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What are Transformers?

l transformer: any sequence-based model that primarly uses 
self-attention to propagate along the time dimension

l more broadly: any model that primarily uses self-attention to 
propagate information between basic units of our instansces
n pixels
n graph nodes
n speech

l motivation: 
n take advantage of all data available (parallelizable)
n benefit from long -range dependencies
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Outline

l Background: Language Modeling, Seq2Seq with Attention

l Key Concepts of the Transformer
n Self Attention
n Multi-Head Attention

l Position Information
l Transformer Layers/Blocks

l Encoder vs Decoder (Masking, Inter Attention, Softmax)
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BACKGROUND
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Background: Language modeling with RNN

th
e

students opened their

books laptops

a zoo
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Background: Seq2Seq
En

co
de

rR
NN

Source sentence (input)

<START> he hit me with a piei
l

a m’ entarté

he hit me with a pie <END>

DecoderRNN

Target sentence (output)

Encoding of the
source sentence.
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References

http://jalammar.github.io/illustrated-transformer/
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TRANSFORMER
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Complete picture
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Different attentions
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Key concepts

l Self-attention and multi-head attention
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TRANSFORMER: SELF
ATTENTION
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Self-attention: step-by-step I: intuition
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not a 
parameter



Self-attention: step-by-step II: equations
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Self-attention: step-by-step III: graphically
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Self-attention: step-by-step IV: vectorization
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Self-attention: notes
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best of two worlds: 
linear and non-linear operations



Self-attention: notes
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Modifications to Self-Attention

l Scaled dot product
l Key, value and query transformations

20



Scaled Dot Product
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it keeps the weights within a certain range, not 
depending on the dimensionality of the vector



Key, query, value
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every vector occurs in 3 different positions
value: weighted sum that provides the output
query: input vector that corresponds to the current 
output matched  against every other input vector
key: the vector that the query vector is matched against
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Databases store information as pair of keys and values (K,V).

Figure: Nikhil Shah, “Attention? An Other Perspective! [Part 1]” (2020)

Example:

<Key>
<Value>

myfil
e.pdf

Keys, Queries and Values inspired in databases 
notation
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https://learningturtle.github.io/Blog/posts/attention_another_perspective/


The (K,Q,V) terminology used to retrieve information from databases
is adopted to formulate attention
Attention is a mechanism to compute a context vector (c) for a query
(Q) as a weighted sum of values (V).

Figure: Nikhil Shah, “Attention? An Other Perspective! [Part 1]” (2020)

Keys, Queries and Values
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https://learningturtle.github.io/Blog/posts/attention_another_perspective/


Linear Transformations
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FLOPs

Self-Attention O(length2 · dim)

RNN (LSTM) O(length · dim2)

Convolution O(length · dim2 · kernel_width)

Attention is Cheap!

26

specially attractive when your dim >> length 
(case of MT)



Question

l Given a query vector and two keys:

q = [0.3, 0.2, 0.1]
k1 = [0.1, 0.3, 0.1]
k2 = [0.6, 0.4, 0.2]

l What are the attention weights a1 and a2 computing the dot
product ?

l What are the attention weights a1 & a2 when computing the
scaled dot product ?

l Which key vector will receive more attention ?
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I kicked the ball

Who
Did what?

To whom?

I kicked the ball

Attention head: Who
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different words relate to each 
other by different relations 



Attention head: Did What?

I kicked the ball

Who
Did
what?

kicked
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Attention head: To Whom?
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I kicked the ball

Who
Did
what?

To whom?

kicked



Parallel attention heads
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I kicked the ball

Who
Did what?

To whom?

I kicked the ball

To model all these different kinds of relation in one self-attention 
operation we split the self-attention into different heads which are 
basically self-attention layers applied in parallel



Multi-head attention
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1. input sequence through linear operations to decrease dimensionality
2. each split of the input vector is fed into a head attention.



Multi-head attention
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Visualization

l As we encode the word "it", one attention head is focusing 
most on "the animal", while another is focusing on "tired" -- in 
a sense, the model's representation of the word "it" bakes in 
some of the representation of both "animal" and "tired".
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https://www.youtube.com/watch?v=187JyiA4pyk



TRANSFORMER: POSITION 
INFORMATION
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Relevance of position information

l This is not a real restaurant, it’s a filthy burger joint
l This is not a filthy Burger joint, it’s a real restaurant

The transformer contains no recurrence and no convolution. 
We have to add positional information to the input word vectors

Methods:
Positional embeddings
Positional encodings
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Positional embeddings
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Question

l What is the problem with positional embeddings?
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Positional Encoding

We can add positional encodings to the input word vectors:
• Fixed. A usual choice is sine and cosine functions of 

different frequencies, since it allow the model to attend by 
relative positions
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• pos is the position 
of the token in the 
sentence, 

• dim the dimension 
of the embeddings 

• i the position within 
the embedding.



Questions

l Why positional embeddings are summed with word 
embeddings instead of concatenation?

l Doesn't the position information get vanished once it reaches 
the upper layers?
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TRANSFORMER: 
LAYERS/BLOCKS
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Transformer layers
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layer normalization

residual connections



Transformer of 2 stacked encoders and decoders
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The Transformer: Encoder vs Decoder layers
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QUESTION: 
What are we doing in the red square? 
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Encoder vs Decoder layers

l Masking. The decoder cannot see the future when
predicting the next word.

l Enc-Dec Attention. Queries are taken from the layer
below it, but keys and values from the final output of the
encoder.

l The decoder adds an additional linear and softmax
layer (just as RNNs NMT)
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Encoder Self-Attention (no masking)
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Decoder Self-Attention (with masking)
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Masking
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Encoder vs Decoder layers

l Masking. The decoder cannot see the future when
predicting the next word.

l Enc-Dec Attention. Queries are taken from the layer
below it, but keys and values from the final output of the
encoder.

l The decoder adds an additional linear and softmax
layer (just as RNNs NMT)
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The Transformer: Encoder vs Decoder layers
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Complete picture
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Recap

l Key Concepts of the Transformer
n Self Attention
n Multi-Head Attention

l Position Information
l Transformer Layers/Blocks
l Encoder vs Decoder (Masking, 

Inter Attention, Softmax)

64



Complete picture and recap

Self-Attention

l Constant ‘path length’ between any
two positions.

l Unbounded memory.
l Trivial to parallelize (per layer).
l Models Self-Similarity.

65



Active Research Area

l Non autoregressive transformer (Gu and Bradbury et al., 
2018)

l Improving Language Understanding by Generative Pre-
Training (Radford, Narsimhan, Salimans, and Sutskever)

l BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding (Devlin, Chang, Lee, and 
Toutanova)

l Universal Transformers (ICLR 2019). Deghiani*, Gouws*, 
Vinyals, Uszkoreit, Kaiser.

l Transformer-XL: Attentive Language Models Beyond a Fixed-
Length Context (2019). Dai, Yang, Yang, Carbonell, Le, 
Salakhutdinov.
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