
Transformer models

Marta R. Costa-jussà

with slides from Peter Boem, Ashish Vaswani and
Anna Huang

What are Transformers?

l transformer: any sequence-based model that primarly uses
self-attention to propagate along the time dimension

l more broadly: any model that primarily uses self-attention to
propagate information between basic units of our instansces
n pixels
n graph nodes
n speech

l motivation:
n take advantage of all data available (parallelizable)
n benefit from long -range dependencies

2

Outline

l Background: Language Modeling, Seq2Seq with Attention

l Key Concepts of the Transformer
n Self Attention
n Multi-Head Attention

l Position Information
l Transformer Layers/Blocks

l Encoder vs Decoder (Masking, Inter Attention, Softmax)

3

BACKGROUND

4

Background: Language modeling with RNN

th
e

students opened their

books laptops

a zoo

5

Background: Seq2Seq
En

co
de

rR
NN

Source sentence (input)

<START> he hit me with a piei
l

a m’ entarté

he hit me with a pie <END>

DecoderRNN

Target sentence (output)

Encoding of the
source sentence.

6

References

http://jalammar.github.io/illustrated-transformer/

8

http://jalammar.github.io/illustrated-transformer/

TRANSFORMER

9

Complete picture

10

Different attentions

11

Key concepts

l Self-attention and multi-head attention

12

TRANSFORMER: SELF
ATTENTION

13

Self-attention: step-by-step I: intuition

14

not a
parameter

Self-attention: step-by-step II: equations

15

Self-attention: step-by-step III: graphically

16

Self-attention: step-by-step IV: vectorization

17

Self-attention: notes

18

best of two worlds:
linear and non-linear operations

Self-attention: notes

19

Modifications to Self-Attention

l Scaled dot product
l Key, value and query transformations

20

Scaled Dot Product

21

it keeps the weights within a certain range, not
depending on the dimensionality of the vector

Key, query, value

22

every vector occurs in 3 different positions
value: weighted sum that provides the output
query: input vector that corresponds to the current
output matched against every other input vector
key: the vector that the query vector is matched against

2

Databases store information as pair of keys and values (K,V).

Figure: Nikhil Shah, “Attention? An Other Perspective! [Part 1]” (2020)

Example:

<Key>
<Value>

myfil
e.pdf

Keys, Queries and Values inspired in databases
notation

23

https://learningturtle.github.io/Blog/posts/attention_another_perspective/

The (K,Q,V) terminology used to retrieve information from databases
is adopted to formulate attention
Attention is a mechanism to compute a context vector (c) for a query
(Q) as a weighted sum of values (V).

Figure: Nikhil Shah, “Attention? An Other Perspective! [Part 1]” (2020)

Keys, Queries and Values

24

https://learningturtle.github.io/Blog/posts/attention_another_perspective/

Linear Transformations

25

FLOPs

Self-Attention O(length2 · dim)

RNN (LSTM) O(length · dim2)

Convolution O(length · dim2 · kernel_width)

Attention is Cheap!

26

specially attractive when your dim >> length
(case of MT)

Question

l Given a query vector and two keys:

q = [0.3, 0.2, 0.1]
k1 = [0.1, 0.3, 0.1]
k2 = [0.6, 0.4, 0.2]

l What are the attention weights a1 and a2 computing the dot
product ?

l What are the attention weights a1 & a2 when computing the
scaled dot product ?

l Which key vector will receive more attention ?

37

I kicked the ball

Who
Did what?

To whom?

I kicked the ball

Attention head: Who

39

different words relate to each
other by different relations

Attention head: Did What?

I kicked the ball

Who
Did
what?

kicked

40

Attention head: To Whom?

41

I kicked the ball

Who
Did
what?

To whom?

kicked

Parallel attention heads

42

I kicked the ball

Who
Did what?

To whom?

I kicked the ball

To model all these different kinds of relation in one self-attention
operation we split the self-attention into different heads which are
basically self-attention layers applied in parallel

Multi-head attention

43

1. input sequence through linear operations to decrease dimensionality
2. each split of the input vector is fed into a head attention.

Multi-head attention

44

Visualization

l As we encode the word "it", one attention head is focusing
most on "the animal", while another is focusing on "tired" -- in
a sense, the model's representation of the word "it" bakes in
some of the representation of both "animal" and "tired".

45

https://www.youtube.com/watch?v=187JyiA4pyk

TRANSFORMER: POSITION
INFORMATION

46

Relevance of position information

l This is not a real restaurant, it’s a filthy burger joint
l This is not a filthy Burger joint, it’s a real restaurant

The transformer contains no recurrence and no convolution.
We have to add positional information to the input word vectors

Methods:
Positional embeddings
Positional encodings

47

Positional embeddings

48

Question

l What is the problem with positional embeddings?

49

Positional Encoding

We can add positional encodings to the input word vectors:
• Fixed. A usual choice is sine and cosine functions of

different frequencies, since it allow the model to attend by
relative positions

50

• pos is the position
of the token in the
sentence,

• dim the dimension
of the embeddings

• i the position within
the embedding.

Questions

l Why positional embeddings are summed with word
embeddings instead of concatenation?

l Doesn't the position information get vanished once it reaches
the upper layers?

51

TRANSFORMER:
LAYERS/BLOCKS

52

Transformer layers

53

layer normalization

residual connections

Transformer of 2 stacked encoders and decoders

54

The Transformer: Encoder vs Decoder layers

55

QUESTION:
What are we doing in the red square?

56

Encoder vs Decoder layers

l Masking. The decoder cannot see the future when
predicting the next word.

l Enc-Dec Attention. Queries are taken from the layer
below it, but keys and values from the final output of the
encoder.

l The decoder adds an additional linear and softmax
layer (just as RNNs NMT)

57

Encoder Self-Attention (no masking)

58

Decoder Self-Attention (with masking)

59

Masking

60

Encoder vs Decoder layers

l Masking. The decoder cannot see the future when
predicting the next word.

l Enc-Dec Attention. Queries are taken from the layer
below it, but keys and values from the final output of the
encoder.

l The decoder adds an additional linear and softmax
layer (just as RNNs NMT)

61

The Transformer: Encoder vs Decoder layers

62

Complete picture

63

V q

Recap

l Key Concepts of the Transformer
n Self Attention
n Multi-Head Attention

l Position Information
l Transformer Layers/Blocks
l Encoder vs Decoder (Masking,

Inter Attention, Softmax)

64

Complete picture and recap

Self-Attention

l Constant ‘path length’ between any
two positions.

l Unbounded memory.
l Trivial to parallelize (per layer).
l Models Self-Similarity.

65

Active Research Area

l Non autoregressive transformer (Gu and Bradbury et al.,
2018)

l Improving Language Understanding by Generative Pre-
Training (Radford, Narsimhan, Salimans, and Sutskever)

l BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding (Devlin, Chang, Lee, and
Toutanova)

l Universal Transformers (ICLR 2019). Deghiani*, Gouws*,
Vinyals, Uszkoreit, Kaiser.

l Transformer-XL: Attentive Language Models Beyond a Fixed-
Length Context (2019). Dai, Yang, Yang, Carbonell, Le,
Salakhutdinov.

66

