Encoding First Order Proofs in SMT

Jeremy Bongio, Cyrus Katrak, Hai Lin, Christopher Lynch, Eric McGregor and Yuefeng Tang
Contents

• First Order Tableau
• Encoding Tableau with SAT
• Encoding Tableau with SMT
• Experimental Results
• Related and Future Work
Rigid Unsatisfiability

• Given set of clauses S, is there substitution σ such that $S\sigma$ is unsat?

• Example 1:

 $S = \{P(a), \sim P(x) \lor Q(f(x)), \sim Q(y)\}$

• Unsat: Let $\sigma = [x \mapsto a, y \mapsto f(a)]$
Examples of Rigid SAT

• Example 2:
 \[S = \{ P(x), \ \sim P(a) \land \sim P(b) \} \]

• Example 3:
 \[S = \{ P(a), \ \sim P(x) \lor P(f(x)), \ \sim P(f(f(a))) \} \]

• Both of these are Unsat but not Rigid Unsat
Why Rigid Unsat

• Could be used to solve Unsat
 – Keep adding new variants of clauses

• Also useful for Protocol Verification
 – Rigid Variables used to bound number of sessions
Complexity of Rigid Unsat

- Rigid Unsat is Σ_2^p-complete
- Rigid Horn Unsat is NP-complete

- Suggests that Rigid Horn Unsat can be encoded by SAT, but Rigid Unsat cannot be encoded directly
 - So first we consider encoding of Horn
How to encode Rigid Unsat

• We could encode existence of resolution proof [PL encode Prop Unsat as sequence of n clauses]

• Instead we encode existence of tableau
 – Encoding is more direct
 – Fewer permutations of tableau
 – Don’t know if [PL] can be extended to FO
Tableau for Rigid Horn UNSAT

\[\neg Q(y) \]

\[\neg P(x) \quad Q(f(x)) \]

\[y = f(x) \]

\[x = a \]

\[P(a) \]
Rules for Horn Tableau

• Start with negative clause
• Each negated literal extended with some clause containing complementary literal
• L is extended with C by adding edge from L to every literal in C
Rules for Horn Tableau

• Start with negative clause
• Each negated literal extended with some clause containing complementary literal
• \(L \) is extended with \(C \) by adding edge from \(L \) to every literal in \(C \)
• Unifications must be consistent
Rules for Horn Tableau

• Start with negative clause
• Each negated literal extended with some clause containing complementary literal
• L is extended with C by adding edge from L to every literal in C
• Unifications must be consistent
• Tableau must be finite – no cycles
Preparing for SAT encoding

• Enumerate clauses:
 \[C_1, \ldots, C_n \]

• Enumerate negative literals of \(C_i \):
 \[L_{i1}, \ldots, L_{im} \]
Prop. Variables used in encoding

- c_i: C_i in tableau
- l_{ij}: L_{ij} in tableau
- e_{ijk}: L_{ij} extended with clause C_k
- $u_{x=t}$: $x=t$ is implied by unifiers
- p_{ik}: there is a path from C_i to C_k
Clauses in SAT encoding

- $\lor \{c_i \mid C_i \text{ is negative clause}\}$
- $c_i \rightarrow l_{ij}$
- $l_{ij} \rightarrow \lor \{e_{ijk} \mid L_{ij} \text{ is complementary to positive literal in } C_k\}$
- $e_{ijk} \rightarrow c_k$
- $e_{ijk} \rightarrow u_{x=t}$ if $x=t$ used in unifier of that ext.
- $e_{ijk} \rightarrow p_{ik}$
More clauses in SAT encoding

• So far encoding is quadratic in number of literals
• But we have not yet encoded finiteness of tableau or consistency of unifiers
 – They will be cubic
Finiteness of Tableau

- $p_{ij} \land p_{jk} \rightarrow p_{ik}$
- $\neg p_{ii}$
- Transitivity is cubic in number of clauses
Consistency of Unifiers

- Propagate assignments and detect \bot
- $u_{x=f(y)} \land u_{x=f(a)} \rightarrow u_{y=a}$
- $\neg u_{x=a} \lor \neg u_{x=b}$

- Cubic and also approximate
 - No occurs check
Problem

- Our implementation (based on Minisat) worked well sometimes but not always
- Basic encoding is quadratic
- But encoding of finiteness and unification is cubic
- Solution: Use SMT
 - Theories encode finiteness and unification
Idea

- Quadratic time is building tableau and making choices
- Cubic time is deterministic verification of global properties
- SMT solves NP-complete problems
 - Construct witness using local properties (SAT)
 - Verify correctness of global properties (theory)
Finiteness of Tableau

• x_i is rational number
• $e_{ijk} \rightarrow x_i < x_j$
• If C_i appears above C_j then $x_i < x_j$
• Don’t need to encode transitivity
• Yices decides it using linear rational arith.
 – Actually, simple difference equations
Representing Unification

- Yices allows inductive datatypes
- Terms represented by inductive datatypes
- Function, predicate symbol is constructor
- FO variables are instances of terms
- Unification is equality of two terms
- Finiteness and Unification no longer encoded by SAT
Implementation

- SAT encoding
 - Solved by Minisat
 - Solved by Yices
- SMT encoding
 - Solved by Yices
ChewTPTP

• We tested our implementation on TPTP (Thousands of Problems for Theorem Provers)

• Our implementation is called ChewTPTP (Chris Hai Eric Wenjin Todd and Patty Theorem Prover)
Experimental Times

<table>
<thead>
<tr>
<th>Problem</th>
<th>SAT-M</th>
<th>SAT-Y</th>
<th>SMT-Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLP108-1</td>
<td>2.94</td>
<td>1.94</td>
<td>0.07</td>
</tr>
<tr>
<td>RNG001-5</td>
<td>6.93</td>
<td>5.32</td>
<td>0.84</td>
</tr>
<tr>
<td>SWV017-1</td>
<td>10.82</td>
<td>11.27</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Number of Clauses

<table>
<thead>
<tr>
<th>Problem</th>
<th>SAT</th>
<th>SMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLP108-1</td>
<td>134,667</td>
<td>287</td>
</tr>
<tr>
<td>RNG001-5</td>
<td>258,888</td>
<td>1527</td>
</tr>
<tr>
<td>SWV017-1</td>
<td>625,119</td>
<td>1137</td>
</tr>
</tbody>
</table>
Analysis

• Number of Clauses/Variables reduced by factor of more than thousand

• Runs much faster (mostly due to time generating clauses)

• Yices slightly faster than Minisat
NonHorn clause tableau
Encoding of nonHorn tableau

- nonHorn encoding like Horn encoding
- Except that we must encode existence of complementary ancestor literal that is not parent node
- This is similar to earlier encoding of acyclicity, so cubic in size
- So SMT encoding remains cubic
Another encoding difference

• In tableau, literal may appear twice but closed with different literal each time
• This requires successive encodings with more copies of each clause
• Not surprising since Rigid Unsatisfiability is Σ_2^p-complete
Experimental Times

<table>
<thead>
<tr>
<th>Problem</th>
<th>SAT-M</th>
<th>SAT-Y</th>
<th>SMT-Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>ALG002-1</td>
<td>43.51</td>
<td>64.92</td>
<td>75.33</td>
</tr>
<tr>
<td>ANA004-5</td>
<td>47.25</td>
<td>21.5</td>
<td>83.54</td>
</tr>
<tr>
<td>COM003-2</td>
<td>88.72</td>
<td>84.54</td>
<td>168.1</td>
</tr>
</tbody>
</table>
Number of Clauses

<table>
<thead>
<tr>
<th>Problem</th>
<th>SAT</th>
<th>SMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>ALG002-1</td>
<td>54,559</td>
<td>32,731</td>
</tr>
<tr>
<td>ANA004-5</td>
<td>101,166</td>
<td>44,953</td>
</tr>
<tr>
<td>COM003-2</td>
<td>2,920,669</td>
<td>2,365,922</td>
</tr>
</tbody>
</table>
Analysis

- Number of Clauses/Variables reduced by factor of less than one half
- Runs slower
Conclusions

• We encoded first order theorem proving first in SAT and then in SMT
• SAT part builds constructs (tableau) according to local properties
• Theory part verifies global properties
• Horn case: SMT is faster due to reduction in size from $O(n^3)$ to $O(n^2)$
• NonHorn case: worse, remains $O(n^3)$
Future Work

• Add theory to make nonHorn case $O(n^2)$
• Determine nonRigid satisfisibility
• Can our method be used to add quantifiers to SMT
• Better understand when to use SMT encoding