
LPAR’06 - Phnom Penh (Cambodia)

Splitting on Demand in

SAT Modulo Theories

Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli

New York Univ. Techn. Univ. Catalonia Univ. of Iowa

LPAR’06

November 17th, 2006, Phom Penh (Cambodia)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.1/18

LPAR’06 - Phnom Penh (Cambodia)

Overview of the talk

Introduction to SMT

Eager approach

Lazy approach: Boolean engine DPLL(X) + T-solver

Inside the T-solver

What does DPLL(X) need from T-solver?

Splitting on Demand

Use of Splitting on Demand for Nelson-Oppen

Conclusions

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.2/18

LPAR’06 - Phnom Penh (Cambodia)

Introduction to SMT

Some problems are more naturally expressed in other logics
than propositional logic, e.g:

Software verification needs reasoning about equality,
arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a (ground) FO
formula with respect to a background theory T

Example (Equality with Uninterpreted Functions – EUF):

g(a)= c ∧ (f (g(a)) 6= f (c) ∨ g(a)=d) ∧ c 6=d

Wide range of applications:

Predicate abstraction

Model checking

Equivalence checking

Static analysis

Scheduling

...

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.3/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Eager approach vs lazy approach

EAGER APPROACH:

Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf SAT solver
[Bryant, Velev, Pnueli, Lahiri, Seshia, Strichman, ...]

Why “eager”? Search uses all theory information from the
beginning

Tools: UCLID [Lahiri, Seshia and Bryant]

LAZY APPROACH:

Methodology: integration of a SAT-solver with a theory solver

Why “lazy”? Theory information used lazily when checking
T-consistency of propositional models

Tools: CVC-Lite, Yices, MathSAT, TSAT+, Barcelogic ...

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.4/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.5/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver

SAT solver returns model [1, 2, 4]

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.5/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.5/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.5/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver

SAT solver returns model [1, 2, 3, 4]

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.5/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says T-inconsistent

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.5/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says T-inconsistent

Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 3 ∨ 4} to SAT solver

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.5/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says T-inconsistent

Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 3 ∨ 4} to SAT solver

SAT solver detects it UNSATISFIABLE

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.5/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.6/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.6/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.6/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a
T-inconsistent subset M0 ⊆ M and add ¬M0 as a clause

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.6/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a
T-inconsistent subset M0 ⊆ M and add ¬M0 as a clause

Upon a T-inconsistency, add clause and restart

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.6/18

LPAR’06 - Phnom Penh (Cambodia)

SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a
T-inconsistent subset M0 ⊆ M and add ¬M0 as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, use the conflicting clause ¬M0 to
backjump to some point where the assignment was still
T-consistent, as in SAT-solvers.

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.6/18

LPAR’06 - Phnom Penh (Cambodia)

Overview of the talk

Introduction to SMT

Eager approach

Lazy approach: Boolean engine DPLL(X) + T-solver

Inside the T-solver ⇐
What does DPLL(X) need from T-solver?

Splitting on Demand

Use of Splitting on Demand for Nelson-Oppen

Conclusions

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.6/18

LPAR’06 - Phnom Penh (Cambodia)

What does DPLL(X) need from T-Solver?

T-consistency check of a set of literals M, with:

Explain of T-inconsistency: find (small) T-inconsistent
subset of M [minimal wrt. size?, wrt. ⊆?]

Incrementality: if l is added to M, check for M l faster than
reprocessing M l from scratch.

Theory propagation: find input T-consequences of M, with:

Explain T-Propagate of l: find (small) subset of M that
T-entails l (needed in conflict analysis).

Backtrack n: undo last n literals added

PAPER FOCUSES only on T-consistency checks

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.7/18

LPAR’06 - Phnom Penh (Cambodia)

A T-Solver for EUF

Theory solvers can usually be described using inference rules

The input conjunction of literals C is saturated wrt the rules

C is unsat iff ⊥ has been derived

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.8/18

LPAR’06 - Phnom Penh (Cambodia)

A T-Solver for EUF

Theory solvers can usually be described using inference rules

The input conjunction of literals C is saturated wrt the rules

C is unsat iff ⊥ has been derived

A congruence closure algorithm (a solver for EUF) can be described
with the following rules:

Reflexitivy: Symmetry: Transitivity:

t = t
u = t
t = u

t = u u = v
t = v

Monotonicity: Contradiction:
t1 = u1 . . . tn = un

f (t1, . . . , tn) = f (u1, . . . , un)

t = u t 6= u

⊥

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.8/18

LPAR’06 - Phnom Penh (Cambodia)

A T-solver for difference logic (in R)

Atoms are of the form x ./ y + d, being x and y variables, d a real
constant and ./∈ {<,≤}, or of the form x = y + d.

Transitivity:

x ≤ z + c z ./ y + d

x ./ y + (c + d)

x < z + c z ./ y + d

x < y + (c + d)

Equality treatment:

x ≤ y + c y ≤ x − c

x = y + c

x = y + c

x ≤ y + c, y ≤ x − c

Contradiction:

x < x + c

⊥
(if c ≤ 0)

x = y + c x 6= y + c

⊥

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.9/18

LPAR’06 - Phnom Penh (Cambodia)

A T-solver for difference logic (in Z)

Consider the unsatisfiable set of literals
{1 ≤ x − y, x − y ≤ 2, x 6= y + 1, x 6= y + 2}

Saturation wrt the previous inference rules only adds
{y ≤ y + 1}.

To obtain a (refutationally) complete inference system:

Add splitting rule:

x 6= y + c

x < y + c x > y + c

Or add splitting rules of the form:

c ≤ x − y x − y ≤ (c + k)

x − y = c x − y = c + 1 . . . x − y = c + k

This may give an exponential amount of work, but problem is
NP-hard anyway.

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.10/18

LPAR’06 - Phnom Penh (Cambodia)

Other theories requiring case-splitting

T-solvers requiring internal case-splitting are common:

Theory of arrays:

read(write(A, i, v), j) = read(A, j)

i 6= j i = j , read(A, j) = v

A x y A’ v y

i j i j

Fragments of set theory:

S1 6= S2

e ∈ S1, e 6∈ S2 e 6∈ S1, e ∈ S2

This type of solvers are much more difficult to implement than
“deterministic” ones

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.11/18

LPAR’06 - Phnom Penh (Cambodia)

Other theories requiring case-splitting

T-solvers requiring internal case-splitting are common:

Theory of arrays:

read(write(A, i, v), j) = read(A, j)

i 6= j i = j , read(A, j) = v

A x A’ v

i i

Fragments of set theory:

S1 6= S2

e ∈ S1, e 6∈ S2 e 6∈ S1, e ∈ S2

This type of solvers are much more difficult to implement than
“deterministic” ones

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.11/18

LPAR’06 - Phnom Penh (Cambodia)

Our proposal: splitting on demand

INFORMALLY:

IDEA: pass theory case-splits to the DPLL engine as clauses

BENEFITS:

Split-backtrack infrastructure is not duplicated

Allow flexibility in T-reasoning (cheap computations first)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.12/18

LPAR’06 - Phnom Penh (Cambodia)

Our proposal: splitting on demand

INFORMALLY:

IDEA: pass theory case-splits to the DPLL engine as clauses

BENEFITS:

Split-backtrack infrastructure is not duplicated

Allow flexibility in T-reasoning (cheap computations first)

FORMALLY:

Given initial state ∅ || F, consider L the finite set of all literals
that might need case splitting.

Modify T-Learn: also clauses with literals form L may be
learned.

L avoids termination problems (under certain conditions)

T-solvers complete only when all atoms in L are decided

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.12/18

LPAR’06 - Phnom Penh (Cambodia)

Example

Consider again Diff. Logic over Z and the formula:

x ≤ y + 1
︸ ︷︷ ︸

1

∧ (x < y
︸ ︷︷ ︸

2

∨ x 6= y + 1
︸ ︷︷ ︸

3

) ∧ x 6=y
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 ⇒ (UnitPropagate x 2)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.13/18

LPAR’06 - Phnom Penh (Cambodia)

Example

Consider again Diff. Logic over Z and the formula:

x ≤ y + 1
︸ ︷︷ ︸

1

∧ (x < y
︸ ︷︷ ︸

2

∨ x 6= y + 1
︸ ︷︷ ︸

3

) ∧ x 6=y
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 ⇒ (UnitPropagate x 2)

1 4 || 1, 2 ∨ 3, 4 ⇒ (T-Learn with 5 ≡ x > y)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.13/18

LPAR’06 - Phnom Penh (Cambodia)

Example

Consider again Diff. Logic over Z and the formula:

x ≤ y + 1
︸ ︷︷ ︸

1

∧ (x < y
︸ ︷︷ ︸

2

∨ x 6= y + 1
︸ ︷︷ ︸

3

) ∧ x 6=y
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 ⇒ (UnitPropagate x 2)

1 4 || 1, 2 ∨ 3, 4 ⇒ (T-Learn with 5 ≡ x > y)

1 4 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (Decide)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.13/18

LPAR’06 - Phnom Penh (Cambodia)

Example

Consider again Diff. Logic over Z and the formula:

x ≤ y + 1
︸ ︷︷ ︸

1

∧ (x < y
︸ ︷︷ ︸

2

∨ x 6= y + 1
︸ ︷︷ ︸

3

) ∧ x 6=y
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 ⇒ (UnitPropagate x 2)

1 4 || 1, 2 ∨ 3, 4 ⇒ (T-Learn with 5 ≡ x > y)

1 4 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (Decide)

1 4 5 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (T-Propagate x 2)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.13/18

LPAR’06 - Phnom Penh (Cambodia)

Example

Consider again Diff. Logic over Z and the formula:

x ≤ y + 1
︸ ︷︷ ︸

1

∧ (x < y
︸ ︷︷ ︸

2

∨ x 6= y + 1
︸ ︷︷ ︸

3

) ∧ x 6=y
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 ⇒ (UnitPropagate x 2)

1 4 || 1, 2 ∨ 3, 4 ⇒ (T-Learn with 5 ≡ x > y)

1 4 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (Decide)

1 4 5 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (T-Propagate x 2)

1 4 5 2 3 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (Backjump)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.13/18

LPAR’06 - Phnom Penh (Cambodia)

Example

Consider again Diff. Logic over Z and the formula:

x ≤ y + 1
︸ ︷︷ ︸

1

∧ (x < y
︸ ︷︷ ︸

2

∨ x 6= y + 1
︸ ︷︷ ︸

3

) ∧ x 6=y
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 ⇒ (UnitPropagate x 2)

1 4 || 1, 2 ∨ 3, 4 ⇒ (T-Learn with 5 ≡ x > y)

1 4 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (Decide)

1 4 5 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (T-Propagate x 2)

1 4 5 2 3 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (Backjump)

1 4 5 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (UnitPropagate)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.13/18

LPAR’06 - Phnom Penh (Cambodia)

Example

Consider again Diff. Logic over Z and the formula:

x ≤ y + 1
︸ ︷︷ ︸

1

∧ (x < y
︸ ︷︷ ︸

2

∨ x 6= y + 1
︸ ︷︷ ︸

3

) ∧ x 6=y
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 ⇒ (UnitPropagate x 2)

1 4 || 1, 2 ∨ 3, 4 ⇒ (T-Learn with 5 ≡ x > y)

1 4 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (Decide)

1 4 5 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (T-Propagate x 2)

1 4 5 2 3 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (Backjump)

1 4 5 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (UnitPropagate)

1 4 5 2 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 (Model found)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.13/18

LPAR’06 - Phnom Penh (Cambodia)

Overview of the talk

Introduction to SMT

Eager approach

Lazy approach: Boolean engine DPLL(X) + T-solver

Inside the T-solver

What does DPLL(X) need from T-solver?

Splitting on Demand

Use of Splitting on Demand for Nelson-Oppen ⇐
Conclusions

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.13/18

LPAR’06 - Phnom Penh (Cambodia)

Nelson-Oppen: combination of theories

SMT problems usually involve more than one theory:

a=b+2 ∧ A=write(B, a+1, 4) ∧ (read(A, b+3)=2 ∨ f (a−1) 6= f (b+1))

Combination problem:

INPUT:

Two theories T1 and T2.

A T1-solver and a T2-solver

OUTPUT:

A (T1 ∪ T2)−solver

Nelson-Oppen provides a combination procedure if:

Theories are signature disjoint

Theories are stably-infinite

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.14/18

LPAR’06 - Phnom Penh (Cambodia)

Nelson-Oppen: example

Γ = { f (f (x) − f (y)) 6= f (z), x ≤ y, y + z ≤ x, z ≥ 0}

1. Purify literals: introduce new variables
w1 = f (x), w2 = f (y), w3 = w1 − w2

2. Now we get

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2} and
ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

3. N-O: Γ SAT in the combined theory iff exists arrangement A
(for each pair of shared variables, say whether they are equal
or distinct) such that ΓR ∧A is TR-SAT and ΓE ∧A is TE-SAT.

Ideal implementation: T-solvers exchange entailed equations until
fix point or unsatisfiability is detected by a single T-solver.

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.15/18

LPAR’06 - Phnom Penh (Cambodia)

Nelson-Oppen: example(2)

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2}

ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

Arrangement A (init. empty) is seen by both solvers:

TR-solver detects x = y is entailed (and added to A)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.16/18

LPAR’06 - Phnom Penh (Cambodia)

Nelson-Oppen: example(2)

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2}

ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

Arrangement A (init. empty) is seen by both solvers:

TR-solver detects x = y is entailed (and added to A)

TE-solver detects w1 = w2 is entailed (and added to A)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.16/18

LPAR’06 - Phnom Penh (Cambodia)

Nelson-Oppen: example(2)

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2}

ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

Arrangement A (init. empty) is seen by both solvers:

TR-solver detects x = y is entailed (and added to A)

TE-solver detects w1 = w2 is entailed (and added to A)

TR-solver detects z = w3 is entailed (and added to A)

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.16/18

LPAR’06 - Phnom Penh (Cambodia)

Nelson-Oppen: example(2)

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2}

ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

Arrangement A (init. empty) is seen by both solvers:

TR-solver detects x = y is entailed (and added to A)

TE-solver detects w1 = w2 is entailed (and added to A)

TR-solver detects z = w3 is entailed (and added to A)

TE-solver detects ΓE ∧A is TE-unsat

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.16/18

LPAR’06 - Phnom Penh (Cambodia)

Nelson-Oppen: example(2)

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2}

ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

Arrangement A (init. empty) is seen by both solvers:

TR-solver detects x = y is entailed (and added to A)

TE-solver detects w1 = w2 is entailed (and added to A)

TR-solver detects z = w3 is entailed (and added to A)

TE-solver detects ΓE ∧A is TE-unsat

But exchanging entailed equalities does not always suffice:

ΓZ = {1 ≤ x − y, x − y ≤ 2, w1 = y + 1, w2 = y + 2}

ΓE = { f (x) 6= f (w1), f (x) 6= f (w2)}

is UNSAT, but no equation is entailed.

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.16/18

LPAR’06 - Phnom Penh (Cambodia)

Nelson-Oppen with non-convex theories

Why didn’t it work with

ΓZ = {1 ≤ x − y, x − y ≤ 2, w1 = y + 1, w2 = y + 2}

ΓE = { f (x) 6= f (w1), f (x) 6= f (w2)} ?

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.17/18

LPAR’06 - Phnom Penh (Cambodia)

Nelson-Oppen with non-convex theories

Why didn’t it work with

ΓZ = {1 ≤ x − y, x − y ≤ 2, w1 = y + 1, w2 = y + 2}

ΓE = { f (x) 6= f (w1), f (x) 6= f (w2)} ?

ΓZ does not entail any equation between shared variables

But ΓZ |=T x = w1 ∨ x = w2 (non-convex theory)

For non-convex theories, DISJUNCTIONS of equalities should
be communicated. Possibilities:

Send clauses from solver to solver

Force DPLL(X) to split on equalities between shared
variables [DTC]

Send clauses from solvers to DPLL(X) only as necessary
[DTC,Splitting on Demand]

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.17/18

LPAR’06 - Phnom Penh (Cambodia)

Overview of the talk

Introduction to SMT

Eager approach

Lazy approach: Boolean engine DPLL(X) + T-solver

Inside the T-solver

What does DPLL(X) need from T-solver?

Splitting on Demand

Use of Splitting on Demand for Nelson-Oppen

Conclusions ⇐

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.17/18

LPAR’06 - Phnom Penh (Cambodia)

Conclusions

Expensive theories easily dealt with the appropriate
infrastructure

This infrastructure allows greater flexibility

Nelson-Oppen easily accommodated

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.18/18

	Overview of the talk
	Introduction to SMT
	SMT - Eager approach vs lazy approach
	SMT - Lazy approach example
	SMT - Lazy approach optimizations
	Overview of the talk
	What does dpllx need from vermell {solt }?
	A T-Solver for EUF
	A T-solver for difference logic (in $mathbb {R}$)
	A T-solver for difference logic (in $mathbb {Z}$)
	Other theories requiring case-splitting
	Our proposal: splitting on demand
	Example
	Overview of the talk
	Nelson-Oppen: combination of theories
	Nelson-Oppen: example
	Nelson-Oppen: example(2)
	Nelson-Oppen with verd {non-convex} theories
	Overview of the talk
	Conclusions

