
Abstract DPLL and Abstract
DPLL Modulo Theories

Robert Nieuwenhuis1, Albert Oliveras1, and Cesare Tinelli2

1 Technical University of Catalonia
2 The University of Iowa

Abstract DPLL and Abstract DPLL Modulo Theories – p.1/24

Overview of the talk

� Motivation: SAT and SMT

� Proposititonal case

� The Basic DPLL System

� The DPLL System

� SMT case
� Very Lazy Theory Learning

� Lazy Theory Learning

� Theory propagation

Abstract DPLL and Abstract DPLL Modulo Theories – p.2/24

Propositional satisfiability: SAT

� Deciding the satisfiability of a propositional
formula is a very important problem

� Theoretical interest: first established
NP-Complete problem, phase transition, ...

� Practical interest: applications to scheduling,
planning, logic synthesis, verification,...

� Successful procedure: DPLL + backumping
+ learning

Abstract DPLL and Abstract DPLL Modulo Theories – p.3/24

Satisfiablity Modulo Theories

� Some problems are more naturally expressed
in other logics

� Pipelined microprocessors: logic EUF,
atoms are f (g(a, b), c) = g(c, a)

� Timed automata: separation logic, atoms
are a < b + 2

� Software verification: combination of
theories, e.g. 5 + car(a + 2) = cdr(a + 1)

� Deciding the satisfiability of a (ground)
formula with respect to a background theory
has lots of applications (SMT problem)

Abstract DPLL and Abstract DPLL Modulo Theories – p.4/24

Lifting SAT to SMT

� Eager approach: obtain an equisatisfiable
propositional formula and use a SAT solver
(UCLID)

� Lazy approach: abstract the formula into a
propositional one and use a theory decision
procedure to refine it (CVC, ICS, MathSAT,
TSAT++, ...)

� DPLL(T): smarter way to use the theory
information

Abstract DPLL and Abstract DPLL Modulo Theories – p.5/24

Overview of the talk

� Motivation: SAT and SMT

� Proposititonal case

� The Basic DPLL System

� The DPLL System

� SMT case
� Very Lazy Theory Learning

� Lazy Theory Learning

� Theory propagation

Abstract DPLL and Abstract DPLL Modulo Theories – p.6/24

The Basic DPLL Procedure

� Tries to incrementally build a model M for the
CNF formula F.

� M is augmented by deciding a literal or
deducing one from M and F.

� When a wrong decision is detected, the
procedure backtracks.

We will model it with a transition system between
states:

M || F =⇒ M′ || F′

Abstract DPLL and Abstract DPLL Modulo Theories – p.7/24

The Basic DPLL System

Extending the model:

UnitProp

M || F, C ∨ l =⇒ M l || F, C ∨ l if







M |= ¬C

l is undefined in M

Decide

M || F =⇒ M ld || F if







l or ¬l occurs in F

l is undefined in M

Abstract DPLL and Abstract DPLL Modulo Theories – p.8/24

The Basic DPLL System

Repairing the model:

Fail

M || F, C =⇒ fail if







M |= ¬C

M contains no decision literals

Backjump

M ld N || F =⇒ M l′ || F if







for some clause C ∨ l′ :

F |= C ∨ l′ and M |= ¬C

l′ is undefined in M

l′ or ¬l′ occurs in F
Abstract DPLL and Abstract DPLL Modulo Theories – p.9/24

Basic DPLL System - Example

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)

1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitProp)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)

1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitProp)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitProp)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Backjump)

1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ . . .

Abstract DPLL and Abstract DPLL Modulo Theories – p.10/24

Basic DPLL System - Example

. . .

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Backjump)

1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2

In this case F |= 1∨5 we have by resolution

1∨2 6∨5∨2

1∨6∨5 5∨6

1∨5

and before deciding 3, we could have deduced 5.

Abstract DPLL and Abstract DPLL Modulo Theories – p.11/24

Basic DPLL System-Correctness

� ∅ || F =⇒! fail iff F is unsatisfiable

� ∅ || F =⇒! M || F iff F is satisfiable

Key ingredients:

� All rules decrease with respect to a
well-founded ordering between states

� When M falsifies a clause in F, either Fail or
Backjump apply.

Abstract DPLL and Abstract DPLL Modulo Theories – p.12/24

The DPLL System

Learning and forgetting clauses:

Learn

M || F =⇒ M || F, C if







all atoms of C occur in F

F |= C

Forget

M || F, C =⇒ M || F if F |= C

The DPLL system terminates if no clause is
learned/forgotten infinitely often

Abstract DPLL and Abstract DPLL Modulo Theories – p.13/24

The DPLL system - Strategies

� Applying one rule of the Basic DPLL system
between each two Learn ensures termination

� In practice, Learn is usually (but not only)
applied right after Backjump.

� A common strategy is to apply the rules using
the following priorities:

1. If there is a clause in F which is false in M
apply Fail or Backjump + Learn

2. Apply UnitProp

3. Apply Decide
Abstract DPLL and Abstract DPLL Modulo Theories – p.14/24

Overview of the talk

� Motivation: SAT and SMT

� Proposititonal case

� The Basic DPLL System

� The DPLL System

� SMT case
� Very Lazy Theory Learning

� Lazy Theory Learning

� Theory propagation

Abstract DPLL and Abstract DPLL Modulo Theories – p.15/24

Very Lazy Approach for SMT

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a))6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c6=d
︸︷︷︸

4

� SAT solver returns model [1, 2, 4]

Abstract DPLL and Abstract DPLL Modulo Theories – p.16/24

Very Lazy Approach for SMT

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a))6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c6=d
︸︷︷︸

4

� SAT solver returns model [1, 2, 4]

� Theory solver detects [1, 2] T-inconsistent

Abstract DPLL and Abstract DPLL Modulo Theories – p.16/24

Very Lazy Approach for SMT

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a))6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c6=d
︸︷︷︸

4

� SAT solver returns model [1, 2, 4]

� Theory solver detects [1, 2] T-inconsistent

� Send {1, 2∨3, 4, 1∨2} to SAT solver

Abstract DPLL and Abstract DPLL Modulo Theories – p.16/24

Very Lazy Approach for SMT

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a))6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c6=d
︸︷︷︸

4

� SAT solver returns model [1, 2, 4]

� Theory solver detects [1, 2] T-inconsistent

� Send {1, 2∨3, 4, 1∨2} to SAT solver

� SAT solver returns model [1, 2, 3, 4]

Abstract DPLL and Abstract DPLL Modulo Theories – p.16/24

Very Lazy Approach for SMT

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a))6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c6=d
︸︷︷︸

4

� SAT solver returns model [1, 2, 4]

� Theory solver detects [1, 2] T-inconsistent

� Send {1, 2∨3, 4, 1∨2} to SAT solver

� SAT solver returns model [1, 2, 3, 4]

� Theory solver detects [1, 3, 4] T-inconsistent

Abstract DPLL and Abstract DPLL Modulo Theories – p.16/24

Very Lazy Approach for SMT

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a))6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c6=d
︸︷︷︸

4

� SAT solver returns model [1, 2, 4]

� Theory solver detects [1, 2] T-inconsistent

� Send {1, 2∨3, 4, 1∨2} to SAT solver

� SAT solver returns model [1, 2, 3, 4]

� Theory solver detects [1, 3, 4] T-inconsistent

� SAT solver detects {1, 2∨3, 4, 1∨2, 1∨3∨4}
UNSATISFIABLE Abstract DPLL and Abstract DPLL Modulo Theories – p.16/24

Very Lazy Approach - Modelling

� The process within the SAT solver is modelled
using the DPLL sytem

� The interaction between the theory solver and
the SAT solver is modelled with the rule

Very Lazy Theory Learning

M l M1 || F =⇒ ∅ || F, l1 ∨ . . . ∨ ln ∨ l if







M l M1 |= F

{l1, . . . , ln} ⊆ M

l1 ∧ . . . ∧ ln |=T l

Abstract DPLL and Abstract DPLL Modulo Theories – p.17/24

Lazy approach

� Detects T-inconsistent partial models using

Lazy Theory Learning

M l M1 || F =⇒ M l M1 || F, l1 ∨ . . . ∨ ln ∨ l if







{l1, . . . , ln} ⊆ M

l1∧. . . ∧ ln |=T l

l1∨. . .∨ln∨l 6∈ F

� The learnt clause is false in M l M1 and hence
either Backjump or Fail apply

Abstract DPLL and Abstract DPLL Modulo Theories – p.18/24

Lazy approach - Strategies

� A common strategy is to apply the rules using
the following priorities:

1. If there is a clause in F which is false in M
apply Fail or Backjump + Learn

2. If the model is T-inconsistent apply
Lazy Theory Learning + (Backjump or Fail)

3. Apply UnitProp

4. Apply Decide

Abstract DPLL and Abstract DPLL Modulo Theories – p.19/24

DPLL(T) - Eager T-Propagation

� Use the theory information as soon as possible
by eagerly applying

Theory Propagate

M || F =⇒ M l || F if







M |=T l

l or l occurs in F

l is undefined in M

Abstract DPLL and Abstract DPLL Modulo Theories – p.20/24

Eager T-Propagation - Example

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a))6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c6=d
︸︷︷︸

4

∅ || 1, 2∨3, 4 =⇒ (UnitProp)

1 || 1, 2∨3, 4 =⇒ (Theory Propagate)

1 2 || 1, 2∨3, 4 =⇒ (UnitProp)

1 2 3 || 1, 2∨3, 4 =⇒ (Theory Propagate)

1 2 3 4 || 1, 2∨3, 4 =⇒ (Fail)

fail

Abstract DPLL and Abstract DPLL Modulo Theories – p.21/24

Eager Theory Propagation

� By eagerly applying Theory Propagate any M will
be T-consistent, since M1 l is T-inconsistent iff

M1 |=T l

� Therefore, Lazy Theory Learning will never apply

� For some logics, e.g. separation logic, this
approach is extremely effective

� For some other, e.g. EUF, it is too expensive to
detect all T-consequences

Abstract DPLL and Abstract DPLL Modulo Theories – p.22/24

Non-Exhaustive T-Propagation

� If Theory Propagate is not eagerly applied,
Lazy Theory Learning is needed to repair
T-inconsistent models

� The six rules of the DPLL system plus
Theory Propagate and Lazy Theory Learning provide
a decision procedure for SMT

� Termination is usually ensured this way:

� Between two Learn applications some rule of
the Basic DPLL is applied

� Apply Backjump or Fail immediately after
Lazy Theory Learning Abstract DPLL and Abstract DPLL Modulo Theories – p.23/24

Conclusions

� The DPLL procedure can be modelled in an
abstract way

� Modern features such as backjumping,
learning (also restarts) can be captured with
our transition systems

� Extensions to SMT are possible

� It allows one to describe the strategies of
concrete systems in a clean way

Abstract DPLL and Abstract DPLL Modulo Theories – p.24/24

	Overview of the talk
	Propositional satisfiability: SAT
	Satisfiablity Modulo Theories
	Lifting SAT to SMT
	Overview of the talk
	The Basic DPLL Procedure
	The Basic DPLL System
	The Basic DPLL System
	Basic DPLL System - Example
	Basic DPLL System - Example
	Basic DPLL System-Correctness
	The DPLL System
	The DPLL system - Strategies
	Overview of the talk
	Very Lazy Approach for SMT
	Very Lazy Approach - Modelling
	Lazy approach
	Lazy approach - Strategies
	DPLL(T)
- Eager T-Propagation
	Eager T-Propagation - Example
	Eager Theory Propagation
	Non-Exhaustive T-Propagation
	Conclusions

