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CLASS Exercises: WORD2VEC 
 
Exercise 1 
 
A feed-forward neural network language model (LM) is an alternative architecture for 
training word vectors. This architecture focuses on predicting a word given the N previous 
words. This is done by concatenating the word vectors of N previous words and use them 
as input of a single hidden layer of size H with a non-linearity (e.g. tanh). Finally, a 
softmax layer is used to make a prediction of the current word. The size of the vocabulary 
is V. The model is trained using a cross entropy loss for the current word. 
 
Let the word vectors of the N previous words be x1; x2; … xN, each a column vector 
of dimension D, and let y be the one-hot vector for the current word. The network is 
specified by the equations that follow these lines: 
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ℎ = tanh(𝑊𝑥 + 𝑏) 

 
𝑦4 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈ℎ + 𝑑) 

 
𝐽 = 𝐶𝐸(𝑦, 𝑦4) 

 

𝐶𝐸 = −B𝑦Clog	(𝑦4C)
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The dimensions of our parameters and variables are 𝑥	 ∈ 	ℝ('·K),𝑊	 ∈ 	ℝLM('·K), 𝑏	 ∈

	ℝL, ℎ	 ∈ 	ℝL,𝑈	 ∈ 	ℝN	M	L, 𝑑	 ∈ 	ℝN, 𝑦4 	∈ 	ℝN			 

1a.  Mention 2 important differences between this feed-forward neural network LM and 
the CBOW model. Explain how these differences might affect the word vectors obtained. 
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1b. Compute the complexity of forward propagation in a feed-forward LM for a single 
training example.  Propose at least one way to change the model that would reduce this 
complexity. 
 
SOLUTION 
 
1a. The CBOW is trained to predict a center word given a context window that extends 
on both sides, while word vectors learned by NNLM do not capture the context to the 
right of the word.  
 
The CBOW model simply uses the sum of context words, while the NNLM model 
combines context words non-linearly. Thus the NNLM can learn to treat “not good to" 
differently from “good to not", etc. 
 
1b The forward propagation complexity for an NNLM is N x D for concatenating the 
word vectors, N x D x H to compute h and H x V to compute 𝑦4 from h: in total, O(NDH 
+ HV ). Typically, V >> ND, so the latter term dominates the forward propagation 
computation. 
 
The complexity can be reduced by using negative sampling to compute the softmax or 
using the hierarchical softmax. 
 
 
 
 
Exercise 2. 
 
2a. We know that dense word vectors like the ones obtained with word2vec or GloVe 
have many advantages over using sparse one-hot word vectors. Name a few.  
 
2b. Also name at least 2 disadvantages of sparse vectors that it are not solved in dense 
vectors. Which of the following is NOT an advantage dense vectors have over sparse 
vectors? 
 
 
SOLUTION 
 
2a Models using dense word vectors generalize better to rare words than those using 
sparse vectors. 
Dense word vectors encode similarity between words while sparse vectors do not. 
Dense word vectors are easier to include as features in machine learning systems than 
sparse vectors. 
 
2b.  Just like sparse representations, word2vec or GloVe do not have representations for 
unseen words and hence do not help in generalization. 
 
Also, there is only one representation per word, so polysemy is not solved. 
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Exercise 3 
 
Given the following neural architecture. What is it learning? Can you explain which 
exact NLP task is training? 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
SOLUTION 
 
The architecture is predicting the 4th word given the 3 previous words. This is an 
architecture for the task of language modeling, predicting the probability of sequences 
of words. 
 
Exercise 4  
 
We have each used the Word2Vec algorithm to obtain word embeddings for the same 
vocabulary of words V.  
 
In particular, developer A has got `context' vectors 𝑢PQ  and `center' vectors 𝑣PQ  for every 
𝑤 in V, and developer B has got `context' vectors 𝑢PT  and `center' vectors 𝑣PT  for every 
𝑤 in V . 
 
For every pair of words 𝑤,𝑤′in V, the inner product is the same in both models: 
(𝑢PQ )V𝑣WXQ = (𝑢PT )V𝑣WXT  . Does it mean that, for every word 𝑤 in V, 𝑣PQ = 𝑣PT ? Discuss 
your response. 
 
 
 
SOLUTION 
 
No. Word2Vec model only optimizes for the inner product between 
word vectors for words in the same context. 
One can rotate all word vectors by the same amount and the inner product will 
still be the same. Alternatively one can scale the set of context vectors by a 
factor of k and the set of center vectors by a factor of 1=k. Such transformations 
preserves inner product, but the set of vectors could be di_erent. 
Note that degenerate solutions (all zero vectors etc.) are discouraged. 
 


