Deciding Unbounded Heaps in an SMT Framework

Zvonimir Rakamarić1, Roberto Bruttomesso2, Alan Hu1, Alessandro Cimatti2

1University of British Columbia; 2ITC-IRST

5th International Workshop on Satisfiability Modulo Theories
July 1, 2007
Introduction

- Heap-manipulating programs (HMPs)
 - Manipulate unbounded heap structures via pointers
- Many specialized theories for verification of HMPs
 - Great for heap properties (unbounded reachability)
 - Poor handling of data (integers, reals, linear arithmetic)
 - Real code - we need both!
- SMT solvers
 - Widely used in software verification
 - Many important theories (linear arith., arrays, ...)
 - None supports a theory for HMP verification
 - Real code - we need both!
Introduction

Solution
- Integrate a heap theory into an SMT solver

Logic for HMPs
- Expressive enough logic
- Efficient decision procedure
- Only boolean data

MathSAT
- Supports many required theories
- Easy integration of new theories via Delayed Theory Combination (DTC)

Contributions
- Integration
- Experiments – it actually works (usable and efficient)
Overview

- Introduction
- Logic for HMPs
- Delayed Theory Combination (DTC)
- Experiments
- Conclusion
Overview

- Introduction
- Logic for HMPs
- Delayed Theory Combination (DTC)
- Experiments
- Conclusion
Logic for HMPs - Syntax

c ∈ Constants
x ∈ DataVariables v ∈ PointerVariables
d, d' ∈ DataFields f, f' ∈ PointerFields

NodeTerm ::= v | next(f, NodeTerm)
DataTerm ::= c | x | data(d, NodeTerm)
Atom ::= NodeTerm = NodeTerm | DataTerm = DataTerm | reach(f, NodeTerm, NodeTerm) | between(f, NodeTerm, NodeTerm, NodeTerm)

Literal ::= Atom | ~Atom |
update_pfield(f, NodeTerm, NodeTerm, f') | update_dfield(d, NodeTerm, DataTerm, d')

Formula ::= Lit. | Formula ∧ Formula | Formula ∨ Formula
Logic for HMPs

- **Theory of Data Fields**
 - \{ =, data, update_dfield \}
 - Handled by MathSAT
 - EUF + update axioms
 - Currently only boolean and integer data fields
 - Easily extendable to other MathSAT’s data types

- **Theory of Unbounded Reachability over Heaps**
 - \{ =, next, reach, between, update_pfield \}
 - Handled by the saturation based decision procedure described in previous work

- **Signatures disjoint from other MathSAT’s theories**
Theory of Unbounded Reachability

- Semantics defined over *heap structures*
 - Set of heap nodes
 - Set of pointer variables
 - Pointers to heap nodes
 - Set of pointer fields
 - Links between heap nodes
- Reachability and between atoms
- Stably-infinite
- Non-convex
Unbounded Reachability

- \(\text{reach}(f, x, y) \) – unbounded reachability (i.e. transitive closure)
 - Node \(y \) is reachable from node \(x \) following 0 or more \(f \) pointer fields
Between Atom

- \texttt{between}(f, x, y, z)
 - Node \(y\) is between nodes \(x\) and \(z\) following \(f\) pointer fields
 - Crucial for expressing necessary properties about cyclic lists

\[
\begin{array}{c}
\text{between}(f, x, y, z) \\
\text{Node } y \text{ is between nodes } x \text{ and } z \text{ following } f \text{ pointer fields} \\
\text{Crucial for expressing necessary properties about cyclic lists}
\end{array}
\]
Example

- Logic for HMPs with integer data fields and linear arithmetic over integers

Some true literals:
- next = curr
- data(d, curr) = 13
- data(d, curr) = data(d, prev) + 4
- reach(f, head, prev)

Some false literals:
- next = nil
- data(d, prev) > data(d, curr)
- reach(f, next, prev)
Example with Update

True literals:
update_pfield(f, prev, head, g)
update_pfield(g, prev, next, f)

False literals:
update_pfield(f, prev, nil, g)
Overview

- Introduction
- Logic for HMPs
 - Delayed Theory Combination (DTC)
- Experiments
- Conclusion
Delayed Theory Combination

- Uses boolean engine for communication between theory solvers
 - Eagerly introduce the set of all possible equality atoms between shared variables
 - The set contains interface equalities that theory solvers might need to exchange
 - The communication is emulated by the enumeration of all possible interface equalities
Delayed Theory Combination

- Advantages
 - Integration is implicitly handled at the boolean level and not at the solver level
 - No need to build a Nelson-Open “box” around theory solvers
 - Disjunction in case of non-convexity is automatically handled at the boolean level
 - Theory solvers don’t need deduction capabilities
Integration

- Easily accomplished because of advantages of DTC
 - Almost no changes to the decision procedure or its interface
- Data updates $\text{update_dfield}(d, t, v, d')$ are handled by adding eagerly the following set of axioms
 \[
 \{d'(t) \approx v\} \cup \{d'(s) \approx d(s) \mid s \in \text{NodeTerm}, s \neq t\}
 \]
where \approx is the equality $=$ for integer data and \leftrightarrow for boolean data.
Overview

- Introduction
- Logic for HMPs
- Delayed Theory Combination (DTC)
 - Experiments
- Conclusion
Experiments

- Tested extended MathSAT using queries generated from predicate abstraction of HMP examples
- Comparison with pure unbounded reachability decision procedure from previous work
- HMPs we couldn’t handle before
- Three sets of results
 - No data (old DP and MathSAT)
 - Boolean data (old DP and MathSAT); Integer data, difference logic (MathSAT)
 - Integer data, linear arithmetic (MathSAT)
Old DP vs. MathSAT – No Data

<table>
<thead>
<tr>
<th>Program</th>
<th>Old DP (s)</th>
<th>MathSAT (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST-REVERSE</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>LIST-ADD</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>ND-INSERT</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>ND-REMOVE</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>ZIP</td>
<td>17.3</td>
<td>27.3</td>
</tr>
<tr>
<td>CREATE-INSERT</td>
<td>14.8</td>
<td>15.6</td>
</tr>
<tr>
<td>CREATE-FREE</td>
<td>457.4</td>
<td>489.2</td>
</tr>
<tr>
<td>REMOVE-DOUBLY</td>
<td>24.3</td>
<td>33</td>
</tr>
<tr>
<td>REMOVE-CYCLIC-DOUBLY</td>
<td>15.6</td>
<td>15.7</td>
</tr>
<tr>
<td>LINUX-LIST-ADD</td>
<td>6.4</td>
<td>8.9</td>
</tr>
<tr>
<td>LINUX-LIST-ADD-TAIL</td>
<td>7.3</td>
<td>10</td>
</tr>
<tr>
<td>LINUX-LIST-DEL</td>
<td>24.7</td>
<td>25.2</td>
</tr>
</tbody>
</table>
Old DP vs. MathSAT

<table>
<thead>
<tr>
<th>Program</th>
<th>Boolean</th>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Old DP</td>
<td>MathSAT</td>
</tr>
<tr>
<td>SOR TED-Z IP</td>
<td>22.8</td>
<td>46.2</td>
</tr>
<tr>
<td>SOR TED-INSERT</td>
<td>13.8</td>
<td>25.3</td>
</tr>
<tr>
<td>BUB B LE-S ORT *</td>
<td>11.1</td>
<td>16.5</td>
</tr>
<tr>
<td>BUB B LE-S ORT *</td>
<td>114.9</td>
<td>209</td>
</tr>
<tr>
<td>REMOVE-ELEMENTS</td>
<td>8.8</td>
<td>14.9</td>
</tr>
<tr>
<td>REMOVE-SEGMENT</td>
<td>2.2</td>
<td>10</td>
</tr>
<tr>
<td>SEARCH-AND-SET</td>
<td>5.3</td>
<td>10.8</td>
</tr>
<tr>
<td>SET-UNION *</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>CREATE-INSERT-DATA</td>
<td>39.7</td>
<td>47.3</td>
</tr>
<tr>
<td>INIT-LIST</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>INIT-LIST-V AR</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>INIT-CYCLIC</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>SOR TED-INSERT-DNODES</td>
<td>77.9</td>
<td>108.1</td>
</tr>
</tbody>
</table>
New Examples

<table>
<thead>
<tr>
<th>Program</th>
<th>MathSAT (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAZY-SIMPLE</td>
<td>33.4</td>
</tr>
<tr>
<td>LAZY-SIMPLE-BACKW</td>
<td>2.2</td>
</tr>
<tr>
<td>INIT-INCREMENT</td>
<td>1.6</td>
</tr>
<tr>
<td>INIT-ADD</td>
<td>1.8</td>
</tr>
<tr>
<td>INIT-ADD-FLAG</td>
<td>1.4</td>
</tr>
<tr>
<td>INIT-MULT</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Comparison

- Reasonable performance penalty
 - Could be improved with better predicate abstraction
 - Queries are conjunctions of literals - no boolean structure
 - Large number of small queries
 - No benefit from MathSAT’s enumeration heuristics
- Completely new examples we couldn’t handle before
 - Use combination of theories
Overview

- Introduction
- Logic for HMPs
- Delayed Theory Combination (DTC)
- Experiments

Conclusion
Conclusion

- Integrated the unbounded reachability theory into MathSAT
 - First solver that supports such a theory
 - Access to a rich set of theories MathSAT supports
 - Easy because of DTC
- The integration works
 - Verified HMP examples we couldn’t handle before
 - Reasonable performance penalty
- Available at http://mathsat.itc.it
The End

Thank you!
HMP Example

1: procedure INIT-ADD-FLAG(head, val)
2: assume next*(head, t) ∧ next*(head, nil) ∧ ¬t = nil ∧ oldData = data(t) ∧ oldFlag = flag(t)
3: curr := head;
4: while ¬curr = nil do
5: if ¬flag(curr) then
6: data(curr) := data(curr) + val;
7: flag(curr) := true;
8: end if
9: curr := next(curr);
10: end while
11: assert next*(head, t) ∧ next*(head, nil) ∧ ¬t = nil ∧ flag(t) ∧ (oldFlag ∨ data(t) = oldData + val)
12: end procedure
MathSAT Query Example 1

VAR curr, t : H_NODE
VAR tmpi : INTEGER
CONST d

FORMULA data_int(t,d)=tmpi+2 &
 data_int(curr,d)=tmpi+5 & curr=t
MathSAT Query Example 2

VAR nil, curr, t, head : H_NODE
VAR tmpd : BOOLEAN
VAR tmpi, tmpi1 : INTEGER
CONST f
CONST d, d1

FORMULA nil=curr & data_bool(curr,d1) &
 tmpi1=data_int(t,d) & (tmpd<->data_bool(t,d1)) &
 star(head,t,f) & star(head,nil,f) & ~t=nil &
data_int(t,d)=tmpi1+tmpi & data_bool(t,d1) &
~tmpd
MathSAT Query Example 3

VAR x, curr, t, nil : H_NODE
VAR _true : BOOLEAN
CONST f, d, dp

FORMULA UPDATED_INT(x,10,d,dp)
FORMULA x=curr & curr=next(x,f) & star(x,t,f) & star(next(x,f),x,f) & _true & between(curr,t,x,f) & ~x=nil & between(x,t,curr,f) & star(t,curr,f) & t=x & data_int(t,dp)=10
Basic IRs

- IDENT: $x = x$
- REFLEX: $f^*(x, x)$
- TRANS1: $f(x) = y \Rightarrow f^*(x, y)$
- TRANS2: $f^*(x, y) \cdot f^*(y, z) \Rightarrow f^*(x, z)$
- FUNC: $x = z \Rightarrow f^*(y, z)$
- CYCLE$_k$: $f(x_k) = x_1 \Rightarrow f^*(x_k, y)$
- SCC: $f^*(x, y) \cdot f^*(y, x) \cdot f^*(z, x)$
- SHARE: $f(x) = z \Rightarrow f^*(x, y)$
- TOTAL: $f^*(x, y)$
- NOTEQNODES: $d(x) \Rightarrow \neg d(y)$
Between IRs

<table>
<thead>
<tr>
<th>BTW1</th>
<th>BTW2</th>
<th>BTW3</th>
<th>BTW4</th>
<th>BTW5</th>
<th>BTW6</th>
<th>BTW7</th>
<th>BTW8</th>
<th>BTW9</th>
<th>BTW10</th>
<th>BTW11</th>
<th>BTW12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f^(x, y)) (f^(y, z)) (f(z) = x) (\text{btwn}_f(x, y, z))</td>
<td>(f^*(x, y)) (\text{btwn}_f(x, y, z))</td>
<td>(f(x) = w) (\text{btwn}_f(x, y, z)) (x = y)</td>
<td>(\text{btwn}_f(x, y, z)) (\text{btwn}_f(x, z, y)) (y = z)</td>
<td>(f^(x, y)) (f^(y, z)) (f^*(z, x))</td>
<td>(\text{btwn}_f(x, y, z)) (\text{btwn}_f(x, z, y)) (y = z)</td>
<td>(\text{btwn}_f(x, y, z)) (\text{btwn}_f(x, z, y)) (x = y) (x = z) (y = z)</td>
<td>(\text{btwn}_f(x, y, z)) (f(x) = z) (y = x) (y = z)</td>
<td>(f(z) = w) (\text{btwn}_f(x, y, w)) (f^*(x, z)) (y = w)</td>
<td>(\text{btwn}_f(x, y, z)) (f^*(x, w)) (y = z)</td>
<td>(\text{btwn}_f(x, y, z)) (\text{btwn}_f(x, w, z)) (f^*(x, w)) (y = z)</td>
<td>(\text{btwn}_f(v, x, z)) (\text{btwn}_f(v, u, x)) (\text{btwn}_f(u, x, y))</td>
</tr>
</tbody>
</table>
Typical loop invariant
- Node x between head and iter has $\text{data}(d, x) = \text{true}$

For cyclic lists the invariant can’t be expressed using previous logic (i.e. using reach)
- $\text{reach}(f, \text{head}, x) \land \text{reach}(f, x, \text{iter})$ doesn’t mean that x is between head and iter

$\text{between}(f, \text{head}, x, \text{iter})$ solves the problem