequence Models

Attention

The Transformer

What is Byte Pair Encoding?

Sequence-tosequence Models

Attention

The Transformer

- A simple and efficient compression algorithm that reduces the size of text data by replacing frequent pairs of bytes with a single byte.
- Originally proposed by Philip Gage in 1994 for compressing English text files.
- Later adapted for natural language processing tasks such as subword tokenization and neural machine translation.

How does Byte Pair Encoding work?

Sequence-tosequence Models

Attention

The Transformer

- Initialize a vocabulary with all the unique bytes in the text data and a special end-of-word symbol (e.g. $\langle /w \rangle$).
- 2 Count the frequency of all the byte pairs in the text data.
- 3 Merge the most frequent byte pair into a new byte and add it to the vocabulary.
- 4 Repeat steps 2 and 3 until a desired vocabulary size or compression ratio is reached.
- **5** Encode the text data by replacing each byte pair with its corresponding merged byte.

Example of Byte Pair Encoding

- Suppose we have a text data: "low lower newest wides"
- The initial vocabulary is: {"I", "o", "w", " ", "e", "r", "n", "s", "t", "i", "d", (/w)}
- The most frequent byte pair is: ("e", "s")
- We merge ("e", "s") into a new byte: ⟨es⟩ and add it to the vocabulary.
- The new vocabulary is: {"I", "o", "w", " ", "e", "r", "n", "s", "t", "i", "d", (/w), (es)}
- The new text data is: "low lower new $\langle es \rangle t \text{ wid} \langle es \rangle t$ "
- We repeat this process until we get the final vocabulary and encoded text data.

Sequence-tosequence Models

Attention

The Transformer

The Encoding Process

- Each word in the input sequence flows through its own path in the encoder.
- Dependencies between paths are captured in the self-attention layer.
- The same feed-forward layer weights are applied for all paths.

Figure: Encoding process in the Transformer.

Sequence-tosequence Models

Attention

The Transformer

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
 - Attention
 - Attention
 - Attention Types
 - Advantages of Attention

3 The Transformer

- Issues with RNNs
- The Transformer Model
- Self-Attention
- Positional Encoding
- The attention block, Training Tricks
- Masked Attention
- Encoder-Decoder Attention

Sequence-tosequence Models

Attention

The Transformer Self-Attention Sequence-tosequence Models

Attention The Transformer

Self-Attention

Self-Attention

- Self-attention is a key component of the Transformer model that allows it to understand the context of a word in a sentence.
- It allows the model to associate a word with other relevant words in the sentence.
- For example, when processing the sentence "The animal didn't cross the street because it was too tired", self-attention helps the model understand that "it" refers to "animal".
- Self-attention works by looking at other positions in the input sequence for clues that can help lead to a better encoding for the current word.
- The Transformer uses self-attention to incorporate the representation of other relevant words into the one it is currently processing.

Self-Attention

Sequence-tosequence Models Attention The Transformer Self-Attention

Figure: Example of self-attention in encoder #5 of the Transformer model. Part of the attention mechanism is focusing on "The Animal", and this information is incorporated into the encoding of "it".

Self-Attention in Detail

- Sequence-tosequence Models
- Attention
- The Transformer Self-Attention

- First step: create three vectors from each encoder's input vectors
 - Create Query, Key, and Value vectors by multiplying embedding by three matrices
 - Vectors are smaller in dimension than embedding vector (64 vs 512)

Self-Attention in Detail (I)

Self-Attention in Detail (II)

Sequence-tosequence Models

Attention

- Second step: calculate a score for each word in the input sentence
 - Score is calculated by taking dot product of query vector with key vector of respective word
- Third step: divide scores by \sqrt{d} (scaled dot-product attention)
- Fourth step: pass through softmax operation
 - Softmax score determines how much each word will be expressed at this position

Self-Attention in Detail (II)

Sequence-tosequence Models Attention The Transformer

Self-Attention

Thinking Machines Input Embedding **X**1 **X**2 Queries q₁ q₂ Keys k₁ k₂ Values V1 V₂ $q_1 \cdot k_1 = 112$ Score $q_1 \cdot k_2 = 96$ Divide by 8 ($\sqrt{d_k}$) 14 12 0.88 0.12 Softmax

Self-Attention in Detail (III)

Sequence-tosequence Models

The Transformer Self-Attention

- Fifth step: multiply each value vector by the softmax score
- Sixth step: sum up the weighted value vectors to produce output of self-attention layer
- Calculation is done in matrix form for faster processing in actual implementation

Self-Attention in Detail (III)

	Input	Thinking	Machines
	Embedding	X 1	X2
Sequence-to- sequence Models	Queries	q 1	q ₂
Attention	Keys	k 1	k 2
The Transformer	Values	V1	V2
	Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96
	Divide by 8 ($\sqrt{d_k}$)	14	12
	Softmax	0.88	0.12
	Softmax X Value	V1	V2
	Sum	Z 1	Z ₂

Matrix Calculation of Self-Attention

- Calculate Query, Key, and Value matrices by multiplying embedding matrix X with weight matrices WQ, WK, and WV respectively.
- 2 X matrix represents input sentence with each row representing a word and q/k/v vectors having a different size than embedding vector.
- 3 Outputs of the self-attention layer can be calculated using a single formula.

Sequence-tosequence Models

Attention

The Transformer Self-Attention

Multi-Head Self-Attention

- Multi-headed attention improves performance by expanding the model's ability to focus on different positions and representation subspaces
- 2 With multi-headed attention, we have multiple sets of Query/Key/Value weight matrices
- 3 We concatenate these matrices and multiply them by a weight matrix W_o to condense them into a single matrix

Sequence-tosequence Models

Attention

Multi-Head Self-Attention (II)

Sequence-tosequence Models Attention

The Transformer Self-Attention

1) This is our 2) We embed input sentence* each word*

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

3) Split into 8 heads. We multiply X or R with weight matrices

4) Calculate attention using the resulting O/K/V matrices

W₀Q W₀K ₩₀[∨] W₁Q W₁K W₁v

> W₇Q ., к W-V

...

5) Concatenate the resulting Z matrices,

then multiply with weight matrix W^o to

produce the output of the laver

wo

Attention Heads Example

Layer: 5 \$ Attention: Input - Input

Sequence-tosequence Models Attention The Transformer

Self-Attention

The_ The_ animal animal didn_ didn_ _ t cross_ cross the_ the_ street street because_ because_ it_ it_ was_ was_ too_ too_ tire tire **d_ d_**

٥
Sequence-tosequence Models

Attention

The Transformer

Attention Heads Example (II)

- Different heads focus on different parts of the input
- The model's representation of a word can include information from multiple heads.
- When all heads are combined, the output can be harder to interpret

Outline

- Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
 - Attention
 - Attention
 - Attention Types
 - Advantages of Attention

3 The Transformer

- Issues with RNNs
- The Transformer Model
- Self-Attention

Positional Encoding

- The attention block, Training Tricks
- Masked Attention
- Encoder-Decoder Attention

Sequence-tosequence Models

Attention

The Transformer

Representing The Order of The Sequence Using Positional Encoding

- In order to account for the order in the input sequence, the Transformer adds a vector to each input embedding.
- These vectors follow a specific pattern that the model learns, which helps it determine the position of each word or the distance between different words in the sequence
- The intuition is that adding these values to the embeddings provides meaningful distances between the embedding vectors once they're projected into Q/K/V vectors and during dot-product attention.

Figure: Example of positional encoding with a embedding size of 4

Sequence-tosequence Models

Attention

The Transformer

Real Example of Positional Encoding

Sequence-tosequence Models Attention The Transformer Positional Encoding

Figure: Real example of positional encoding for 10 words with an embedding size of 64.

Sequence-tosequence Models

Attention

The Transformer Positional Encoding

Formula for Positional Encoding

- The original "Attention is all you need" paper proposes a pre-defined formula for the positional encoding
- The encoding values are generated using a combination of sine and cosine functions, which are concatenated to form each of the positional encoding vectors.
- This method provides the advantage of being able to scale to unseen lengths of sequences, allowing the trained model to translate a sentence longer than any of those in the training set.

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$
$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$

Positional Encoding Effect

The

Figure: Position-wise similarity of multiple position embeddings. Note that larger models such as GPT2 process more tokens. Image from Wang et Chen 2020

Example

For example, with n = 5 and d = 4, the positional encoding matrix is:

$\sin(0/10000^{0/4})$	$\cos(0/10000^{0/4})$	$\sin(0/10000^{2/4})$	$\cos(0/10000^{2/4})$
$\sin(1/10000^{0/4})$	$\cos(1/10000^{0/4})$	$\sin(1/10000^{2/4})$	$\cos(1/10000^{2/4})$
$\sin(2/10000^{0/4})$	$\cos(2/10000^{0/4})$	$\sin(2/10000^{2/4})$	$\cos(2/10000^{2/4})$
$\sin(3/10000^{0/4})$	$\cos(3/10000^{0/4})$	$\sin(3/10000^{2/4})$	$\cos(3/10000^{2/4})$
$\sin(4/10000^{0/4})$	$\cos(4/10000^{0/4})$	$\sin(4/10000^{2/4})$	$\cos(4/10000^{2/4})$

	0.0000	1.0000	0.0000	1.0000
	0.8415	0.5403	0.0017	0.9999
\approx	0.9093	-0.4161	0.0033	0.9999
	0.1411	-0.9900	0.0050	0.9999
	-0.7568	-0.6536	0.0067	0.9999

Sequence-tosequence Models

Attention

The

Transformer

Positional Encoding

Example (II)

$$\mathsf{PE} \times \mathsf{PE}^T =$$

Sequence-tosequence Models Attention

The Transformer

2.0000	1.3827	0.9126	-0.8476	-1.4104
1.3827	1.8325	0.8479	-0.6605	-1.1834
0.9126	0.8479	1.6806	0.6541	-0.4506
-0.8476	-0.6605	0.6541	1.6989	1.2061
-1.4104	-1.1834	-0.4506	1.2061	1.7998

We see that the elements in the diagonal have a much larger value. And the diagonal decreases the farther away from the diagonal. That is, closer positions have higher dot product values.

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
 - Attention
 - Attention
 - Attention Types
 - Advantages of Attention

3 The Transformer

- Issues with RNNs
- The Transformer Model
- Self-Attention
- Positional Encoding

The attention block, Training Tricks

- Masked Attention
- Encoder-Decoder Attention

Sequence-tosequence Models

Attention

The Transformer

The attention block, Training Tricks

Training trick 1: Residual Connections

Residual connections

Residual connections are a technique that helps models train better. Instead of only propagating information forward through a series of layers, residual connections also allow information to flow directly through the layers via a shortcut connection.

- Residual connections were first introduced in the ResNet architecture for image classification.
- They can help address the vanishing gradient problem and improve gradient flow through the network.
- Residual connections have been shown to be effective in a wide range of deep learning models.
- This technique can make the loss landscape considerably smoother and make the training process easier and more efficient.

Sequence-tosequence Models

Attention

The Transformer

The attention block, Training Tricks

Training trick 2: Layer Normalization

Layer normalization

Sequence-tosequence Models

Attention

The Transformer

The attention block, Training Tricks Layer normalization is a technique that helps models train faster by cutting down on uninformative variation in hidden vector values. This is achieved by normalizing the values to have a zero mean and unit standard deviation within each layer.

- Layer normalization is similar to batch normalization, but is applied at the layer level instead of the batch level.
- It has been shown to improve the performance of a wide range of deep learning models, including transformers.
- This technique can help address issues with internal covariate shift and the vanishing gradient problem.

Training trick 2: Layer Normalization (II)

Sequence-tosequence Models

Attention

The Transformer

The attention block, Training Tricks The equation for layer normalization is:

LayerNorm
$$(x_i) = \frac{a_i}{\sqrt{\sigma^2 + \epsilon}}(x_i - \mu) + b_i$$

where x_i is the input to the *i*th layer, μ and σ are the mean and standard deviation of the input, a_i and b_i are learnable scaling and shifting parameters for each layer, and ϵ is a small value (usually 10^{-5}) added for numerical stability.

Training trick 3: Scaled Dot Product Attention

Dot product attention

The dot product in the attention mechanism tends to take on extreme values, as its variance scales with dimensionality d.

Solution

Attention The Transformer

Sequence-tosequence Models

The attention block, Training Tricks To mitigate this issue, we can use a scaling factor of $1/\sqrt{d}$ for the dot product, which is called scaled dot product attention.

- Scaled dot product attention is used in the self-attention mechanism in transformers.
- This technique ensures that the dot product stays within a reasonable range, which can help with the stability of the training process.
- Scaled dot product attention is also more computationally efficient than other attention mechanisms

The Attention Block

• Each sub-layer in each encoder has a residual connection around it and is followed by a layer-normalization step.

Figure: Visualization of the vectors and layer-norm operation associated with self-attention.

The Attention Block (II)

This also applies to the decoder. A Transformer with 2 stacked encoders and decoders would look like this:

Figure: A Transformer with 2 stacked encoders and decoders.

Sequence-tosequence Models

Attention

The Transformer

The attention block Training Tricks

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
 - Attention
 - Attention
 - Attention Types
 - Advantages of Attention

3 The Transformer

- Issues with RNNs
- The Transformer Model
- Self-Attention
- Positional Encoding
- The attention block, Training Tricks
- Masked Attention
- Encoder-Decoder Attention

Sequence-tosequence Models

Attention

The Transformer Masked Attention

Fixing the decoder problem: Masked attention

Problem

How do we prevent the decoder in a transformer network from "cheating" by looking ahead and "seeing" the answer when training on a language modeling objective?

Solution

The Transformer Masked Attention

Sequence-to-

sequence Models

Attention

Masked Multi-Head Attention: We mask (hide) information about future tokens from the model by setting attention scores to $-\infty.$

- To use self-attention in decoders, we need to ensure we can't peek at the future.
- At every timestep, we could change the set of keys and queries to include only past words, but this would be inefficient.

Fixing the decoder problem: Masked attention (II)

Masked attention

To enable parallelization, we mask out attention to future words by setting attention scores to $-\infty.$

- Masking is achieved by adding a mask matrix to the attention weights before the softmax operation.
 - The mask matrix has the same shape as the attention weights, with $-\infty$ values in the positions where future words would be attended to.

Mask matrix

$$\mathsf{mask}_{i,j} = \begin{cases} 0 & \text{if } j \leq i \\ -\infty & \text{otherwise} \end{cases}$$

The masked attention scores are then passed through a softmax activation function to compute the weights

Sequence-tosequence Models

Attention

The Transformer Masked Attention

Outline

- 1 Sequence-to-sequence Models
 - Introduction
 - Neural Machine Translation
 - Strengths and Limitations
 - Attention
 - Attention
 - Attention Types
 - Advantages of Attention

3 The Transformer

- Issues with RNNs
- The Transformer Model
- Self-Attention
- Positional Encoding
- The attention block, Training Tricks
- Masked Attention
- Encoder-Decoder Attention

Sequence-tosequence Models

Attention

The Transformer

Encoder-Decoder Attention

Encoder-Decoder Attention

Sequence-tosequence Models

Attention

The Transformer

Encoder-Decoder Attention

- The output of the top encoder is transformed into attention vectors K and V to be used in the "encoder-decoder attention" layer of each decoder.
- Each step in the decoding phase outputs an element from the output sequence and repeats until a special symbol is reached.
- The self-attention layer in the decoder can only attend to earlier positions in the output sequence, achieved by masking future positions.
- The "encoder-decoder attention" layer works like multiheaded self-attention, with the Queries matrix from the layer below and the Keys and Values matrix from the output of the encoder stack.

The Decoder

Decoding time step: 1 2 3 4 5 6 OUTPUT

Figure: The decoder side of the Transformer architecture.

The Decoder (II)

Decoding time step: 1 2 3 4 5 6 OUTPUT

Figure: The decoder side of the Transformer architecture.

I am

The Final Linear and Softmax Layer

- The final Linear layer projects the vector produced by the decoder to the vocabulary size
- The softmax layer turns those scores into probabilities

Figure: The final Linear and Softmax layers in the Transformer architecture.

Sequence-tosequence Models

Attention

The Transformer

Encoder-Decoder Attention