

Transformer models

Marta R. Costa-jussà

with slides from Peter Boem, Ashish Vaswani and Anna Huang

- transformer: any sequence-based model that primarly uses self-attention to propagate along the time dimension
- more broadly: any model that primarily uses self-attention to propagate information between basic units of our instansces
 - pixels
 - graph nodes
 - speech

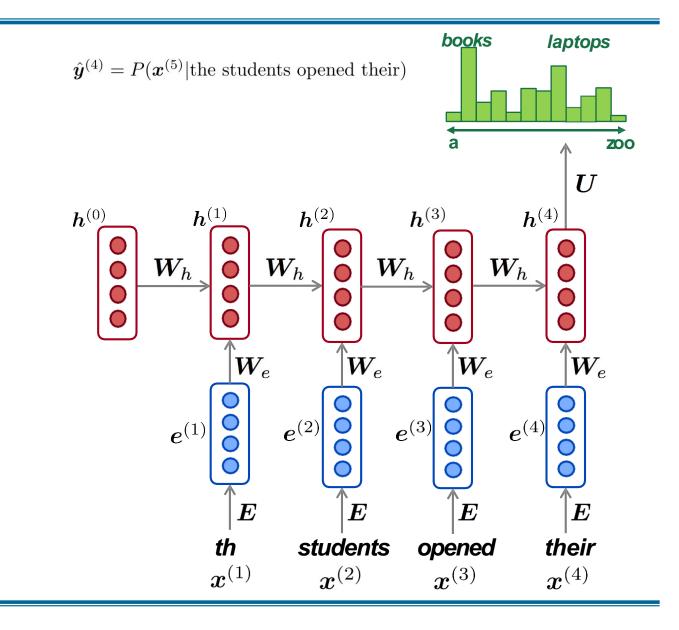
- motivation:
 - take advantage of all data available (parallelizable)
 - benefit from long -range dependencies

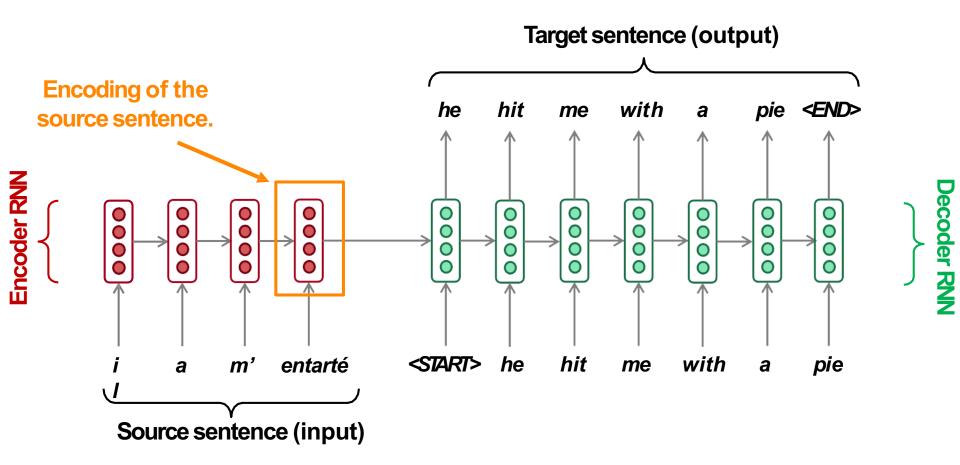
Outline

- Background: Language Modeling, Seq2Seq with Attention
- Key Concepts of the Transformer
 - Self Attention
 - Multi-Head Attention
- Position Information
- Transformer Layers/Blocks
- Encoder vs Decoder (Masking, Inter Attention, Softmax)

BACKGROUND

Background: Language modeling with RNN





Attention Is All You Need

Ashish Vaswani*Noam Shazeer*Niki Parmar*Jakob Uszkoreit*Google BrainGoogle BrainGoogle ResearchGoogle Researchavaswani@google.comnoam@google.comnikip@google.comusz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez^{*}[†] University of Toronto aidan@cs.toronto.edu **Łukasz Kaiser*** Google Brain lukaszkaiser@google.com

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

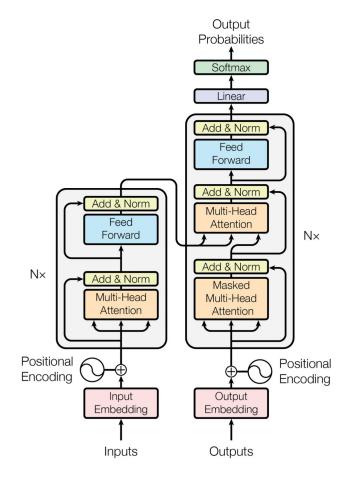
Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions

http://jalammar.github.io/illustrated-transformer/

TRANSFORMER

Complete picture

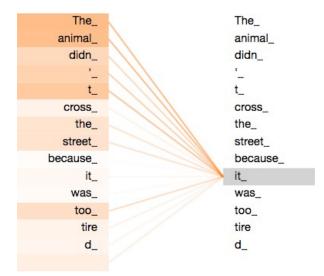


Different attentions



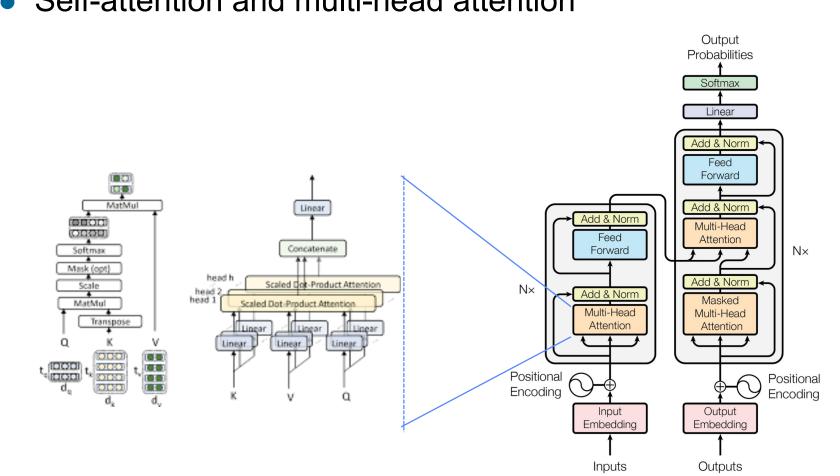
Encoder-Decoder Attention

Encoder Self-Attention



MaskedDecoder Self-Attention

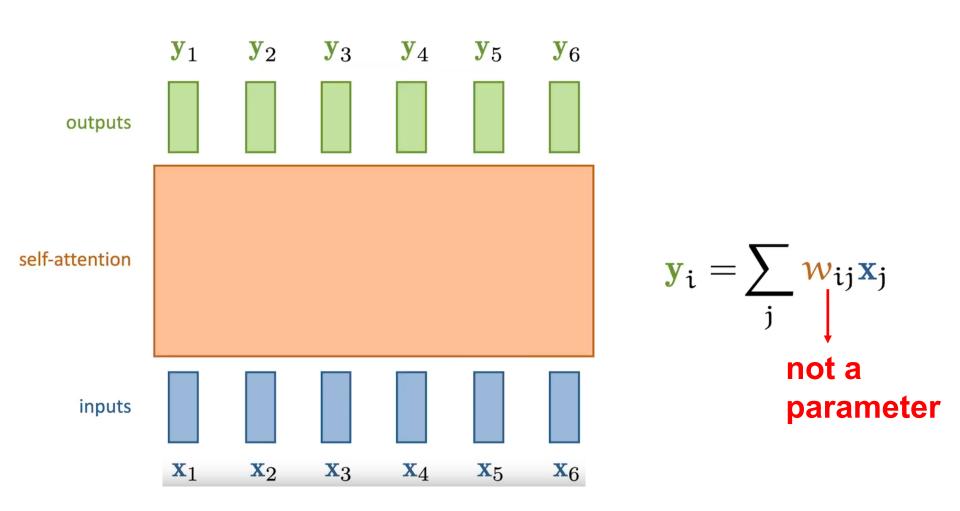
Key concepts



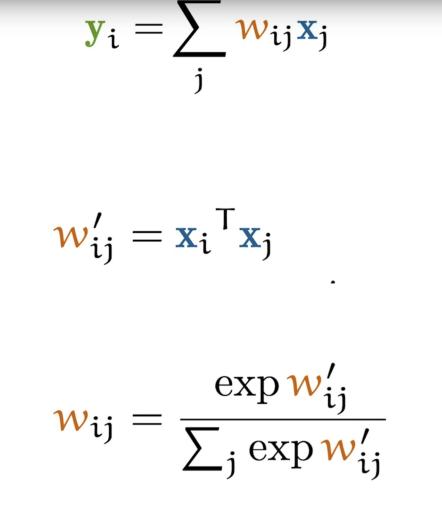
Self-attention and multi-head attention

TRANSFORMER: SELF ATTENTION

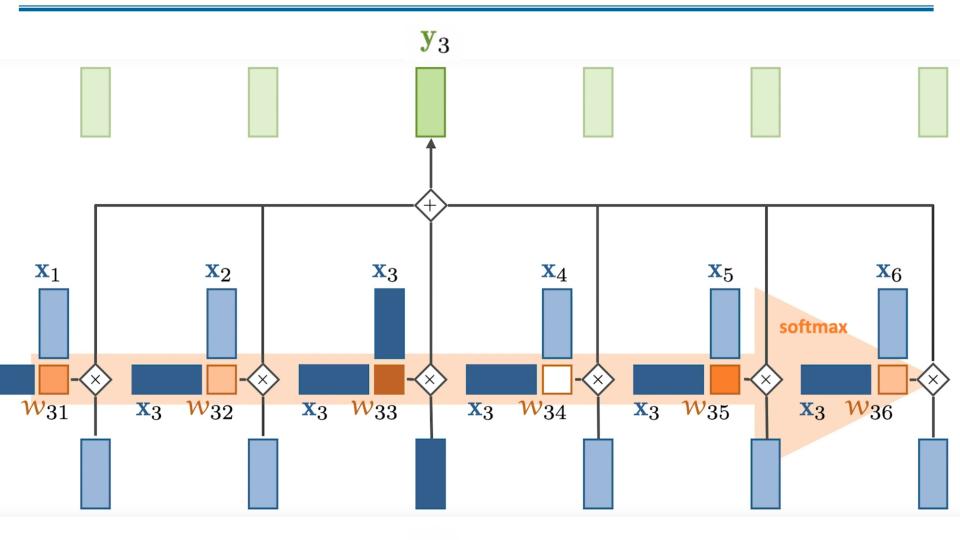
Self-attention: step-by-step I: intuition



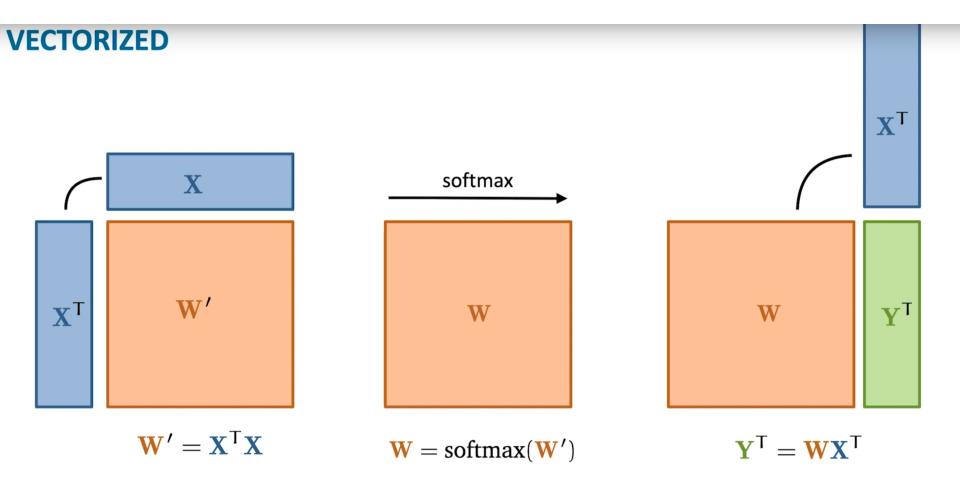
Self-attention: step-by-step II: equations



Self-attention: step-by-step III: graphically



••• ••• ••• UPC



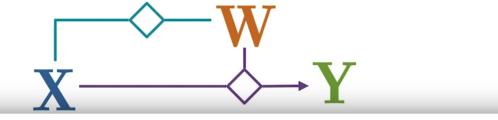
In simple self-attention w_{ii} (x_i to y_i) usually has the most weight not a big problem, but we'll allow this to change later.

Simple self-attention has no parameters.

Whatever parameterized mechanism generates \mathbf{x}_i (like an embedding layer) drives the self attention.

There is a linear operation between X and Y.

non-vanishing gradients through Y = WX^T, vanishing gradients through W = softmax(X^TX).



best of two worlds: linear and non-linear operations

No problem looking far back into the sequence.

In fact, every input has the same distance to every output.

More of a *set model* than a *sequence model*. No access to the sequential information.

We'll fix by encoding the sequential structure into the embeddings. Details later.

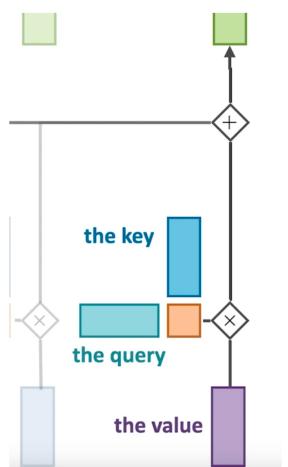
Permutation equivariant.

for any permutation p of the input: p(sa(X)) = sa(p(X))

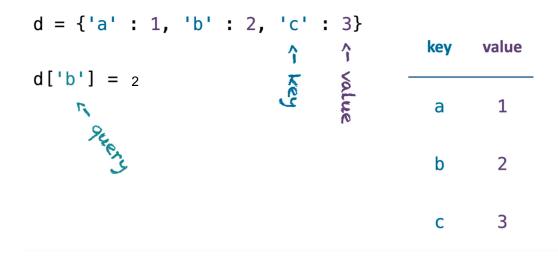
- Scaled dot product
- Key, value and query transformations

it keeps the weights within a certain range, not depending on the dimensionality of the vector

$$w'_{ij} = \frac{x_i^T x_j}{\sqrt{k}} \leftarrow input dimension$$



every vector occurs in 3 different positions value: weighted sum that provides the output query: input vector that corresponds to the current output matched against every other input vector key: the vector that the query vector is matched against

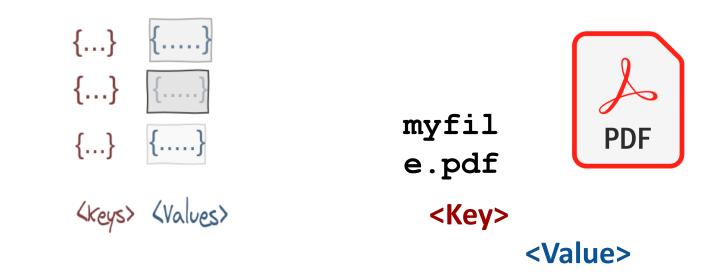


Keys, Queries and Values inspired in databases notation

Databases store information as pair of keys and values (K,V).

Example:

000 000 UPC



23

Figure: Nikhil Shah, <u>"Attention? An Other Perspective! [Part 1]"</u> (2020)

The (K,Q,V) terminology used to retrieve information from databases is adopted to formulate attention

Attention is a mechanism to compute a context vector (c) for a query (Q) as a weighted sum of values (V).

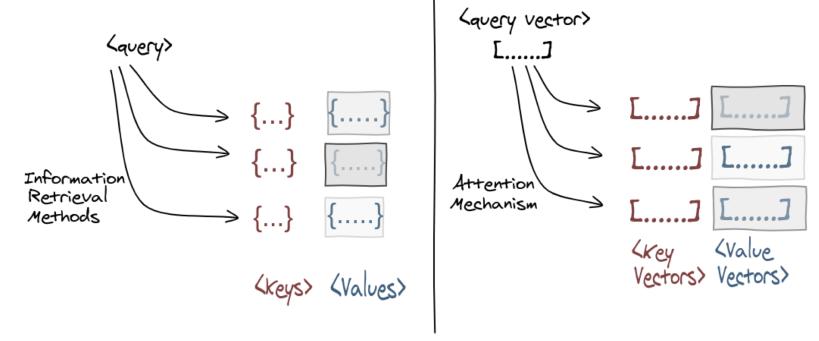
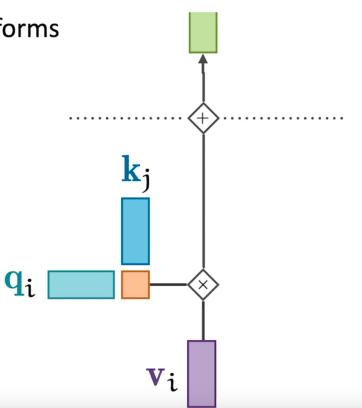


Figure: Nikhil Shah, <u>"Attention? An Other Perspective! [Part 1]"</u> (2020)

introduce matrices **K**, **Q**, **V** for linear transforms and associated biases

$$\mathbf{k}_{i} = \mathbf{K}\mathbf{x}_{i} + \mathbf{b}_{k}$$
$$\mathbf{q}_{i} = \mathbf{Q}\mathbf{x}_{i} + \mathbf{b}_{q}$$
$$\mathbf{v}_{i} = \mathbf{V}\mathbf{x}_{i} + \mathbf{b}_{\nu}$$



FLOPs

Self-Attention	O(length ² · dim)
RNN (LSTM)	O(length · dim ²)

specially attractive when your dim >> length (case of MT)

Question

• Given a query vector and two keys:

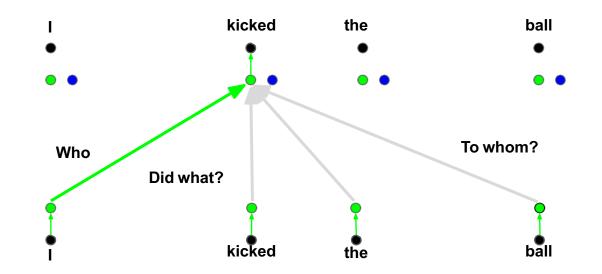
```
q = [0.3, 0.2, 0.1]
```

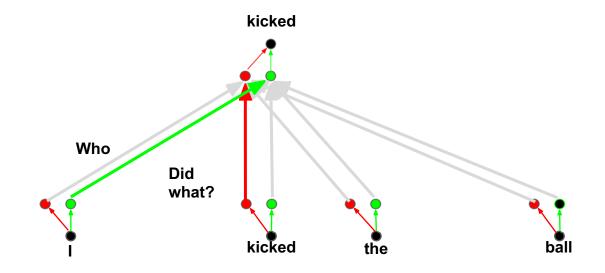
```
k_1 = [0.1, 0.3, 0.1]
```

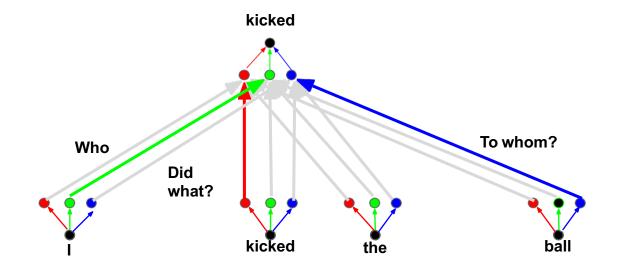
```
k_2 = [0.6, 0.4, 0.2]
```

- What are the attention weights a₁ and a₂ computing the dot product ?
- What are the attention weights a₁ & a₂ when computing the scaled dot product ?
- Which key vector will receive more attention ?

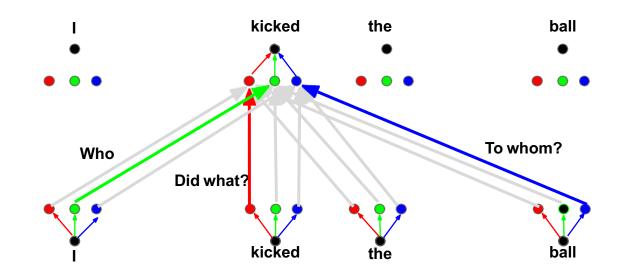
different words relate to each other by different relations

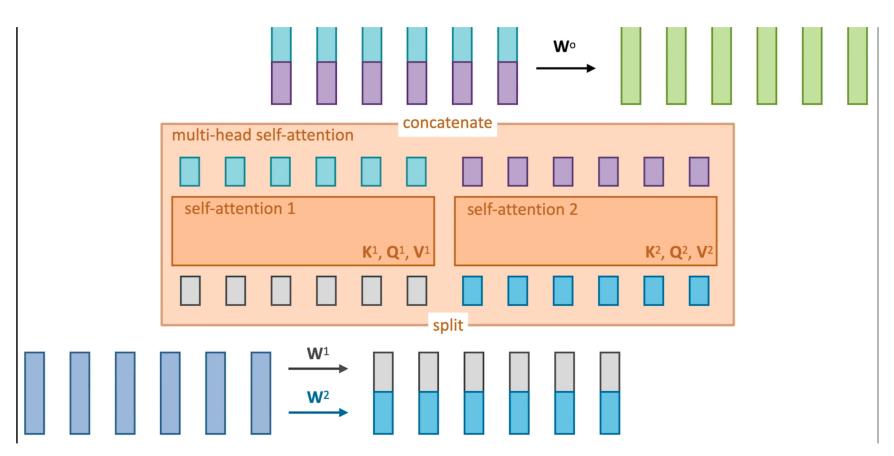






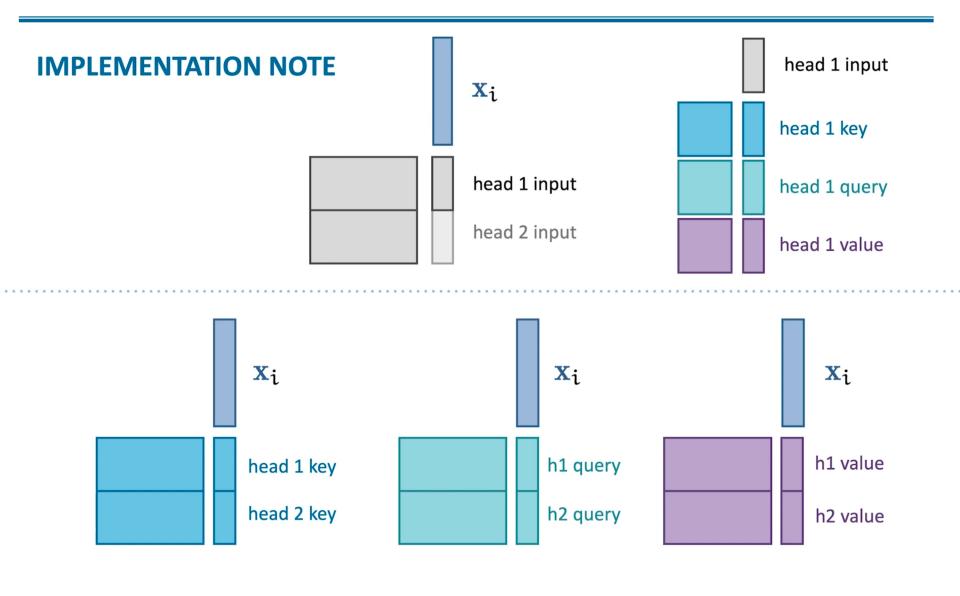
To model all these different kinds of relation in one self-attention operation we split the self-attention into different heads which are basically self-attention layers applied in parallel





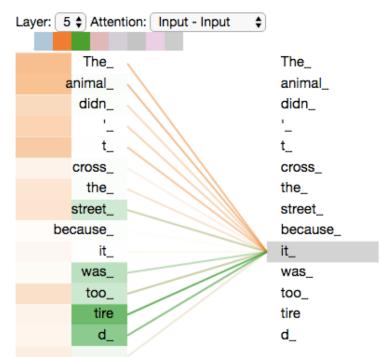
- 1. input sequence through linear operations to decrease dimensionality
- 2. each split of the input vector is fed into a head attention.

Multi-head attention



Visualization

 As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired" -- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".



https://www.youtube.com/watch?v=187JyiA4pyk

TRANSFORMER: POSITION INFORMATION

Relevance of position information

- This is not a real restaurant, it's a filthy burger joint
- This is not a filthy Burger joint, it's a real restaurant

The transformer contains no recurrence and no convolution. We have to add positional information to the input word vectors

Methods:

Positional embeddings Positional encodings

word embeddings:

 $v_{\text{the}}, v_{\text{man}}, v_{\text{pets}}, v_{\text{cat}}, v_{\text{again}}$

position embeddings:

 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5, \dots$

Question

• What is the problem with positional embeddings?

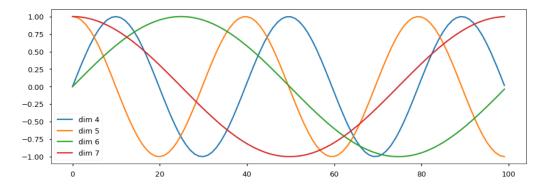
We can add positional encodings to the input word vectors:

 Fixed. A usual choice is sine and cosine functions of different frequencies, since it allow the model to attend by relative positions

50

$$\begin{split} PE(pos,dim) &= \sin(\omega_i \cdot pos) & if \ dim = 2i \\ PE(pos,dim) &= \cos(\omega_i \cdot pos) & if \ dim = 2i+1 \end{split}$$

$$\omega_i = \frac{1}{10000^{2 \cdot i/d_{embedding}}}$$



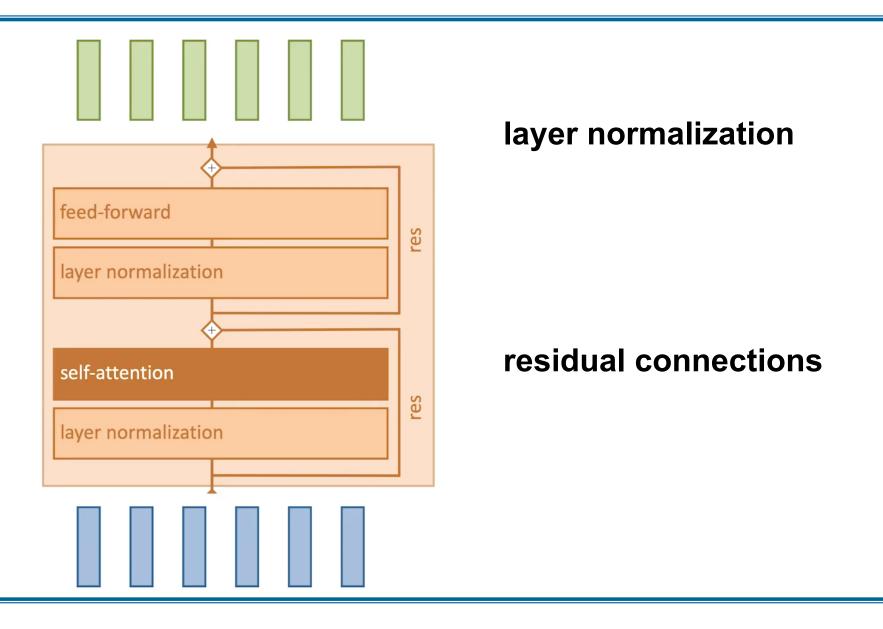
- *pos* is the position of the token in the sentence,
- *dim* the dimension of the embeddings
- *i* the position within the embedding.

Questions

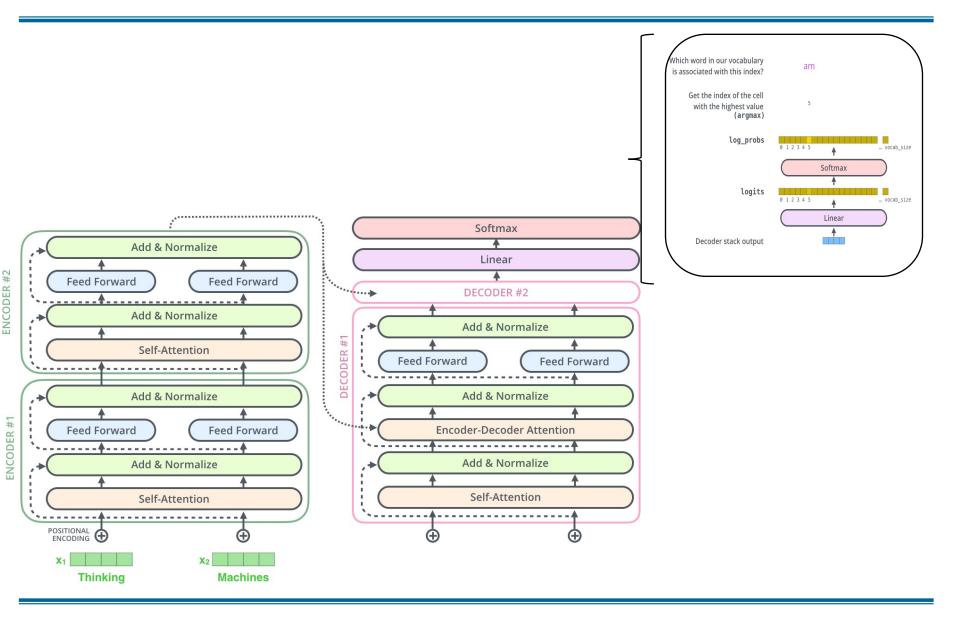
- Why positional embeddings are summed with word embeddings instead of concatenation?
- Doesn't the position information get vanished once it reaches the upper layers?

TRANSFORMER: LAYERS/BLOCKS

Transformer layers

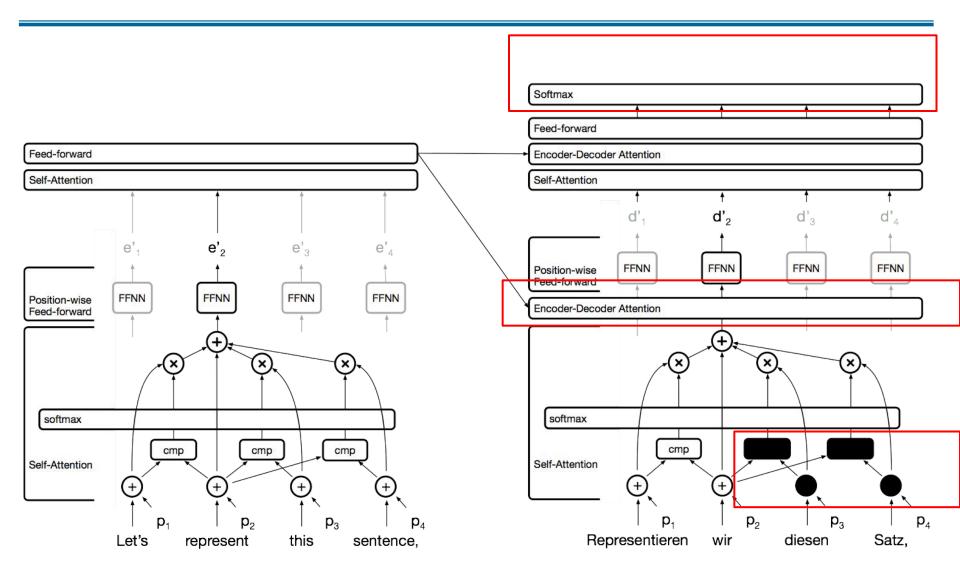


Transformer of 2 stacked encoders and decoders

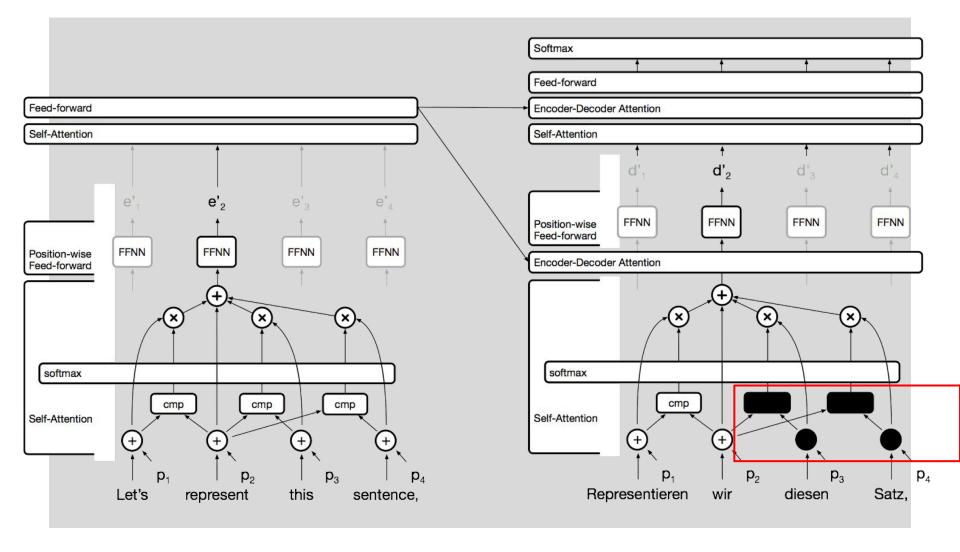


54

The Transformer: Encoder vs Decoder layers



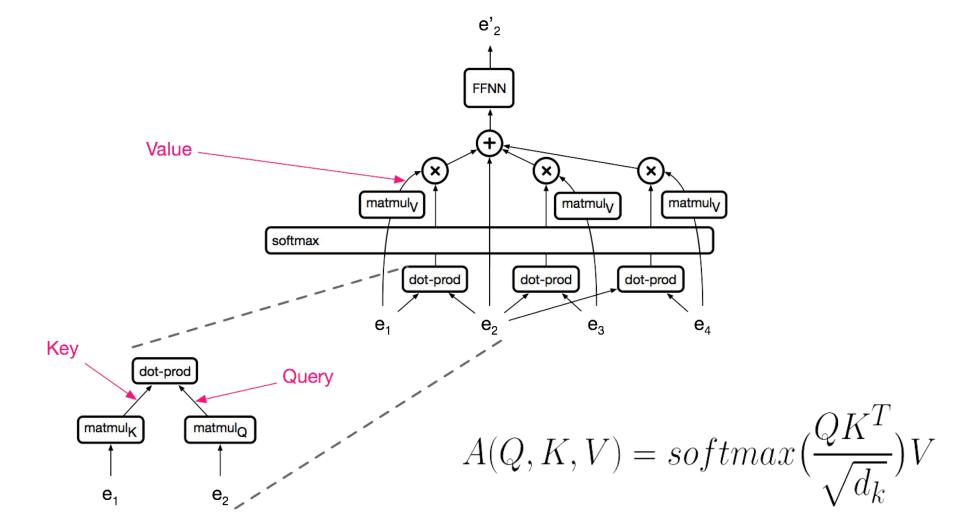
QUESTION: What are we doing in the red square?



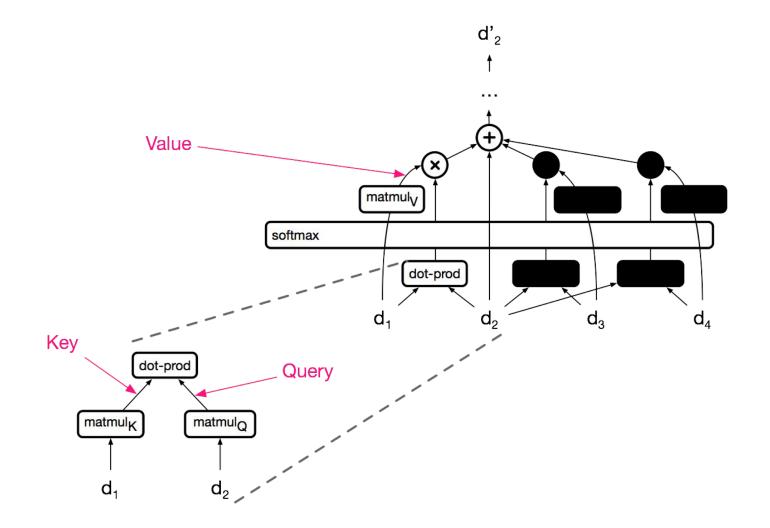
• Masking. The decoder cannot see *the future* when predicting the next word.

- Enc-Dec Attention. Queries are taken from the layer below it, but keys and values from the final output of the encoder.
- The decoder adds an additional linear and softmax layer (just as RNNs NMT)

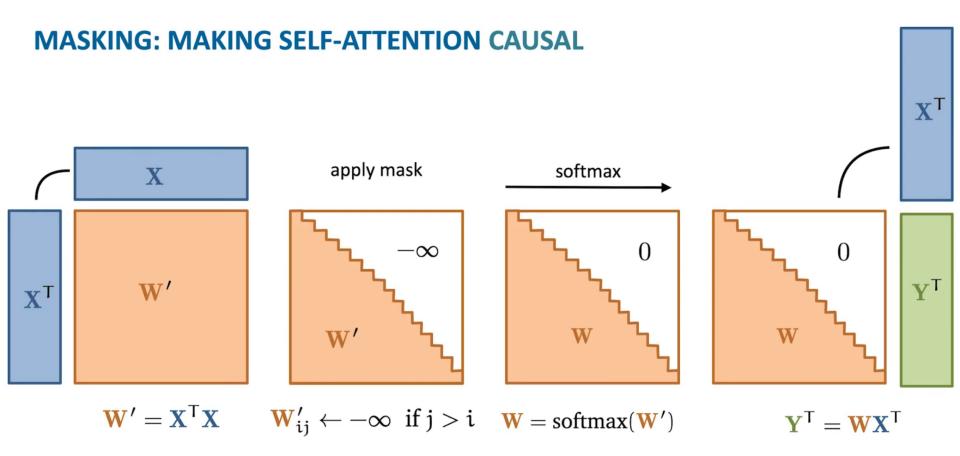
Encoder Self-Attention (no masking)



Decoder Self-Attention (with masking)



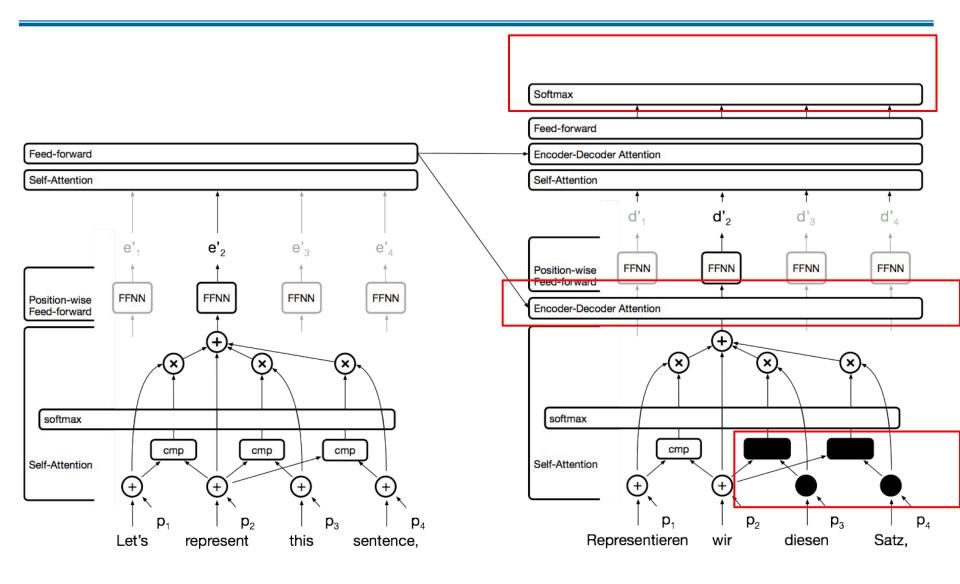
Masking



60

- Masking. The decoder cannot see *the future* when predicting the next word.
- Enc-Dec Attention. Queries are taken from the layer below it, but keys and values from the final output of the encoder.
- The decoder adds an additional linear and softmax layer (just as RNNs NMT)

The Transformer: Encoder vs Decoder layers



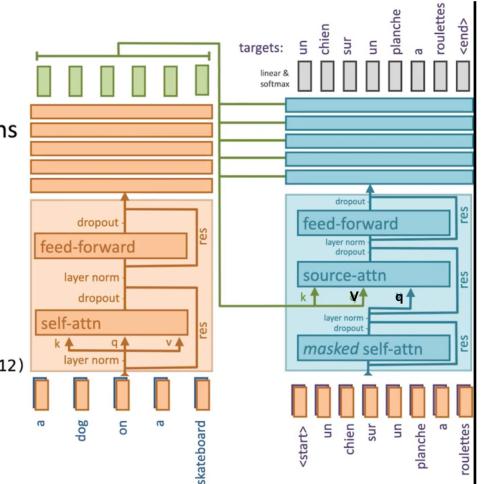
Complete picture

THE ORIGINAL TRANSFORMER

machine translation model no recurrent layers or convolutions encoder/decoder configuration teacher forcing position *encoding*

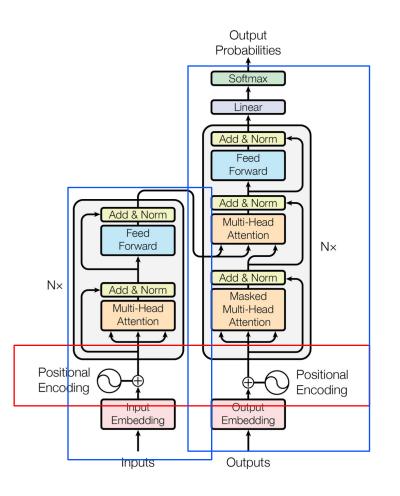
512 dims, 8 heads, 2x6 blocks FF: Lin(512, 2048), relu, Lin(2048, 512) trained for 3.5 days on 8 GPUs

Attention Is All You Need, Vaswani et al, 2017.



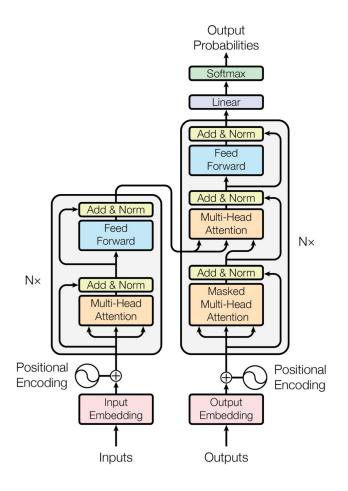
Recap

- Key Concepts of the Transformer
 - Self Attention
 - Multi-Head Attention
- Position Information
- Transformer Layers/Blocks
- Encoder vs Decoder (Masking, Inter Attention, Softmax)



Self-Attention

- Constant 'path length' between any two positions.
- Unbounded memory.
- Trivial to parallelize (per layer).
- Models Self-Similarity.



- Non autoregressive transformer (Gu and Bradbury et al., 2018)
- Improving Language Understanding by Generative Pre-Training (Radford, Narsimhan, Salimans, and Sutskever)
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin, Chang, Lee, and Toutanova)
- Universal Transformers (ICLR 2019). Deghiani*, Gouws*, Vinyals, Uszkoreit, Kaiser.
- Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (2019). Dai, Yang, Yang, Carbonell, Le, Salakhutdinov.