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Introduction to SMT

Some problems are more naturally expressed in other logics
than propositional logic, e.g:

Software verification needs reasoning about equality,
arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a (ground) FO
formula with respect to a background theory T

Example ( Equality with Uninterpreted Functions – EUF ):

g(a)= c ∧ ( f (g(a)) 6= f (c) ∨ g(a)=d ) ∧ c 6=d

Wide range of applications:

Predicate abstraction

Model checking

Equivalence checking

Static analysis

Scheduling

...
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SMT - Eager approach vs lazy approach

EAGER APPROACH:

Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf SAT solver
[Bryant, Velev, Pnueli, Lahiri, Seshia, Strichman, ...]

Why “eager”? Search uses all theory information from the
beginning

Tools: UCLID [Lahiri, Seshia and Bryant]

LAZY APPROACH:

Methodology: integration of a SAT-solver with a theory solver

Why “lazy”? Theory information used lazily when checking
T-consistency of propositional models

Tools: CVC-Lite, Yices, MathSAT, TSAT+, Barcelogic ...
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SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver
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SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1
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3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver
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Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 3 ∨ 4} to SAT solver
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SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models
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SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models
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SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a
T-inconsistent subset M0 ⊆ M and add ¬M0 as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, use the conflicting clause ¬M0 to
backjump to some point where the assignment was still
T-consistent, as in SAT-solvers.

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.6/18



LPAR’06 - Phnom Penh (Cambodia)

Overview of the talk

Introduction to SMT

Eager approach

Lazy approach: Boolean engine DPLL(X) + T-solver

Inside the T-solver ⇐
What does DPLL(X) need from T-solver?

Splitting on Demand

Use of Splitting on Demand for Nelson-Oppen

Conclusions

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.6/18



LPAR’06 - Phnom Penh (Cambodia)

What does DPLL(X) need from T-Solver?

T-consistency check of a set of literals M, with:

Explain of T-inconsistency: find (small) T-inconsistent
subset of M [minimal wrt. size?, wrt. ⊆?]

Incrementality: if l is added to M, check for M l faster than
reprocessing M l from scratch.

Theory propagation: find input T-consequences of M, with:

Explain T-Propagate of l: find (small) subset of M that
T-entails l (needed in conflict analysis).

Backtrack n: undo last n literals added

PAPER FOCUSES only on T-consistency checks
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A T-Solver for EUF

Theory solvers can usually be described using inference rules

The input conjunction of literals C is saturated wrt the rules

C is unsat iff ⊥ has been derived
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A T-Solver for EUF

Theory solvers can usually be described using inference rules

The input conjunction of literals C is saturated wrt the rules

C is unsat iff ⊥ has been derived

A congruence closure algorithm (a solver for EUF) can be described
with the following rules:

Reflexitivy: Symmetry: Transitivity:

t = t
u = t
t = u

t = u u = v
t = v

Monotonicity: Contradiction:
t1 = u1 . . . tn = un

f (t1, . . . , tn) = f (u1, . . . , un)

t = u t 6= u

⊥
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A T-solver for difference logic (in R)

Atoms are of the form x ./ y + d, being x and y variables, d a real
constant and ./∈ {<,≤}, or of the form x = y + d.

Transitivity:

x ≤ z + c z ./ y + d

x ./ y + (c + d)

x < z + c z ./ y + d

x < y + (c + d)

Equality treatment:

x ≤ y + c y ≤ x − c

x = y + c

x = y + c

x ≤ y + c, y ≤ x − c

Contradiction:

x < x + c

⊥
(if c ≤ 0)

x = y + c x 6= y + c

⊥
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A T-solver for difference logic (in Z)

Consider the unsatisfiable set of literals
{1 ≤ x − y, x − y ≤ 2, x 6= y + 1, x 6= y + 2}

Saturation wrt the previous inference rules only adds
{y ≤ y + 1}.

To obtain a (refutationally) complete inference system:

Add splitting rule:

x 6= y + c

x < y + c x > y + c

Or add splitting rules of the form:

c ≤ x − y x − y ≤ (c + k)

x − y = c x − y = c + 1 . . . x − y = c + k

This may give an exponential amount of work, but problem is
NP-hard anyway.
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Other theories requiring case-splitting

T-solvers requiring internal case-splitting are common:

Theory of arrays:

read(write(A, i, v), j) = read(A, j)

i 6= j i = j , read(A, j) = v

A x y A’ v y

i j i j

Fragments of set theory:

S1 6= S2

e ∈ S1, e 6∈ S2 e 6∈ S1, e ∈ S2

This type of solvers are much more difficult to implement than
“deterministic” ones
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Our proposal: splitting on demand

INFORMALLY:

IDEA: pass theory case-splits to the DPLL engine as clauses

BENEFITS:

Split-backtrack infrastructure is not duplicated

Allow flexibility in T-reasoning (cheap computations first)
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Our proposal: splitting on demand

INFORMALLY:

IDEA: pass theory case-splits to the DPLL engine as clauses

BENEFITS:

Split-backtrack infrastructure is not duplicated

Allow flexibility in T-reasoning (cheap computations first)

FORMALLY:

Given initial state ∅ || F, consider L the finite set of all literals
that might need case splitting.

Modify T-Learn: also clauses with literals form L may be
learned.

L avoids termination problems (under certain conditions)

T-solvers complete only when all atoms in L are decided
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Example

Consider again Diff. Logic over Z and the formula:

x ≤ y + 1
︸ ︷︷ ︸

1

∧ ( x < y
︸ ︷︷ ︸

2

∨ x 6= y + 1
︸ ︷︷ ︸

3

) ∧ x 6=y
︸ ︷︷ ︸

4

∅ || 1, 2 ∨ 3, 4 ⇒ (UnitPropagate x 2)
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Example

Consider again Diff. Logic over Z and the formula:

x ≤ y + 1
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1 4 || 1, 2 ∨ 3, 4 ⇒ (T-Learn with 5 ≡ x > y)

1 4 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (Decide)

1 4 5 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (T-Propagate x 2)

1 4 5 2 3 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (Backjump)

1 4 5 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 ⇒ (UnitPropagate)

1 4 5 2 || 1, 2 ∨ 3, 4, 4 ∨ 2 ∨ 5 (Model found)
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Nelson-Oppen: combination of theories

SMT problems usually involve more than one theory:

a=b+2 ∧ A=write(B, a+1, 4) ∧ ( read(A, b+3)=2 ∨ f (a−1) 6= f (b+1) )

Combination problem:

INPUT:

Two theories T1 and T2.

A T1-solver and a T2-solver

OUTPUT:

A (T1 ∪ T2)−solver

Nelson-Oppen provides a combination procedure if:

Theories are signature disjoint

Theories are stably-infinite

LPAR’06. Splitting on Demang in SAT Modulo Theories – p.14/18



LPAR’06 - Phnom Penh (Cambodia)

Nelson-Oppen: example

Γ = { f ( f ( x ) − f ( y ) ) 6= f (z), x ≤ y, y + z ≤ x, z ≥ 0}

1. Purify literals: introduce new variables
w1 = f (x), w2 = f (y), w3 = w1 − w2

2. Now we get

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2} and
ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

3. N-O: Γ SAT in the combined theory iff exists arrangement A
(for each pair of shared variables, say whether they are equal
or distinct) such that ΓR ∧A is TR-SAT and ΓE ∧A is TE-SAT.

Ideal implementation: T-solvers exchange entailed equations until
fix point or unsatisfiability is detected by a single T-solver.
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Nelson-Oppen: example(2)

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2}

ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

Arrangement A (init. empty) is seen by both solvers:

TR-solver detects x = y is entailed (and added to A)
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Nelson-Oppen: example(2)

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2}

ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

Arrangement A (init. empty) is seen by both solvers:

TR-solver detects x = y is entailed (and added to A)

TE-solver detects w1 = w2 is entailed (and added to A)
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Nelson-Oppen: example(2)

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2}

ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

Arrangement A (init. empty) is seen by both solvers:

TR-solver detects x = y is entailed (and added to A)

TE-solver detects w1 = w2 is entailed (and added to A)

TR-solver detects z = w3 is entailed (and added to A)
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Nelson-Oppen: example(2)

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2}

ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

Arrangement A (init. empty) is seen by both solvers:

TR-solver detects x = y is entailed (and added to A)

TE-solver detects w1 = w2 is entailed (and added to A)

TR-solver detects z = w3 is entailed (and added to A)

TE-solver detects ΓE ∧A is TE-unsat
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Nelson-Oppen: example(2)

ΓR = {x ≤ y, y + z ≤ x, z ≥ 0, w3 = w1 − w2}

ΓE = { f (w3) 6= f (z), w1 = f (x), w2 = f (y)}

with shared variables {x, y, z, w1, w2, w3}.

Arrangement A (init. empty) is seen by both solvers:

TR-solver detects x = y is entailed (and added to A)

TE-solver detects w1 = w2 is entailed (and added to A)

TR-solver detects z = w3 is entailed (and added to A)

TE-solver detects ΓE ∧A is TE-unsat

But exchanging entailed equalities does not always suffice:

ΓZ = {1 ≤ x − y, x − y ≤ 2, w1 = y + 1, w2 = y + 2}

ΓE = { f (x) 6= f (w1), f (x) 6= f (w2)}

is UNSAT, but no equation is entailed.
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Nelson-Oppen with non-convex theories

Why didn’t it work with

ΓZ = {1 ≤ x − y, x − y ≤ 2, w1 = y + 1, w2 = y + 2}

ΓE = { f (x) 6= f (w1), f (x) 6= f (w2)} ?
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Nelson-Oppen with non-convex theories

Why didn’t it work with

ΓZ = {1 ≤ x − y, x − y ≤ 2, w1 = y + 1, w2 = y + 2}

ΓE = { f (x) 6= f (w1), f (x) 6= f (w2)} ?

ΓZ does not entail any equation between shared variables

But ΓZ |=T x = w1 ∨ x = w2 (non-convex theory)

For non-convex theories, DISJUNCTIONS of equalities should
be communicated. Possibilities:

Send clauses from solver to solver

Force DPLL(X) to split on equalities between shared
variables [DTC]

Send clauses from solvers to DPLL(X) only as necessary
[DTC,Splitting on Demand]
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Overview of the talk

Introduction to SMT

Eager approach

Lazy approach: Boolean engine DPLL(X) + T-solver

Inside the T-solver

What does DPLL(X) need from T-solver?

Splitting on Demand

Use of Splitting on Demand for Nelson-Oppen

Conclusions ⇐
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Conclusions

Expensive theories easily dealt with the appropriate
infrastructure

This infrastructure allows greater flexibility

Nelson-Oppen easily accommodated
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