
SAT Modulo the Theory of Linear Arithmetic:
Exact, Inexact and Commercial Solvers

Germain Faure, Robert Nieuwenhuis, Albert Oliveras and Enric
Rodŕıguez-Carbonell?

Abstract. Many highly sophisticated tools exist for solving linear arith-
metic optimization and feasibility problems. Here we analyze why it
is difficult to use these tools inside systems for SAT Modulo Theories
(SMT) for linear arithmetic: one needs support for disequalities, strict
inequalities and, more importantly, for dealing with incorrect results due
to the internal use of imprecise floating-point arithmetic. We explain how
these problems can be overcome by means of result checking and error
recovery policies.
Second, by means of carefully designed experiments with, among other
tools, the newest version of ILOG CPLEX and our own new Barcelogic
T -solver for arithmetic, we show that, interestingly, the cost of result
checking is only a small fraction of the total T -solver time.
Third, we report on extensive experiments running exactly the same
SMT search using CPLEX and Barcelogic as T -solvers, where CPLEX
tends to be slower than Barcelogic. We analyze these at first sight surpris-
ing results, explaining why tools such as CPLEX are not very adequate
(nor designed) for this kind of relatively small incremental problems.
Finally, we show how our result checking techniques can still be very use-
ful in combination with inexact floating-point-based T -solvers designed
for incremental SMT problems.

1 Introduction

The applicability of current SAT solvers to many areas in and outside computer
science is nowadays well known. However, some practical problems are more
naturally described and more efficiently solved in logics that are more expressive
than propositional logic. For example, for reasoning about timed automata or
about intervals in scheduling problems, a good choice is difference logic, where
formulas contain atoms of the form a − b ≤ k. Similarly, the conditions arising
from program verification usually involve arrays, lists and other data structures,
so it becomes very natural to consider satisfiability problems modulo the theory T
of these data structures. In such applications, problems may consist of thousands
of clauses like

p ∨ ¬q ∨ a=b− c ∨ read(s, b− c)=d ∨ a− c ≤7
containing purely propositional atoms as well as atoms over (combined) theo-
ries. This is known as the Satisfiability Modulo Theories (SMT) problem for a
? Tech. Univ. of Catalonia, Barcelona. All authors partially supported by Spanish Min.

of Educ. and Science through the LogicTools-2 project, TIN2007-68093-C02-01.

theory T : given a formula F , determine whether F is T -satisfiable, i.e., whether
there exists a model of T that is also a model of F . SMT has become an ex-
tremely active area of research and many SMT systems have been developed
[DdM06a,dMB07,BBC+05,BT07,NO05a], as well as a library of benchmarks for
SMT, called SMT-LIB [TR05].

The DPLL(T) approach to SMT couples a general DPLL(X) engine, in
charge of enumerating propositional models of the formula, with a theory solver
Solver

T
, responsible for checking the consistency of these models over the the-

ory T (e.g., if T is difference logic and the current boolean assignment contains
x−y ≤ 0, y−z ≤ 0, and x−z ≥ 1, then Solver

T
has to detect its T -inconsistency).

Here we consider SAT modulo the theories of Linear (Real or Integer) Arith-
metic (LRA or LIA). So far, in SMT systems not much of the wide body
of technology developed in the field of OR has been exploited. The reason
for this is that the main application area of SMT is verification, which has
some requirements that are not considered essential in OR: one needs to han-
dle disequalities and strict inequalities, and, in order to guarantee correctness,
employ arbitrary-precision arithmetic instead of floating-point arithmetic. The
only work the authors are aware of the application of OR tools to SMT is
[YM06], where nevertheless the issue of how incorrect answers from the solver
should be handled was not addressed. Still, OR solvers may give wrong answers:
for instance CPLEX 11 [ILO07], the newest version of ILOG CPLEX, returns
that the following set of constraints (obtained from the industrial benchmark
clocksynchro 2clocks.main invar.induct from the SMT-LIB) is satisfiable:

−x− y + u ≤ 0 −11z + v + 11t ≤ 0
−u + z ≤ 0 11x− v ≤ −10−5

−t + y ≤ 0 x ≥ 10−5

However, it is unsatisfiable, as the reader can easily check by multiplying the
first three constraints by 11 and adding up all constraints but the last bound
(which is not in the conflict but is needed to get a wrong answer from CPLEX).

In this paper we further study the applicability of OR tools for develop-
ing theory solvers for LA. We show how imprecise floating-point-based simplex
solvers can be used in combination with result checking and error recovery poli-
cies for handling solver failures.

Furthermore, we report on a large number of carefully designed experiments
with commercial and non-commercial OR solvers, including CPLEX 11, and
with several versions of our own new Barcelogic Solver

T
for LRA and LIA.

These experiments show, among several other interesting results, that (i) result
checking takes only a small fraction of the total OR solver time and (ii) OR
solvers are not designed for the incremental feasibility problems that occur in
SMT and are often outperformed in this context by our specialized exact T -
solver.

This closes some research directions and opens other new ones. In particular,
it seems that a good approach may be to combine result checking with floating-
point implementations of our current SMT-style incremental solvers. Following

this idea we have implemented a prototype using floating-point arithmetic, which
we have compared experimentally with CPLEX obtaining promising results.

This paper is structured as follows. We first give some background on SMT
and DPLL(T) in Section 2. Section 3 studies which functionalities are offered
and missing in OR solvers in order to be used as theory solvers. Then, Section 4
concentrates on how to use inexact solvers like CPLEX in DPLL(T). Next,
Section 5 analyzes the performance of OR solvers when used as theory solvers.
Finally, Section 6 presents preliminary results on the development of inexact
solvers specifically designed for SMT, and we conclude in Section 7.

2 Background on SMT and DPLL(T)

In this section we give a quick overview of SMT and DPLL(T). We refer to
[NOT06] for further details, extensions and references. The SMT problem con-
sists of, given a ground first-order formula F and a theory T , deciding whether
F is T -satisfiable (or T -consistent), i.e., whether there exists a model of T that
is also a model of F . For that purpose, most state-of-the-art SMT solvers com-
bine a boolean engine DPLL(X), very similar in nature to a SAT solver, with a
theory solver Solver

T
, thus producing a DPLL(T) system.

In the simplest version of such systems, the boolean engine initially considers
each atom as a distinct propositional symbol. If the formula turns out to be
propositionally unsatisfiable, it is T -unsatisfiable as well. Otherwise, DPLL(X)
returns a propositional model M . This model, seen as a conjunction of literals,
is then checked for T -consistency by Solver

T
. If M is T -consistent then F is

T -satisfiable; otherwise, in order to prevent M from later consideration, one can
conjunct the negation of M (a disjunction of literals) to F and repeat the process
until DPLL(X) finds a T -consistent model or returns unsatisfiable.

Example 1. Let F be x ≤ 2 ∧ (¬(x + y = 1) ∨ x ≥ 3) ∧ x + y = 1.
In this case, DPLL(X) will return the model M = {x ≤ 2, x ≥ 3, x + y = 1}
which will be detected T -inconsistent by Solver

T
. After adding to F the clause

¬(x ≤ 2) ∨ ¬(x ≥ 3) ∨ ¬(x + y = 1), the boolean engine will report the
unsatisfiability of the formula.

In this simple setting all one needs from Solver
T

is the capability of checking
the T -consistency of a conjunction of literals. However, for this approach to be
efficient in practice several improvements need to be made. Here we list some of
them, making special emphasis on the requirements they pose on Solver

T
:

– The T -consistency of the assignment stored by DPLL(X) can be checked
while it is being built, without delaying the check until a propositional model
has been found (i.e., we are at a leaf of the search tree). This saves a large
amount of useless work but requires Solver

T
to be incremental, that is, being

faster in processing the addition of a single literal to a set of literals already
found T -consistent than in reprocessing the whole set from scratch.

– When an assignment M is found T -inconsistent by Solver
T
, one can ask

DPLL(X) to backtrack to some point where the assignment was still T -
consistent instead of restarting the search from scratch. This obviously forces
Solver

T
to be able to support backtracking. Moreover, DPLL(X) needs to

start its conflict analysis mechanism with an inconsistency explanation given
by Solver

T
, that is, a small subset of M that is also T -inconsistent (e.g, in

Example 1, an inconsistency explanation is {x ≤ 2, x ≥ 3}).
– As a further optional refinement, if we want Solver

T
to play an active role

in the search, instead of being used only to validate the search a posteriori,
we can ask Solver

T
to detect unassigned input literals that are T -entailed

by the current assignment M ; that is, literals l such that M ∧ T |= l. This
refinement, called theory propagation, allows DPLL(X) to assign them a
truth value instead of having to guess an arbitrary value for them.

These improvements have allowed SMT solvers to be successfully used in a
variety of applications. Many of them involve reasoning over the theory of linear
arithmetic (LA), where atoms are of the form a1x1 + . . . + anxn ./ b, being the
ai’s rational numbers, the xi’s integer or rational variables and ./ one of the
operators =, ≤, <, >, ≥ or 6=. An interesting fragment of linear arithmetic is
the one of difference logic (DL), where atoms are of the form x1−x2 ./ b. In SMT
benchmarks most LA constraints are indeed DL and their consistency can be
checked very efficiently by means of negative-cycle-detection algorithms. Hence,
when checking the T -consistency of a set of LA constraints it is not uncommon
to first apply a specialized DL solver to filter out the inconsistencies that arise
only taking into account DL atoms. On the other hand, for dealing with general
LA constraints all state-of-the-art theory solvers in SMT tools are based on the
simplex method. For further reading see, e.g., [Sch87].

3 Using OR Solvers as Theory Solvers for LA

In this section we summarize what OR solvers provide and miss so as to be
applied to DPLL(LA).

All linear programming (LP) packages developed in OR allow the user to test
the satisfiability of a conjunction of linear equations and non-strict inequations.
Very often there is no specific facility for this purpose, since all that needs to be
done is to optimize the null function over the system of constraints of interest:
all models of the formula are optimal with respect to this objective function.

Moreover, most of these systems implement the so-called bounded simplex
method [Mar86], which handles bounds on variables in a more efficient way than
in the textbook version [Sch87]. This is important in the SMT context, since
typically a significant amount of the literals in a problem are bounds: on average
over 30% in the SMT-LIB, and in some benchmarks beyond 50%.

Also important as regards efficiency, the majority of these packages provide
an API that avoids expensive communication through files and system calls.

Another issue that is paramount for the application to DPLL(LA) is incre-
mentality: fortunately, most often the interfaces of these tools provide facilities
for adding and removing constraints and modifying bounds, among others.

However, when one is faced with an unsatisfiable conjunction of constraints,
as far as the authors know only commercial LP tools (or demo versions with
limited capabilities of these) provide a means for computing an irredundant
explanation for the inconsistency. Moreover some of these, such as CPLEX 9.1,
produce explanations for LRA but not for LIA; besides, for some pathological
instances, the explanations given by CPLEX 9.1 are redundant, though they
should not be according to the documentation. For example, for the following
system of constraints:

x + y ≤ 2 ∧ x ≤ 1 ∧ x ≥ 1 ∧ y ≤ 2 ∧ y ≥ 2
CPLEX 9.1 considers the conjunctions x ≤ 1 ∧ x ≥ 1 and y ≤ 2 ∧ y ≥ 2 as the
equations x = 1 and y = 2 respectively, and returns E = {x + y ≤ 2, x = 1, y =
2} as an irredundant explanation, whereas E′ = {x + y ≤ 2, x ≥ 1, y ≥ 2} is a
proper subset of E that is also inconsistent. Fortunately CPLEX 11 fixes these
problems and does produce truly irredundant explanations for both LRA and
LIA.

On the other hand, to the knowledge of the authors what all LP packages
lack is support for handling disequalities and strict inequalities. Basically this
is due to two facts: (1) optimization problems with these constraints may not
have optimal solutions, and (2) in LP data are not usually absolutely precise,
e.g., because they are subject to measurement errors.

Another feature that most LP tools lack is precise arithmetic. For the sake of
efficiency, typically an OR solver works with floating-point arithmetic, instead
of arbitrary-precision rationals as done in SMT solvers. This is the reason why,
as shown in Section 1, an OR solver may give a wrong answer, i.e., return
“SAT” for an unsatisfiable problem or “UNSAT” for a satisfiable one, or also
compute a wrong explanation of inconsistency. Moreover, the use of floating-
point arithmetic entangles the risk of a sudden unexpected failure; this is one of
the reasons why optimization routines in LP libraries return a status value that
indicates whether an internal error has occurred.

For instance, all of the versions of CPLEX we have experimented with just
support floating-point arithmetic. On the other hand, the non-commercial OR
solver GLPK [Mak07] additionally provides the user with exact arbitrary-precision
arithmetic. See Section 5 for the results of our experiments with this feature.

Finally, no LP package supports theory propagation. This is natural, since
in the context of OR this notion does not make any sense. Although the im-
portance of theory propagation has been acknowledged elsewhere for LA and
other theories [NO05b,DdM06b], one of the initial hypotheses of this research
was that, given the huge amount of work done in the area of OR over the years,
the performance of LP tools would be so outstanding that this limitation would
be compensated for. Further, as seen in Section 2, theory propagation is not a
necessary part of the core interface with DPLL(X), but an optimization on this
interface.

4 How to Deal with Inexact Solvers in DPLL(T)

As discussed in Section 3, there are two issues that must be addressed so as to
employ an inexact OR solver as a LA-solver:

(1) In the SMT context, constraints may be not only equalities and non-strict
inequalities but also the negation of these, i.e., disequalities and strict in-
equalities; the OR solver must be able to handle them all.

(2) Due to imprecise arithmetic, the answers given by the OR solver may be
wrong, and thus must be checked; moreover, there must be a policy for
recovering from the possible errors and resuming the search.

In this section it is shown how this gap can be filled. As far as (1) is con-
cerned, the problem of handling disequalities can be reduced to that of strict
inequalities, since one can preprocess the input formula by splitting equalities
into conjunctions of non-strict inequalities and disequalities into disjunctions of
strict inequalities, which works very well in practice [DdM06b]. Now, given that
the issue of correctness of the OR solver needs to be addressed anyway, a pos-
sibility is to strengthen strict inequalities by subtracting a small value ε; i.e.,
a constraint of the form cT x < d is transformed into cT x ≤ d− ε (for instance,
in our experiments we used ε = 10−5). Thus, the problem (1) of handling strict
constraints has been reduced to (2), that of correctness of the inexact solver.

Now, regarding (2), a general solution for using inexact T -solvers in DPLL(T)
(not necessarily OR solvers when T is LA) is to check results by means of an
exact T -solver only when it is strictly necessary to ensure correctness. That is, (i)
whenever the inexact solver returns “UNSAT”, checking that the explanation for
the conflict is indeed inconsistent; and (ii) whenever the inexact solver returns
“SAT” (or an internal error occurs) at a leaf, checking that the assignment is
indeed consistent with the theory. A corresponding error recovery policy can be
easily described: in case (i), if the explanation is wrong, the exact solver is called
again over the partial assignment, and the search is resumed using the result of
this exact consistency check; similarly, in case (ii) the result of the check with
the exact solver is employed to continue the search. Both result checking and
error recovery policies are summarized in Algorithm 1.

Notice that the most expensive calls to the exact solver are those where the
consistency of the whole partial assignment is checked. Under the hypotheses
that the inexact solver will produce almost no wrong explanations of inconsis-
tency and that internal errors will be infrequent too, these calls will be basically
due to the uncommon event of the boolean search getting to a leaf of the tree.
So it is reasonable to imagine that the cost of these calls will not be noticeable.

As regards the calls to the exact solver with inconsistency explanations, these
will be much more frequent, since typically every few decisions a conflict arises.
Fortunately, in general the number of literals in an explanation is below a few
tens, and therefore these calls are often cheap.

In order to empirically assess the cost of result checking, we have carried out
the following experiment: for all benchmarks in the LRA and LIA divisions (501

Algorithm 1: Consistency check and error recovery policies
if in a leaf then

if there is an internal error or inexact solver returns “SAT” then
check consistency of partial assignment with exact solver;
resume search using the result given by exact solver;

else //inexact solver returns ‘‘UNSAT’’
check consistency of inconsistency explanation with exact solver;
if exact solver returns “SAT” then

check consistency of partial assignment with exact solver;
resume search using the result given by exact solver;

else //exact solver returns ‘‘UNSAT’’
resume search using inconsistency explanation for conflict analysis;

else //in an internal node

if there is an internal error or inexact solver returns “SAT” then
continue search as if partial assignment were theory consistent;

else //inexact solver returns ‘‘UNSAT’’
check consistency of inconsistency explanation with exact solver;
if exact solver returns “SAT” then

continue search as if partial assignment were theory consistent;
else //exact solver returns ‘‘UNSAT’’

resume search using inconsistency explanation for conflict analysis;

and 203 problems, respectively) of the SMT-LIB [TR05], we have run our SMT
tool using CPLEX 11 as a LA-solver and implementing the result checking and
error recovery policies presented in Algorithm 1 with our exact Barcelogic LA-
solver. In order to avoid noise, no difference-logic pre-filtering has been applied.
In this and in the rest of experiments in this paper, the machine used was a
PC with an Intel(R) Xeon(TM) CPU 3.80GHz processor running Linux Debian
4.1.1. The timeout was set to 15 minutes.

In the graph in Figure 1 each dot represents an SMT instance of LRA. The
horizontal axis shows the time spent in CPLEX (consistency checking, inconsis-
tency explanation generation and backtracking); the vertical axis represents the
time taken by result checking. Besides, the line y = x/10 is drawn as a reference.

As can be seen from the graph, for most problems in LRA the time taken
by result checking is in general at most 10% of the time spent in CPLEX. In
those instances for which result checking is significantly more expensive than
that, this is due to either (1) the length of the inconsistency explanations (for
some examples in the TM family, several hundreds of literals) or (2) the amount
of errors produced by CPLEX. However, in more than 75% of the benchmarks,
errors occur in at most 2% of the consistency checks.

The graph in Figure 2 is similar to that in Figure 1, but for benchmarks from
LIA. In this case it is also clear that, in general, the cost of result checking is at
most 10% of the time spent by CPLEX.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900

R
es

ul
t c

he
ck

in
g

CPLEX

Time result checking vs. time CPLEX

Ref. line y=x/10
SMT benchmarks

Fig. 1. Result checking evaluation for LRA

5 Performance of OR Solvers as T -solvers

In this section we experimentally evaluate the performance of inexact OR solvers
against that of specialized exact LA-solvers designed for SMT.

To this end, we have carried out the following experiment: guiding the search
with our exact Barcelogic LA-solver, we have also run in parallel CPLEX 11 and
compared the timings of the two tools, counting consistency checks 1, incon-
sistency explanation generation and backtracking. To make a fair comparison,
apart from exploring the search space in the same way, neither difference-logic
pre-filtering nor theory propagation have been applied.

The graph in Figure 3 shows the results of this experiment for LRA. Each
dot represents an SMT instance. The horizontal axis is the time taken by our
own exact LA-solver; the vertical axis is the time spent by CPLEX. Besides, the
line y = x is drawn as a reference.

Contrary to our initially expected results, when used as a theory solver in
the DPLL(T) framework, CPLEX 11 tends to perform worse or not significantly
better than our LRA solver. This is mainly due to consistency checks, and also
inconsistency explanation generation, which are usually more expensive with
CPLEX 11. The same experiments have also been carried out with other inexact
OR solvers, namely CPLEX 9.1 and GLPK 4.25, the newest version of the GNU
Linear Programming Kit, with similar outcome (although CPLEX 11 performs

1 There is a difference in the way consistency checks were performed with each tool.
For our LA-solver, pending constraints were asserted one at a time; for CPLEX, all
pending constraints were asserted at the same time. The reason for this is that, if
CPLEX was asked to deal with constraints one at a time, it was much slower.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900

R
es

ul
t c

he
ck

in
g

CPLEX

Time result checking vs. time CPLEX

Ref. line y=x/10
SMT benchmarks

Fig. 2. Result checking evaluation for LIA

better than CPLEX 9.1, which is in turn better than GLPK). We have worked
on several hypotheses in order to explain these results:

The default CPLEX parameter values are not adequate for SMT. The
experiments above have been carried out using the default values for the pa-
rameters of CPLEX, so one could argue that these values are not the most
appropriate for SMT problems. For this reason we have experimented chang-
ing several of the parameters that, according to CPLEX documentation, have
most impact on the performance: simplex method (primal, dual, barrier), pric-
ing strategy (standard, steepest edge, devex, ...), refactorization frequency, and
several preprocessing options. No significant improvements have been achieved
on the results obtained with the default values of the parameters.

The basis is refactored at each constraint addition/deletion. CPLEX
allows writing a log file with information about the progress of the computation.
From these log files it can be seen that refactorizations are not performed sys-
tematically each time constraints are added or removed, but more spacedly. Also,
as mentioned above, we did not significantly enhance the results by modifying
the refactorization frequency.

CPLEX is using a Phase I procedure that adds many new auxiliary
variables and/or rows to the problem at each consistency check. As far
as the authors could infer from the documentation, the Phase I primal algorithm
implemented in CPLEX is based on [Mar86], where no extra rows or variables
are added to the problem. Moreover, if the dual simplex method is employed,
since the objective function is null any basis is trivially feasible, and thus all work
is done in Phase II, where no auxiliary rows or variables are added either; still,
we did not improve timings by using the dual simplex method, as said above.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700

C
P

LE
X

Exact solver

Time CPLEX vs. time exact solver

Ref. line y=x
SMT benchmarks

Fig. 3. Comparison between our exact solver and CPLEX in LRA

CPLEX is not designed for being used as a Solver
T

in DPLL(T), nor
for the kind of problems that arise in SMT. This is the most plausible
explanation for the results obtained in this experiment, since the way CPLEX is
commonly used in OR is remarkably different from that in this paper for SMT.

First of all, CPLEX is aimed at linear programs with up to millions of vari-
ables and constraints, whereas consistency checks from SMT involve few thou-
sands of constraints over few hundreds of variables. Thus, using CPLEX for
solving these problems may be an overkill.

Secondly, when in OR a linear program is solved, typically the user carries out
some sensitivity analysis; in order to reuse computations in further reoptimiza-
tions, CPLEX provides the facilities not only for adding/removing constraints
and changing bounds, but also changing coefficients of the objective function and
the whole constraint matrix. However, efficiency in adding/removing constraints
and changing bounds is not as determinant as in DPLL(T), where thousands of
problems need to be solved incrementally for a single benchmark. As a result of
this, CPLEX does not outperform our exact LA-solver in an incremental setting,
whereas when solving large static problems it is better by orders of magnitude.

As regards inconsistency explanations, the typical scenario in OR is the fol-
lowing one: when dealing with big linear programs it may be tedious to detect
errors in the data, for instance when the problem turns out to be infeasible
whereas it should not; CPLEX offers functionalities for computing conflicting
sets of constraints in order to help the user to diagnose where the error could
be. Thus, in the context for which CPLEX has been designed, the computa-
tion of explanations of inconsistency is not critical, unlike in DPLL(T). In fact,
while we were experimenting with a previous version of CPLEX, CPLEX 9.1,
the bottleneck for many problems in LRA (namely, the sc and TM families) was

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800

C
P

LE
X

Exact solver

Time CPLEX vs. time exact solver

Ref. line y=x
SMT benchmarks

Fig. 4. Comparison between our exact solver and CPLEX in LIA

precisely the generation of these explanations. CPLEX 11 is more efficient than
its predecessor when computing inconsistency explanations, but there are still
instances for which it does not perform very well.

Finally, CPLEX provides the user with finely tuned technology for optimizing
hard problems, among others sophisticate pricing strategies, several optimization
algorithms, advanced basis methods, etc. On the other hand, from the optimiza-
tion point of view, the linear programs arising from SMT problems are easy and
can be usually solved with few iterations of the simplex algorithm. Again, using
CPLEX in this context may be excessive.

In order to look further into the cost of consistency checks in OR solvers, we
experimented with the open-source OR solver GLPK 4.25 2, which supports both
floating-point and arbitrary-precision arithmetic. As regards inexact arithmetic,
as mentioned above the results of the experiments were similar to those with
CPLEX 11, although the performance of GLPK was worse than that of CPLEX.
The execution profiles showed that about half of the time in GLPK was spent on
factorizing the basis and the rest on (re)initializing data structures and simplex
iterations, but did not reveal any deeper insights. Regarding exact arithmetic,
GLPK performed two orders of magnitude worse than our exact LA-solver.

Finally, in Figure 4 we show the results of the experiment with CPLEX 11
and our exact solver on all LIA benchmarks from the SMT-LIB. As can be seen
from the graph, CPLEX does perform better in general than our LIA solver
(notice, however, that in some instances CPLEX is much slower; this is because
for these particular LIA benchmarks it spends a huge amount of time computing
explanations of inconsistency). This outcome is explained by the simplicity of

2 GLPK does not provide facilities for computing irredundant explanations of incon-
sistency, and so it was just used to check the consistency of partial assignments.

our LIA solver, whose heuristics for branch & bound and cut generation have
not been finely tuned. Nevertheless, given that the underlying engine for solving
integer problems is a solver for reals, and given the above results for LRA, it
seems reasonable to think that this difference between CPLEX and our LIA
solver can be reduced if our search mechanism for integer solutions is improved.

6 New Prospects: an Inexact Solver Designed for
DPLL(T)

In this section we report on work in progress towards the use of inexact LA-
solvers specifically designed for SMT as opposed to solvers developed in OR,
based on the results obtained in the previous section.

Namely, in Section 5 our experiments in LRA have revealed that state-of-the-
art OR solvers such as CPLEX 11 and GLPK 4.25, when applied in the DPLL(T)
framework, are not competitive with specialized tools. Though in principle this
is a negative result, in fact it suggests a new line for research: to combine re-
sult checking techniques with implementations of our current SMT incremental
solvers using floating-point instead of arbitrary-precision arithmetic.

To assess the viability of this idea, we have run in parallel CPLEX 11 and
an implementation of our LA-solver with floating-point numbers, using result
checking and the error recovery policies described in Section 4. Our inexact LA-
solver is currently a first-stage prototype that has been implemented basically
by replacing exact rational variables by double variables, but without fine tun-
ing for handling precision errors. As expected, using floating-point numbers in
code designed for exact arithmetic may sometimes cause invariant violation and
thus runtime errors and non-terminating behavior in the solver. For this reason,
the experiment described here does not include all benchmarks from the LRA
division of the SMT-LIB, but just those for which these errors did not occur. In-
terestingly enough, just 15% of the benchmarks were discarded; these are mainly
the most difficult ones in the clock synchro, sc and tta startup families.

The outcome of this experiment is shown in the graph in Figure 5. Again,
each dot represents an SMT benchmark. The horizontal axis is the time taken by
our inexact LA-solver prototype; the vertical axis is the time spent by CPLEX.
Besides, the lines y = x and y = 5x are drawn as a reference.

As can be seen from the graph, the results are promising. For most instances,
CPLEX 11 spends at least five times as much time as our inexact solver. Taking
into account the results obtained in the previous section, there is thus a potential
gain in employing inexact LA-solvers implemented with floating-point arithmetic
over exact LA-solvers implemented with arbitrary-precision numbers. 3

However, two problems need to be addressed. First, although result checking
was not an issue when using CPLEX, the situation is different with our pro-
3 A more precise experiment would have been to compare our inexact solver with the

exact one. However this was not possible: our implementation employs static objects,
which prevents us from having two solvers running simultaneously without resorting
to system calls.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700

C
P

LE
X

Inexact LA-solver

Time CPLEX vs. time inexact LA-solver

Ref. line y=x
Ref. line y=5x

SMT benchmarks

Fig. 5. Comparison between our inexact solver and CPLEX in LRA

totype, for which the cost of ensuring correctness starts to become significant
over the total time spent in theory reasoning. Therefore, result checking becomes
eligible for optimization. A possibility in this direction is as follows. In all of the
experiments reported here, result checking is implemented by having an auxiliary
checking solver that each time it is called asserts all required constraints, and
once the answer is returned it is emptied; this could be enhanced, for instance,
by having two auxiliary solvers, one for checking explanations of inconsistency
and another one for checking consistency of partial assignments, and working
incrementally with the second one. Moreover, so far the inexact solver does not
communicate any internal information to the auxiliary checking solver: still, the
latter could use some data from the former to speed up the consistency check,
for example which is the feasible basis or which are the multipliers of the in-
consistency certificate. The second problem that has to be solved is that, even
though result checking guarantees that on normal termination the answer given
by the SMT tool will be correct, runtime errors or non-termination are clearly
undesirable. It remains to be seen how these situations can be avoided without
much computational effort.

On the other hand, unlike with OR solvers, this approach has the advantage
that theory propagation could be applied by properly extending the result check-
ing and error recovery policies. This would take the best of the two worlds: first,
the efficiency of floating-point arithmetic; and second, the possibility to convey
theory information to the boolean engine.

7 Conclusions

The main contributions of this paper can be summarized as follows. First, we
have explained how OR tools can be used as theory solvers for SMT by means

of result checking techniques and error recovery policies. Second, we have shown
that the cost of the result checking techniques is only a small fraction of the
time spent in the OR solver. Third, by means of exhaustive experiments we
have shown that OR tools tend to be slower than exact solvers specifically de-
signed for the DPLL(T) framework, and thus are not adequate in the context
of SMT. Finally, based on empirical results we outline a new direction of re-
search for obtaining efficient theory solvers, which consists in combining inexact
floating-point-based implementations of solvers designed for DPLL(T) with re-
sult checking and error recovery policies.

Acknowledgments The authors would like to thank J. Cortadella, J. Carmona
and J. Larrosa for technical support with CPLEX. We are also grateful to L. de
Moura, P. Stuckey and the anonymous referees for insightful comments.

References

[BBC+05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum,
S. Schulz, and R. Sebastiani. The MathSAT 3 System. In CADE’05, LNCS
3632, pp. 315–321.

[BT07] C. Barrett, C. Tinelli. CVC3. In CAV’07, LNCS 4590, pp. 298–302.
[DdM06a] B. Dutertre, L. de Moura. The YICES SMT Solver. Technical report, SRI

International, 2006. Available at http://yices.csl.sri.com.
[DdM06b] B. Dutertre, L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).

In CAV’06, LNCS 4144, pp. 81–94.
[dMB07] L. de Moura, N. Bjorner. Z3: An Efficient SMT Solver. Tech-

nical report, Microsoft Research, Redmon, 2007. Available at
http://research.microsoft.com/projects/z3.

[ILO07] ILOG, 2007. ILOG CPLEX v.11 http://www.ilog.com/products/cplex.
[Mak07] A. Makhorin, 2007. GLPK 4.25 (GNU Linear Programming Kit). Available

at http://www.gnu.org/software/glpk/.
[Mar86] I. Maros. A general Phase-I method in linear programming. European Jour-

nal of Operational Research, 23(1):64–77, January 1986.
[NO05a] R. Nieuwenhuis, A. Oliveras. Decision Procedures for SAT, SAT Modulo

Theories and Beyond.. In LPAR’05, LNCS 3835, pp. 23–46.
[NO05b] R. Nieuwenhuis, A. Oliveras. DPLL(T) with Exhaustive Theory Propagation

and its Application to Difference Logic. In CAV’05, LNCS 3576, pp. 321–334.
[NOT06] R. Nieuwenhuis, A. Oliveras, C. Tinelli. Solving SAT and SAT Modulo

Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure
to DPLL(T). Journal of the ACM, JACM, 53(6):937–977, 2006.

[Sch87] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1987.
[TR05] C. Tinelli, S. Ranise. SMT-LIB: The Satisfiability Modulo Theories Library,

2005. http://goedel.cs.uiowa.edu/smtlib/.
[YM06] Y. Yu, S. Malik. Lemma Learning in SMT on Linear Constraints. In SAT’06,

LNCS 4121, pp. 142–155.

