
Advanced Human Language Technologies
Exercises on Parsing

Context Free Grammars

Exercise 1.

Consider the sentence She announced a program to promote safety in trucks and vans
and the following syntactic tree of one of its possible interpretations, in which the program promotes
safety in trucks, and also promotes vans:

S

NP

PRP

She

VP

VBN

announced

NP

NP

a program

S

VP

to promote

NP

NP

safety in trucks

CC

and

NP

NN

vans

1. Draw the trees for at least three other interpretations for this sentence

2. Draw the trees for at least two interpretations for each of the following sentences

• The post office will hold out discounts and service concessions as incentives

• They are hunting lions and tigers

• Monty flies like mosquitoes

1



SOLUTION

1. Find three interpretations:

Interpretation 1: The an-
nounced program promotes
safety in both trucks and vans.

S

NP

PRP

She

VP

VBN

announced

NP

NP

a program

S

VP

to promote

NP

NN

safety

PP

in trucks and vans

Interpretation 2: The program
is announced in trucks and
vans.

S

NP

PRP

She

VP

VBN

announced

NP

NP

a program

S

VP

to promote

NP

NN

safety

PP

in trucks and vans

2



Interpretation 3: The an-
nounced program promotes
safety in trucks. Vans are also
announced.

S

NP

PRP

She

VP

VBN

announced

NP

NP

NP

a program

S

VP

to promote

NP

NN

safety

PP

in trucks

CC

and

NP

NN

vans

2. Find two interpretations for each sentence

Sentence 1, Interpretation 1:
Discounts and concessions are
held out as incentives

S

NP

The post office

VP

VP

will held out

NP

discounts and service concessions

ADVP

as incentives

Sentence 1, Interpretation 2:
Discounts and concessions are
held out. Concessions look like
incentives

S

NP

The post office

VP

VP

will held out

NP

NN

discounts

CC

and

NP

NN

service

NN

concessions

ADVP

as incentives

3



Sentence 2, Interpretation 1:
Someone is hunting big felines.

S

NP

PRP

They

VP

VP

are hunting

NP

lions and tigers

Sentence 2, Interpretation 2:
Those animals are big felines
that hunt.

S

NP

PRP

They

VP

VBP

are

NP

JJ

hunting

NP

lions and tigers
Sentence 2, Interpretation 3:
Those animals are lions that
hunt, and also tigers

S

NP

PRP

They

VP

VBP

are

NP

NP

hunting lions

CC

and

NN

tigers

Sentence 3, Interpretation 1:
Someone named Monty moves
through the air in the same way
than mosquitoes do

S

NP

NNP

Monty

VP

VBP

flies

ADVP

ADV

like

NP

NN

mosquitoes

Sentence 3, Interpretation 2:
Flies from a place named
Monty are fond of mosquitoes

S

NP

NNP

Monty

NN

flies

VP

VBP

like

NP

NN

mosquitoes

4



Exercise 2.

Say we have the phrase saw the dog with the telescope and we are given the gold parse tree (left) and the
predicted parse tree (right):

VP

VP

Vt

saw

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope

VP

Vt

saw

NP

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope

What are the precision and recall of this predicted parse tree?

SOLUTION

The gold tree has 11 nonterminal nodes, each expanded using certain rule.
The predicted tree has 11 nonterminal nodes, each expanded using a rule that may be or not the

right one. In particular, the predicted rules VP→ Vt NP and NP→ NP PP are not in the gold tree. All
the other rules are found in the gold tree, so they are right.

Precision is the number of right rules divided by the number of predicted rules (i.e. size of the
predicted tree). So in this case, it is 9/11 = 81.8%.

Recall is the number of right rules divided by the number of expected rules (i.e. size of the gold
tree). So in this case, it is also 9/11 = 81.8% (since the size of both trees was the same, which shouldn’t
necessarily happen)

5



Exercise 3.

Consider the following CFG:

S→ NP VP DT→ the NN→ park
NP→ DT NN NN→ man VB→ saw
NP→ NP PP NN→ dog IN→ with
PP→ IN NP NN→ cat IN→ under
VP→ VB NP

1. How many parse trees are there under this grammar for the sentence the man saw the dog in the
park ?

2. How many parse trees are there under this grammar for the sentence the man saw the dog in the
park with the cat ?

3. Consider a sentence that is grammatical under the above context-free grammar, and has exactly k
prepositions following the verb, and 0 prepositions before the verb (a preposition is any word with
the tag IN). How many parse trees will this sentence have? Reason why.

The nth Catalan number is defined as Cn = (2n)!
(n+1)!n!

(see Wikipedia for a full description).
It can be shown that Cnis the number possible different binary trees with n + 1 leaves.

SOLUTION

1. The sentence the man saw the dog in the park has a unique analysis in this grammar, where the dog
is in the park. This is because the grammar does not have a rule such as e.g. VP → VP PP that
allows the PP in the park to be attached to the verb saw.

2. The sentence the man saw the dog in the park with the cat has two analysis under this grammar:
One where the cat is with the dog, and another where the cat is with the park.

3. If we have k prepositions after the verb, it means there are k + 1 nouns: the first noun after the
verb (e.g. dog in the previous sentences) and then one noun after each preposition (park, cat,
etc.). Each new preposition we add, can be attached to any of the previous nouns. Thus, if we
have one preposition, it can only be attached to the first noun after the verb (dog in the example).
The second preposition we add can be attached to the first noun, or to the second, etc. Thus,
potentially we could build k! combinations. However, not all combinations are valid because many
of them have crossing arcs and do not correspond to correct constituency trees. Thus, the number
of possible combinations is the number of valid binary trees that can be build with k + 1 leaves,
that is, the kth Catalan number, Ck.

6



Exercise 4.

Consider the following CFG:

S→ NP VP DT→ the NNS→ cats
NP→ DT NN NN→ man NNS→ parks
NP→ DT NNS NN→ dog VB→ see
NP→ NP PP NN→ cat VB→ sees
PP→ IN NP NN→ park IN→ in
VP→ VB NP NNS→ dogs IN→ with
VP→ VP PP

This grammar overgenerates incorrect Englihsh sentences, such as:

the dog see the cat

the dog in the park see the cat

the dog in the park see the cat in the park

the dogs sees the cat

the dogs in the park sees the cat

the dogs in the park sees the cat in the park

1. Modify the grammar so that all generated sentences respect third-person subject-verb agreement
rules for English

SOLUTION

The rule joining the subject and the verb of the sentences is S→ NP VP, so we need to alter this rule to
allow only the combination of singular NP with third person VP, and plural NP with non-third person
VP. For this, we need different rules for singular/plural NP and for third/non-third person VP.

Thus, the top rule S→ NP VP needs to be replaced with:
S→ NPs VPs
S→ NPp VPp

All the NP rules must distinguish both kinds of noun phrases, replacing them with:
NPs→ DT NN
NPp→ DT NNS
NPs→ NPs PP
NPp→ NPp PP

Finally, the rules for verb phrases must also distinguish both cases:
VBs→ sees
VBp→ see
VPs→ VBs NP
VPp→ VBp NP
VPs→ VPs PP
VPp→ VPp PP

To avoid an explosion of rules, we can keep a generic NP to be used for noun phrases after the verb or
inside a PP:
NP→ NPs
NP→ NPp

7



Exercise 5.

Consider the following CFG:

S→ NP VP DT→ the VB→ saw
NP→ DT NN NN→ man IN→ with
PP→ IN NP NN→ dog IN→ under
VP→ VB NP NN→ telescope
VP→ VP PP

An infinite number of sentences can be generated by this grammar, for example:

the man saw the dog

the man saw the dog with the telescope

the man saw the dog with the telescope under the dog

the man saw the dog under the telescope with the dog under the telescope

etc.

The language L(G) generated by a context-free grammar G is defined as the set of sentences
that can be derived with a sequence of grammar rule applications.

A hidden Markov model (HMM), defines a distribution P (x1 . . . xn, y1 . . . yn) over sen-
tences x1 . . . xn paired with PoS tag sequences y1 . . . yn.
The language generated by a HMM is defined as the set of sentences x1 . . . xn such that:
max

y1...yn
P (x1 . . . xn, y1 . . . yn) > 0, that is, sentences with at least one possible PoS-tag

sequence y1 . . . yn that gives a non-zero value for the probability P (x1 . . . xn, y1 . . . yn).

1. Write a bigram HMM that generates the same language than the context-free grammar given above.

SOLUTION

This grammar is very restrictive in the order of words, and we can observe that:

• DT is always followed by NN

• IN is always followed by DT

• VB is always followed by DT

• NN is followed by a VB the first time, or by IN if after the verb, or by the end of the sentence.

Since each token may have a small amount of possible tokens after it, it is relatively straightforward
to model this as a bigram model. The only tricky part is that we need to distinguish the first NN which is
followed by VB, since the sentence can have only one verb. For this, we will add two special PoS: DTs
and NNs for the subject.

Then, the transition probabilities of the bigram HMM will be:
P (NNs|DTs) = aDTs.NNs = 1 (after the subject determiner always comes the subject noun)
P (VB|NNs) = aNNs.VB = 1 (after the subject noun always comes the verb)
P (DT|VB) = aVB.DT = 1 (after the verb always comes a regular determiner)
P (NN|DT) = aDT.NN = 1 (after a regular determiner always comes a regular noun))
P (IN|NN) = aNN.IN = 0.5 (after a regular noun may come a preposition))
P (EoS|NN) = aNN.EoS = 0.5 (after a regular noun the sentence may end)
P (DT|IN) = aIN.DT = 1 (after a preposition always comes a regular determiner)

The initial probabilities are:
π(DTs) = 1 (the sentence always starts with a subject determiner)

8



And the emission probabilities are:
P (the|DTs) = bthe.DTs = 1 (The only determiner in the grammar is the, so it will
P (the|DT) = bthe.DT = 1 be emmitted both for subject and regular determiners)

P (man|NNs) = bman.NNs = 0.33 (The subject may be
P (dog|NNs) = bdog.NNs = 0.33 any of the three nouns
P (telescope|NNs) = btelescope.NNs = 0.33 existing in the grammar)

P (man|NN) = bman.NN = 0.33 (Any regular noun may be
P (dog|NN) = bdog.NN = 0.33 any of the three nouns
P (telescope|NN) = btelescope.NN = 0.33 existing in the grammar)

P (in|IN) = bin.IN = 0.5 (There are two possible prepositions
P (with|IN) = bwith.IN = 0.5 in the grammar)

P (saw|VB) = bsaw.VB = 1 (The verb is saw in all sentences of this grammar)

9



Exercise 6.

Consider the following CFG:

S→ NP VP WH→ that
VP→ Vt NP DT→ the
VP→ Vdt NP NP NN→ man
NP→ DT NN NN→ dog
NP→ NP RELC NN→ cat
RELC→WH SGAP NN→ park
SGAP→ VP Vt→ saw
SGAP→ NP VGAP Vdt→ gave
VGAP→ Vt
VGAP→ Vdt NP

1. Draw parse trees for the sentences:

the man that saw the dog saw the cat
the man that the cat saw saw the dog

2. Write a sentence that is grammatical under the above grammar, and contains the trigram: saw saw
saw. Draw the parse tree for the sentence.

3. Assume that we add the following rules to the grammar, so that the sentence the man said the cat
saw the dog can be parsed correctly:

VP→ V3 S
V3→ said

What additional rules should be added to the grammar so that the sentence the dog that the man
said the cat saw saw the park can be parsed?

SOLUTION

1. S

NP

NP

DT

the

NN

man

RELC

WH

that

SGAP

VP

Vt

saw

NP

DT

the

NN

dog

VP

Vt

saw

NP

DT

the

NN

cat

S

NP

NP

DT

the

NN

man

RELC

WH

that

SGAP

NP

DT

the

NN

cat

VGAP

Vt

saw

VP

Vt

saw

NP

DT

the

NN

dog

2. the man that the cat that the dog saw saw saw the dog

10



S

NP

NP

DT

the

NN

man

RELC

WH

that

SGAP

NP

NP

DT

the

NN

cat

RELC

WH

that

SGAP

NP

DT

the

NN

dog

VGAP

Vt

saw

VGAP

Vt

saw

VP

Vt

saw

NP

DT

the

NN

dog

3. We need to add an additional rule VGAP→ V3 SGAP, so we can obtain the tree:
S

NP

NP

DT

the

NN

dog

RELC

WH

that

SGAP

NP

DT

the

NN

man

VGAP

V3

said

SGAP

NP

DT

the

NN

cat

VGAP

Vt

saw

VP

Vt

saw

NP

DT

the

NN

park

the dog that the man said the cat saw saw the park

11



Probabilistic Context Free Grammars

Exercise 7.

Using the following PCFG in CNF:

S→ NP VP 1.0 P→ with 1.0
NP→ NP PP 0.4 V→ saw 1.0
PP→ P NP 1.0 NP→ astronomers 0.1
VP→ V NP 0.7 NP→ ears 0.18
VP→ VP PP 0.3 NP→ saw 0.04

NP→ stars 0.18
NP→ telescopes 0.1

Work with the sentence: astronomers saw stars with ears

• How many correct parses are there for this sentence?

• Write them, along with their probabilities.

SOLUTION

There are two possible parsers for this sentence according to the given grammar:

Option 1: (the stars had ears)

S(1.0)

NP(0.1)

astronomers

VP(0.7)

V(1.0)

saw

NP(0.4)

NP(0.18)

stars

PP(1.0)

P(1.0)

with

NP(0.18)

ears

Probability: 1.0× 0.1× 0.7× 1.0× 0.4× 0.18×
1.0× 1.0× 0.18 = 0.00091

Option 2: (Astronomers had their ears while
watching the stars –or used ears to watch
them)

S(1.0)

NP(0.1)

astronomers

VP(0.3)

VP(0.7)

V(1.0)

saw

NP(0.18)

stars

PP(1.0)

P(1.0)

with

NP(0.18)

ears

Probability: 1.0× 0.1× 0.3× 0.7× 1.0× 0.18×
1.0× 1.0× 0.18 = 0.00068

12



Exercise 8.

Given the following PCFG:

S→ NP VP 1.0 N→ time 0.4
NP→ N N 0.25 N→ flies 0.2
NP→ D N 0.4 N→ arrow 0.4
NP→ N 0.35 D→ an 1.0
VP→ V NP 0.6 ADV→ like 1.0
VP→ V ADVP 0.4 V→ flies 0.5
ADVP→ ADV NP 1.0 V→ like 0.5

and the sentence time flies like an arrow

1. Write two parse trees that this grammar generates for this sentence

2. Compute the probability of each tree.

3. Convert the grammar to CNF and emulate the behaviour of the CKY algorithm on this sentence.
Provide the final chart.

4. Emulate the behaviour of the Earley algorithm on this sentence (ignoring rule probabilities). Pro-
vide the final chart.

SOLUTION

1. Option 1: (time goes by so fast that reminds of
an arrow)

S(1.0)

NP(0.35)

N(0.4)

time

VP(0.4)

V(0.5)

flies

ADVP(1.0)

ADV(1.0)

like

NP(0.4)

D(1.0)

an

N(0.4)

arrow

Option 2: (Alien 4-dimensional flies are fond
of arrows)

S(1.0)

NP(0.25)

N(0.4)

time

N(0.2)

flies

VP(0.6)

V(0.5)

like

NP(0.4)

D(1.0)

an

N(0.4)

arrow

2. Option 1 probability: 1.0× 0.35× 0.4× 0.4× 0.5× 1.0× 1.0× 0.4× 1.0× 0.4 = 0.00448
Option 2 Probability: 1.0× 0.25× 0.4× 0.2× 0.6× 0.5× 0.4× 1.0× 0.4 = 0.00096

3. (a) Conversion of the grammar to CNF:
Chomsky Normal Form requires that all rules have a right hand side with exactly two non-
terminals, or exactly one terminal. The rule NP → N violates this condition (N is a non-
terminal), so we need to remove it.
Once removed, we need to compensate for the lost combinations duplicating rules where NP
appears on the right hand side, using N instead. Thus, the grammar is the following (blue
rules have been added)

13



S→ NP VP 0.65
}

1.0
N→ time 0.4

S→ N VP 0.35 N→ flies 0.2
NP→ N N 0.385 N→ flies 0.2
NP→ D N 0.615 N→ arrow 0.4
VP→ V NP 0.39

}
0.6

D→ an 1.0
VP→ V N 0.21 ADV→ like 1.0
VP→ V ADVP 0.4 V→ flies 0.5
ADVP→ ADV NP 0.65

}
1.0

V→ like 0.5
ADVP→ ADV N 0.35

We also need to redistribute rule probabilities. Recomputed probabilities are shown in red in
the grammar above.

• Rule S → NP VP had probability 1.0 in the original grammar. The partial tree

S

NP

N

VP

had probability 1.0×0.35 in the original grammar. Thus, the rest of possible trees starting

with
S

NP VP
added up to 0.65. We can get the same distribution setting probability 0.35

for the new rule S→ N VP and probability 0.65 for the rest of cases.
• Non terminal NP had three rules in the original grammar, whose probabilities added up

to 1.0. Now this non-terminal has one rule less, so we need to redistribute the probability
mass among the remaining rules, but keeping the probabilities of the generated trees. In

the original grammar, the tree

S

NP

N N

VP had probability 1.0×0.25, and the tree

S

NP

D N

VP

had 1.0× 0.4. Since we changed the probability of the top rule to 0.65, to keep the same
distribution for the same trees, we need to set P (NP → N N) = 0.25/0.65 = 0.385 and
P (NP→ D N) = 0.4/0.65 = 0.615.

• We splitted rule VP→ V NP (with original probability 0.6) in two. The partial tree

VP

V NP

N
had probability 0.6 × 0.35 = 0.21, so the new rule VP → V N must have this probability,

and the rest of tree starting with
VP

V NP
will have the remaining mass up to 0.6, i.e. 0.39.

• Similarly, rule ADVP → ADV NP was splitted in two. The partial tree

ADVP

ADV NP

N

had

probability 1.0 × 0.35, so this will be the probability of the new rule for ADVP. The
original rule will retain the rest of the mass (0.65).

14



(b) CKY chart:
15

0.00448 S→ N11VP25

(0.35× 0.4× 0.032)
14 25

0.032 VP→ V22ADVP35

(0.4× 0.5× 0.16)
13 24 35

0.16 ADVP→ ADV33NP45

(0.65× 1.0× 0.246)
0.048 VP→ V33NP45

(0.39× 0.5× 0.246)
12

0.0308 NP→ N11N22

(0.385× 0.4× 0.2)

23 34 45

0.246 NP→ D44N55

(0.615× 1.0× 0.4)
11

0.4 N→ time
22

0.2 N→ flies
0.5 V→ flies

33

1.0 ADV→ like
0.5 V→ like

44

1.0 D→ an
55

0.4 N→ arrow

time flies like an arrow
(Blue rule in cell 35 indicates the most likely subtree selected in that cell)

4. Earley chart:

chart[5]

chart[4]

[0,5]

S→ NP01VP15•
S→ NP02VP25•

chart[3]
[0,4] [1,5]

VP→ V12ADVP25•

chart[2]

[0,3] [1,4] [2,5]

ADVP→ ADV23NP35•
VP→ V23NP35•

chart[1]

[0,2]

NP→ N01N12•
S→ NP02 •VP

[1,3] [2,4] [3,5]

NP→ D34N45•

chart[0]

[0,1]

N→ time•
NP→ N01 •N
NP→ N01•
S→ NP01 •VP

[1,2]

N→ flies•
V→ flies•
VP→ V12 •NP
VP→ V12 •ADVP

[2,3]

ADV→ like•
V→ like•
ADVP→ ADV23 •NP
VP→ V23 •NP
VP→ V23 •ADVP

[3,4]

D→ an•
NP→ D •N

[4,5]

N→ arrow•

[0,0]

γ → •S
S→ •NP VP
NP→ •N N
NP→ •D N
NP→ •N

[1,1]

VP→ •V NP
VP→ •V ADVP

[2,2]

NP→ •N N
NP→ •D N
NP→ •N
ADVP→ •ADV NP
VP→ •V NP
VP→ •V ADVP

[3,3]

NP→ •N N
NP→ •D N
NP→ •N
ADVP→ •ADV NP

[4,4] [5,5]

0 1 2 3 4 5

time flies like an arrow

15



Exercise 9.

Consider that you have as a training corpus a treebank containing the following trees. Each tree was
observed the number of times indicated below it.

S

A

a

A

a

S

B

a

B

a

S

A

f

A

g

S

A

f

A

a

S

A

g

A

f

75 10 325 8 428

1. What PCFG would one get from this treebank (using MLE)?

2. Given the obtained grammar:

• What is the most likely parse of the string a a?
• Is this a reasonable result? Discuss why.

SOLUTION

1. The given collection of training trees, taking into account the number of repetitions of each, will
produce the following counts of rule applications:

S→ A A 1× 75 + 0× 10 + 1× 325 + 1× 8 + 1× 428 = 836
S→ B B 0× 75 + 1× 10 + 0× 325 + 0× 8 + 0× 428 = 10
S→ anything 1× 75 + 1× 10 + 1× 325 + 1× 8 + 1× 428 = 846
B→ a 0× 75 + 2× 10 + 0× 325 + 0× 8 + 0× 428 = 20
B→ anything 0× 75 + 2× 10 + 0× 325 + 0× 8 + 0× 428 = 20
A→ a 2× 75 + 0× 10 + 0× 325 + 1× 8 + 0× 428 = 158
A→ f 0× 75 + 0× 10 + 1× 325 + 1× 8 + 1× 428 = 761
A→ g 0× 75 + 0× 10 + 1× 325 + 0× 8 + 1× 428 = 753
A→ anything 2× 75 + 0× 10 + 2× 325 + 2× 8 + 2× 428 = 1672

Thus, the MLE probability for each rule would be:

P (S→ A A) = P (AA|S) = #(S→ A A)/#(S→ anything) = 836/846 = 0.988
P (S→ B B) = P (BB|S) = #(S→ B B)/#(S→ anything) = 10/846 = 0.012
P (B→ a) = P (a|B) = #(B→ a)/#(B→ anything) = 20/20 = 1.000
P (A→ a) = P (a|A) = #(A→ a)/#(A→ anything) = 158/1672 = 0.095
P (A→ f) = P (f|A) = #(A→ f)/#(A→ anything) = 761/1672 = 0.455
P (A→ g) = P (g|A) = #(A→ g)/#(A→ anything) = 753/1672 = 0.450

2. The input sequence a a can be derived by the obtained grammar in only two ways, which corre-
spond to the first two trees in the training data.
The first tree has probability: P (S→ A A)×P (A→ a)×P (A→ a) = 0.988×0.095×0.095 = 0.009
The second tree has probability: P (S→ B B)× P (B→ a)× P (B→ a) = 0.012× 1.000× 1.000 =
0.012
So, the most likely parse tree is the second one.

The first tree appears 75 times in the training data, while the second one occurs only 10 times, so
one would expect the probability for the former to be higher. However, we do not compute the
tree probability by counting how many times the whole tree occurs, but we just approximate it by
multiplying the individual rule probabilities. Thus, the fact that B produces a with much higher
probability than A is biassing the result.
This is due to the reduced amount of training data combined with the use of MLE: Since we
do not perform any smoothing to consider the possibility of B producing other symbols, we are
overestimating the probability of the rule B→ a.

16



Exercise 10.

Consider the two following parse trees:

NP

DT

a

N’

JJ

fast

N’

NN

car

N’

NN

mechanic

NP

DT

a

N’

N’

JJ

fast

N’

NN

car

N’

NN

mechanic

Discuss whether the following statements are true or false and why:

1. The two parse trees receive the same probability under any PCFG

2. The first parse tree receives higher probability if P (N′ → NN N′) > P (N′ → N′ N′)

3. The first parse tree receives higher probability if P (N′ → NN N′) > P (N′ → N′ N′) + P (N′ → NN)

SOLUTION

1. False, since the set of rules used in each tree differ: left tree uses rule N′ → NN N′ while the tree on
the right uses the rule N′ → N′ N′. Also, the former uses rule N′ → NN once but the latter uses it
twice. So, assuming Q is the product of probabilities of rules shared by both trees, the first tree has
probability Q×P (N′ → NN N′), and the second has probability Q×P (N′ → N′ N′)×P (N′ → NN),
which are not necessarily equal.

2. True, since under this condition Q × P (N′ → NN N′) > Q × P (N′ → N′ N′). If we multiply the
right hand side term by P (N′ → NN) which is smaller than 1, the difference will increase.

3. False, since probabilities are multiplied, not added. The first tree would have higher probability if
P (N′ → NN N′) > P (N′ → N′ N′)× P (N′ → NN)

17



Exercise 11.

Consider the following PCFG:

S→ V N 0.6
S→ D N 0.4
D→ a 0.2
D→ the 0.8
N→ president 1.0
V→ support 0.6
V→ hate 0.4

1. List all sentences generated by this grammar, along with their probability

2. Define a bigram language model that gives the same probability distribution p(x) than the PCFG
shown above. The vocabulary of the language model should be Σ = {a, the,president, support,hate}.
Specify the value for each parameter of the language model.

A bigram language model consists of a finite vocabulary Σ, and a parameter q(u, v) for
each bigram (u, v) such that u ∈ Σ ∪ {START} and v ∈ Σ ∪ {STOP}
The value for q(u, v) can be interpreted as the probability of seeing word v immediately
after word u, i.e. P (v|u)
For any sentence x1, . . . , xn where xi ∈ Σ, the probability of the sentence under the
bigram language model is p(x1, . . . , xn) =

∏n+1
i=1 q(xi−1, xi), where we define x0 =

START and xn+1 = STOP.

SOLUTION

1. All possible sequences generated by this grammar are:

support president 0.6× 0.6× 1.0 = 0.36
hate president 0.6× 0.4× 1.0 = 0.24
a president 0.4× 0.2× 1.0 = 0.08
the president 0.4× 0.8× 1.0 = 0.32

2. The bigram model that assigns the same probabilities to the above sequences can be derived as
follows:
q(START, support) = 0.36 (the only sentence starting with support has probability 0.36)
q(START,hate) = 0.24 (the only sentence starting with hate has probability 0.24)
q(START, a) = 0.08 (the only sentence starting with a has probability 0.08)
q(START, the) = 0.32 (the only sentence starting with the has probability 0.32)
q(support,president) = 1.0 (The only possible word after support is president )
q(hate,president) = 1.0 (The only possible word after hate is president )
q(a,president) = 1.0 (The only possible word after a is president )
q(the,president) = 1.0 (The only possible word after the is president )
q(president,STOP) = 1.0 (after president, the sentence ends)

This bigram model generates the same four sequences with the same probabilities than the given
grammar.

18



Exercise 12.

Consider the following PCFG

S→ NP VP 1.0 VP→ sleeps 1.0
NP→ DT NBAR 1.0 DT→ the 1.0
NBAR→ NN 0.7 NN→ mechanic 0.1
NBAR→ NBAR NBAR 0.3 NN→ car 0.2

NN→ metal 0.7

1. What is the parse tree with highest probability for the sentence the metal car mechanic sleeps ?

2. Modify the grammar above so that the sentece the human language technology rules has two inter-
pretations (one about human language and another about human technology). Draw the trees for
both interpretations, and point out which is the most likely.

SOLUTION

1. This grammar produces two possible trees for the given sentence:

Option 1: (the mechanic that works on metal
cars is sleeping)

S

NP

DT

the

NBAR

NBAR

NBAR

NN

metal

NBAR

NN

car

NBAR

NN

mechanic

VP

sleeps

Option 2: (the metal mechanic that works on
cars is sleeping)

S

NP

DT

the

NBAR

NBAR

NN

metal

NBAR

NBAR

NN

car

NBAR

NN

mechanic

VP

sleeps

Both trees use once the rules S → NP VP and NP → DT NBAR, twice the rule NBAR →
NBAR NBAR, and three times the rule NBAR→ NN. Also, the rules producing the leaves are also
the same. The only difference is the order in which the rules are applied. Thus, the probabilities of
both trees are identical, and there is not one single best tree, but two.

2. The grammar already allows the ambiguous structure for the sequence NN NN NN. We only need
to add the new words to the grammar, and fix the probabilities. Rule probabilities are invented,
since we do not have training data, but we need to ensure that the rules for the same non-terminal
symbol add up to 1. New rules are highlighted in red. Redistributed probabilities are shown in
blue.

S→ NP VP 1.0 VP→ sleeps 0.5 VP→ rules 0.5
NP→ DT NBAR 1.0 DT→ the 1.0
NBAR→ NN 0.7 NN→ mechanic 0.1 NN→ language 0.2
NBAR→ NBAR NBAR 0.3 NN→ car 0.2 NN→ technology 0.2

NN→ metal 0.2 NN→ human 0.1

Possible trees for the new sentence are :

19



Option 1: (technology that deals with human
language is cool)

S

NP

DT

the

NBAR

NBAR

NBAR

NN

human

NBAR

NN

language

NBAR

NN

technology

VP

rules

Option 2: (human technology that deals with
language is cool)

S

NP

DT

the

NBAR

NBAR

NN

human

NBAR

NBAR

NN

language

NBAR

NN

technology

VP

rules

Again, since both trees have the same rules, they have exactly the same probability.

20



Exercise 13.

This exercise considers several forms of language models that compute the probability of sentences P (x).
In each of the following cases you need to write an expression that indicates how the particular language
model computes the probability P (x), making clear what parameters of the model are used to compute
the probability for the example sentence.

1. n-gram language models. The model considers only the words of x, the rest of the linguistic
structure is ignored. Write the expression for n = 2 and n = 3.

2. Hidden Markov Models (HMM). The model represents pos tags in the state sequence and words
in the observation sequence. The syntactic tree is ignored. Write the expression of P (x) for a
bigram HMM, where states correspond to single PoS tags, and for a trigram HMM, where states
correspond to two adjacent pos tags.

3. Probabilistic Context-Free Grammars (PCFG). The model considers the full syntactic tree.

SOLUTION

1. The probability of a sequence x according to a bigram language model is computed as:

P (x) =
n∏

i=1

q(xi−1, xi)
where we define x0 = START for any sequence x[1:n].
q(v, w) is the parameter model corresponding to the probability
of word w occurring just after word v, q(v, w) = P (w|v)

The probability of a sequence x according to a trigram language model is computed as:

P (x) =

n∏
i=1

q(xi−2, xi−1, xi)

where we define x−1 = x0 = START for any sequence x[1:n].
q(u, v, w) is the parameter model corresponding to the prob-
ability of word w occurring just after words uv, q(u, v, w) =
P (w|uv)

2. The probability of a sequence x according to a bigram HMM is computed as:

P (x) =
∑

t[1:n]∈Tn

πt1bt1x1

n∏
i=2

ati−1tibtixi

where πt is the probability of starting a sentence with tag
t, btx is the probability that tag t produces word x, and atr
is the probability that after tag t comes tag r (i.e. P (r|t)).
The probability of the sequence is the sum of the probabil-
ities of x being produced by any possible PoS tag sequence
of length n.

The probability of a sequence x according to a trigram language model is computed as:

P (x) =
∑

t[1:n]∈Tn

πt0t1bt0t1x1

n∏
i=2

ati−2ti−1tibti−1tixi

where we define t0 = START for any sequence
x[1:n].
πt0t is the probability of starting a sentence
with tag t, bstx is the probability word x is pro-
duced when the last two tags are s and t, and
astr is the probability that after tag r comes af-
ter tags s and t (i.e. P (r|st)).
The probability of the sequence is the sum of
the probabilities of x being produced by any
possible PoS tag sequence of length n.

3. The probability of a sequence x according to a PCFG is computed as:

P (x) =
∑

t∈T (x)

∏
r∈t

q(r)
That is, the probability of x is the sum of the probabilities of all
trees that generate x under the PCFG, T (x). The probability of
each tree t is the product of the probabilities of the rules used
to build it, q(r).

21


	
	
	
	
	
	
	
	
	
	
	
	
	

