E-matching for Fun and Profit

Michał Moskal, Jakub Łopuszański, Joseph R. Kiniry

University of Wrocław, Poland
University College, Dublin, Ireland

SMT Workshop, Berlin
July 1st, A.D. 0x7D7
Instantiation

Let’s take the formula:

\[P(f(42)) \land \forall x. (P(f(x)) \Rightarrow x < 0) \]
Instantiation

Let's take the formula:

$$P(f(42)) \land \forall x. (P(f(x)) \Rightarrow x < 0)$$

Once the solver figures out the implication:

$$\forall x. (P(f(x)) \Rightarrow x < 0)) \Rightarrow (P(f(42)) \Rightarrow 42 < 0)$$
Let's take the formula:

\[P(f(42)) \land \forall x. (P(f(x)) \Rightarrow x < 0) \]

Once the solver figures out the implication:

\[(\forall x. (P(f(x)) \Rightarrow x < 0)) \Rightarrow (P(f(42)) \Rightarrow 42 < 0) \]

it can deduce the query to be unsatisfiable using only ground reasoning.
Let’s take the formula:

\[
P(f(42)) \land \forall x. (P(f(x)) \Rightarrow x < 0)
\]

Once the solver figures out the implication:

\[
(\forall x. (P(f(x)) \Rightarrow x < 0)) \Rightarrow (P(f(42)) \Rightarrow 42 < 0)
\]

it can deduce the query to be unsatisfiable using only ground reasoning.

How do we figure the correct instantiation out?
Triggers (an idea borrowed from Simplify)

- triggers are subterms present in the quantified formula, which can be automatically generated, or come with the input
- we only consider instances, for which the trigger after substitution is present somewhere in the model returned by the SAT solver
Triggers (an idea borrowed from Simplify)

- triggers are subterms present in the quantified formula, which can be automatically generated, or come with the input
- we only consider instances, for which the trigger after substitution is present somewhere in the model returned by the SAT solver
- for example if we have a formula

\[\psi \equiv \forall x, y. \ F(x, y) \Rightarrow g(x) = h(y) \]

for which \(F(x, y) \) is a trigger and the current model returned by the SAT solver is:

\[\psi \land F(1, c) \land g(7) = h(c) \]

we only consider instance where \(x \rightarrow 1, y \rightarrow c \), because \(F(1, c) \) is present in the monome.
E–matching

- this picture with the triggers is slightly more involved, because we are interested in the trigger being present in the monome up to equivalence
- for example trigger $F(x, c)$ does not syntactically match in $F(1, d) \land c = d$, but we would like it to
E-matching: definition

Input
- a finite set \mathcal{A} of active ground terms,
- a relation $\equiv_g \subseteq \mathcal{A} \times \mathcal{A}$,
- a finite set of non-variable, non-constant triggers p_1, \ldots, p_n.

Definitions
- let $\equiv \subseteq \mathcal{T} \times \mathcal{T}$ be the smallest congruence relation containing \equiv_g,
- let $\text{root}(t)$ denote a canonical representative of equivalence class containing t.

The solution to the E-matching problem is the set:

$$
\mathcal{T} = \left\{ \sigma \mid \exists t_1, \ldots, t_n \in \mathcal{A}. \sigma(p_1) \equiv t_1 \land \cdots \land \sigma(p_n) \equiv t_n, \forall x \in \mathcal{V}. \sigma(x) = \text{root}(\sigma(x)) \right\}
$$
E-matching: complexity

- the problem of checking if $T \neq \emptyset$ for a fixed A and \simeq_g is NP-hard
- there can be exponential number of instances of a trigger
E-matching: complexity

- the problem of checking if $T \neq \emptyset$ for a fixed \mathcal{A} and \simeq_g is NP-hard
- there can be exponential number of instances of a trigger
- the practical problem is, however, that there are often millions of matching problems to solve during solving of a single SMT query
Simplify’s matcher example
fun simplify_match([p₁, . . . , pₙ])
 R := ∅
 proc match(σ, j)
 if j = nil then R := R ∪ {σ}
 else case hd(j) of
 (c, t) ⇒ /* 1 */
 if c ≡ t then match(σ, tl(j))
 else skip
 (x, t) ⇒ /* 2 */
 if σ(x) = x then match(σ[x := root(t)], tl(j))
 else if σ(x) = root(t) then match(σ, tl(j))
 else skip
 (f(p₁, . . . , pₙ), t) ⇒ /* 3 */
 foreach f(t₁, . . . , tₙ) in A do
 if t = * ∨ root(f(t₁, . . . , tₙ)) = t then
 match(σ, (p₁, root(t₁)) :: · · · :: (pₙ, root(tₙ)) :: tl(j))
 match([], (p₁, *) :: · · · :: (pₙ, *) :: nil) /* 4 */
 return R
S-tree sum

E-matching for Fun and Profit
Michał Moskal, Jakub Łopuszański, Joseph R. Kiniry

Problem
E-matching
Simplify's matcher
Subtrigger matcher
S-trees
The matcher
Flat matcher
Implementation
Wrapping up
E-matching for Fun and Profit
Michał Moskal, Jakub Łopuszański, Joseph R. Kiniry

Problem
E-matching
Simplify's matcher
Subtrigger matcher
S-trees
The matcher
Flat matcher
Implementation
Wrapping up

S-tree merge
h(g(x),x) ->

Subtrigger matcher example, part I
Subtrigger matcher example, part II

\[h(g(x), x) \rightarrow \]
\[g(x) \rightarrow \]

```
\text{e:} \quad \text{g(c):}
```

```
\text{f} \quad \text{d}
```

```
\text{x}
```

```
\text{c}
```

```
\text{e} \quad \text{g(f)}
```

```
\text{h(e,f)}
```

```
\text{g(d)}
```

```
\text{h(g(c),d)}
```

```
\text{d}
```

```
\text{g(c)}
```

```
\text{f}
```

```
\text{c}
```
Subtrigger matcher example, part III

\[h(g(x),x) \rightarrow g(x) \rightarrow \]

\[e: \]
\[g(c): \]
\[h(e, f): \]
\[h(g(c), d): \]
Subtrigger matcher example, part IV

$h(g(x), x) \Rightarrow g(x) \Rightarrow$

h(e, f):

h(g(c), d):

h(g(c), d):

h(g(c), d):
fun *fetch*(S, t, p)
 if S = ⊤ then return {[p := root(t)]}
 else if S = × ∧ t ≡ p then return {}
 else if S = × then return ∅
 else return S(root(t))

fun *match*(p)
 case p of
 x ⇒ return ⊤
 c ⇒ return ×
 f(p₁, . . . , pₙ) ⇒
 foreach i in 1 . . . n do Sᵢ = match(pᵢ) /* 1 */
 if ∃i. Sᵢ = ⊥ then return ⊥ /* 2 */
 if ∀i. Sᵢ = × then return × /* 3 */
 S := {t ↦ ∅ | t ∈ A}
 foreach f(t₁, . . . , tₙ) in A do /* 4 */
 t := root(f(t₁, . . . , tₙ))
 S := S[t ↦ S(t) ⊔ (*fetch*(S₁, t₁, p₁) ∩ . . . ∩ *fetch*(Sₙ, tₙ, pₙ))]
 if ∀t. S(t) = ⊥ then return ⊥
 else return S
Subtrigger matcher, cont.

```
fun topmatch(p) /* 5 */
S := match(p)
return ⋃_{t ∈ A} S(t)

fun subtrigger_match([p_1, ..., p_n])
return topmatch(p_1) △ ... △ topmatch(p_n)
```
Even simpler triggers

- even this algorithm was taking up a lot of time, mainly because the loop over all terms with given head is performed for each trigger
Even simpler triggers

- even this algorithm was taking up a lot of time, mainly because the loop over all terms with given head is performed for each trigger
- but it seems that a lot (most?) of the triggers are even simpler – they have variables only at depth one: \(f(X, Y) \), \(f(c, X) \), \(f(X, c, Y, g(g(d))), Z \)
- this means one can put all such flat triggers with head \(f \) in an indexing tree and match them all at once during one loop over terms with head \(f \)
Flat trigger index

\[g(\ast, c) \quad g(\ast, \ast) \quad g(c, \ast) \quad g(\ast, f(d)) \]
Let’s match something!

$g(e,c)$, where $e=c$

$$g(*,c) \quad g(*,*) \quad g(c,*) \quad g(*,f(d))$$
E-matching for Fun and Profit
Michał Moskal, Jakub Łopuszański, Joseph R. Kiniry

Problem
E–matching
Simplify’s matcher
Subtrigger matcher
S-trees
The matcher
Flat matcher
Implementation
Wrapping up

At the root

\[g(e, c), \text{ where } e = c \]

\[g(*, c) \quad g(*, *) \quad g(c, *) \quad g(*, f(d)) \]
g(e, c), where e = c

\[g(\ast, c) \quad g(\ast, \ast) \quad g(c, \ast) \quad g(\ast, f(d)) \]
g(e,c), where e=c

\[g(\ast, c) \quad g(\ast, \ast) \quad g(c, \ast) \quad g(\ast, f(d)) \]
Memoization

- maximal sharing in terms and s-trees
- \sqcup, \sqcap memoize results
- s-tree subtraction to remove previously returned results
- mapping of all the variables to \ast, to maximize sharing in subtrigger matcher
- mixed effects with mod-$time$
consider trigger: \(f(g_1(x_1), \ldots, g_n(x_n)) \)
- \(g_1(x_1) \) through \(g_{n-1}(x_{n-1}) \) return two matches each
- \(g_n(x_n) \) does not match anything
Explanation

- consider trigger: $f(g_1(x_1), \ldots, g_n(x_n))$
- $g_1(x_1)$ through $g_{n-1}(x_{n-1})$ return two matches each
- $g_n(x_n)$ does not match anything
- Simplify’s matcher: $O(2^n)$ steps, subtrigger matcher: $O(n)$ steps
consider trigger: \(f(g_1(x_1), \ldots, g_n(x_n)) \)

- \(g_1(x_1) \) through \(g_{n-1}(x_{n-1}) \) return two matches each
- \(g_n(x_n) \) does not match anything

- Simplify’s matcher: \(O(2^n) \) steps, subtrigger matcher: \(O(n) \) steps
- even if \(g_n(x_n) \) matches something, subtrigger will still do \(O(n) \) steps to match, and only \(O(2^n) \) much cheaper steps to walk s-tree