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Abstract. In this paper we present new methods for deciding the satisfiability of
formulas involving integer polynomial constraints. In previous work we proposed
to solve SMT(NIA) problems by reducing them to SMT(LIA): non-linear mono-
mials are linearized by abstracting them with fresh variables and by performing
case splitting on integer variables with finite domain. Whenvariables do not have
finite domains, artificial ones can be introduced by imposinga lower and an up-
per bound, and made iteratively larger until a solution is found (or the procedure
times out). For the approach to be practical, unsatisfiable cores are used to guide
which domains have to be relaxed (i.e., enlarged) from one iteration to the fol-
lowing one. However, it is not clear then how large they have to be made, which
is critical.
Here we propose to guide the domain relaxation step by analyzing minimal mod-
els produced by the SMT(LIA) solver. Namely, we consider twodifferent cost
functions: the number of violated artificial domain bounds,and the distance with
respect to the artificial domains. We compare these approaches with other tech-
niques on benchmarks coming from constraint-based programanalysis and show
the potential of the method. Finally, we describe how one of these minimal-
model-guided techniques can be smoothly adapted to deal with the extension
Max-SMT of SMT(NIA) and then applied to program terminationproving.

1 Introduction

Polynomial constraints are ubiquitous. They arise naturally in many contexts, ranging
from the analysis, verification and synthesis of software and cyber-physical systems [1–
5] to, e.g., game theory [6]. In all these cases, it is critical to have efficient automatic
solvers that, given a formula involving polynomial constraints with integer or real vari-
ables, either return a solution or report that the formula isunsatisfiable.

However, solving this kind of formulas has been a challenging problem since the
early beginnings of mathematics. A landmark result is due toTarski [7], who construc-
tively proved that the problem is decidable for the first-order theory of real closed fields,
in particular if variables are reals. Still, the algorithm in the proof has no use in practice
as it has non-elementary complexity. More feasible procedures for solving polynomial
constraints on the reals are based on cylindrical algebraicdecomposition (CAD) [8, 9].
However, their applicability is limited, as their complexity is still doubly exponential.

With the breakthrough of SAT and SMT solving [10, 11], numerous techniques
and tools have been developed which exploit the efficiency and automaticity of this
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technology. Many of these approaches for solving polynomial constraints on the reals
are numerically-driven. E.g., in [12] interval constraintpropagation is integrated with
SMT(LRA) solving. In [13], non-linear formulas are pre-processed and then fed to an
off-the-shelf SMT(LRA) solver. Other works for instance integrate interval-based arith-
metic constraint solving in the SAT engine [14], combine interval arithmetic and testing
[15], or focus on particular kinds of constraints like convex constraints [16]. In order to
address the ever-present concern that numerical errors canresult in incorrect answers in
these methods, it has been proposed to relax constraints andconsiderδ-complete deci-
sion procedures [17, 18]. As opposed to numerically-drivenapproaches, recently sym-
bolic CAD-based techniques have been successfully integrated in a model-constructing
DPLL(T)-style procedure [19, 20], and several libraries and toolboxes have been made
publicly available for the development of symbolically-driven solvers [21, 22].

On the other hand, when variables must take integer values, even the problem of
solving a single polynomial equation is undecidable (Hilbert’s 10th problem, [23]). In
spite of this theoretical limitation, and similarly to the real case, several methods that
take advantage of the advancements in SAT and SMT solving have been proposed for
solving integer polynomial constraints. The common idea ofthese methods is to reduce
instances of integer non-linear arithmetic into problems of a simpler language that can
be directly handled by existing SAT/SMT tools, e.g., propositional logic [24], linear
bit-vector arithmetic [25], or linear integer arithmetic [26]. All these approaches are
satisfiability-oriented, which makes them more convenientin contexts in which finding
solutions is more relevant than proving that none exists (e.g., in invariant generation
[27]).

In this paper we build upon our previous method [26] for deciding the satisfiability
of formulas involving integer polynomial constraints. In that work, non-linear mono-
mials are linearized by abstracting them with fresh variables and by performing case
splitting on integer variables with finite domain. In the case in which variables do not
have finite domains,artificial ones are introduced by imposing a lower and an upper
bound, and made iteratively larger until a solution is found(or the procedure times out).
For the approach to be useful in practice, unsatisfiable cores are employed to guide
which bounds have to be relaxed (i.e., enlarged) from one iteration to the following
one. However, one of the shortcomings of the approach is thatunsatisfiable cores pro-
vide no hint on how large the new bounds have to be made. This iscritical, since the
size of the new formula (and hence the time required to determine its satisfiability) can
increase significantly depending on the number of new cases that must be added.

The contributions of this paper are twofold:

1. We propose heuristics for guiding the domain relaxation step by means of the anal-
ysis of minimal models generated by the SMT(LIA) solver. More specifically, we
consider two different cost functions: first, the number of violated artificial do-
main bounds, which leads toMaximum Satisfiability Modulo Theories(Max-SMT,
[28, 29]) problems; and second, the distance with respect tothe artificial domains,
which boils down toOptimization Modulo Theories(OMT, [30, 31]) problems. The
results of comparing these approaches with other techniques show the potential of
the method.

2. We extend the first of these approaches to handle problems in Max-SMT(NIA).
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This paper is structured as follows. Section 2 reviews basicbackground on SMT,
Max-SMT and OMT, and also on our previous approach in [26]. InSection 3 two
different heuristics for guiding the domain relaxation step areproposed, together with
an experimental evaluation. Then Section 4 presents the extension of the technique from
SMT(NIA) to Max-SMT(NIA). Finally, Section 5 summarizes the conclusions of this
work and sketches lines for future research.

2 Preliminaries

2.1 SMT, Max-SMT and OMT

LetP be a fixed finite set ofpropositional variables. If p ∈ P, thenp and¬p areliterals.
Thenegationof a literal l, written¬l, denotes¬p if l is p, andp if l is ¬p. A clause
is a disjunction of literalsl1 ∨ · · · ∨ ln. A (CNF) propositional formulais a conjunction
of clausesC1 ∧ · · · ∧Cn. The problem ofpropositional satisfiability(abbreviated SAT)
consists in, given a propositional formula, to determine whether it issatisfiable, i.e., if
it has amodel: an assignment of Boolean values to variables that satisfiesthe formula.

A generalization of SAT is thesatisfiability modulo theories (SMT)problem: to
decide the satisfiability of a given quantifier-free first-order formula with respect to a
background theory. In this setting, a model (which we may also refer to as asolution)
is an assignment of values from the theory to variables that satisfies the formula. Here
we will focus on integer variables and the theories oflinear integer arithmetic (LIA),
where literals are linear inequalities, and the more general theory ofnon-linear integer
arithmetic (NIA), where literals are polynomial inequalities.1

Another generalization of SAT isMax-SAT, which extends the problem by ask-
ing for more information when the formula turns out to be unsatisfiable: namely, the
Max-SAT problem consists in, given a formulaF , to find an assignment such that the
number of satisfied clauses inF is maximized, or equivalently, that the number of fal-
sified clauses is minimized. This problem can in turn be generalized in a number of
ways. For example, inweighted Max-SATeach clauseCi of F has aweightωi (a pos-
itive natural or real number), and then the goal is to find the assignment such that the
cost, i.e., the sum of the weights of the falsified clauses, is minimized. Yet a further ex-
tension of Max-SAT is thepartial weighted Max-SATproblem, where clauses inF are
either weighted clauses as explained above, calledsoft clausesin this setting, or clauses
without weights, calledhard clauses. In this case, the problem consists in finding the
model of the hard clauses such that the sum of the weights of the falsified soft clauses
is minimized. Equivalently, hard clauses can also be seen assoft clauses with infinite
weight.

The problem ofMax-SMTmerges Max-SAT and SMT, and is defined from SMT
analogously to how Max-SAT is derived from SAT. Namely, theMax-SMTproblem
consists in, given a set of pairs{[C1, ω1], . . . , [Cm, ωm]}, where eachCi is a clause and
ωi is its weight (a positive number or infinity), to find a model that minimizes the sum
of the weights of the falsified clauses in the background theory.

1 In some classes of formulas of practical interest, real variables can also be handled by our
methods. See Section 2.2 for details.
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Finally, the problem ofOptimization Modulo Theories (OMT)is similar to Max-
SMT in that they are both optimization problems, rather thandecision problems. It
consists in, given a formulaF involving a particular variable calledcost, to find the
model ofF such that the value assigned tocostis minimized. Note that this framework
allows one to express a wide variety of optimization problems (maximization, piecewise
linear functions, etc.).

2.2 Solving SMT(NIA) with Unsatisfiable Cores

In [26], we proposed a method for solving SMT(NIA) problems based on encoding
them into SMT(LIA). The basic idea is to linearize each non-linear monomial in the
formula by applying a case analysis on the possible values ofsome of its variables.
For example, if the monomialx2yzappears in the input SMT(NIA) formula andx must
satisfy 0 ≤ x ≤ 2, we can introduce a fresh variablevx2yz, replace the occurrences
of x2yz by vx2yz and add to the clause set the following threecase splitting clauses:
x = 0 → vx2yz = 0, x = 1 → vx2yz = yzandx = 2 → vx2yz = 4yz. In turn, new non-
linear monomials may appear, e.g.,yz in this example. All non-linear monomials are
handled in the same way until a formula in SMT(LIA) is obtained, for which efficient
decision procedures exist [32].

Note that, in order to linearize a non-linear monomial, there must be at least one
variable in it which is both lower and upper bounded. When this property does not
hold, newartificial bounds can be introduced for the variables that require them. In
principle, this implies that the procedure is no longer complete, since a linearized for-
mula with artificial bounds may be unsatisfiable while the original SMT(NIA) formula
is actually satisfiable. A way to overcome this problem is to proceed iteratively: vari-
ables start with bounds that make the size of their domains small, and then the domains
are enlarged on demand if necessary, i.e., if the formula turns out to be unsatisfiable.
The decision of which bounds are to be relaxed is heuristically taken based on the anal-
ysis of anunsatisfiable core(an unsatisfiable subset of the clause set) that is obtained
when the solver reports unsatisfiability (for an account of techniques for computing un-
satisfiable cores, see [33]). Note that the method tellswhichbounds should be enlarged,
but does not provide any guidance in regard tohow largethe new bounds should be.
This is critical, as the size of the formula in the next iteration (and so the time needed
to determine its satisfiability) can grow significantly depending on the number of new
case splitting clauses that have to be added.

Altogether, the overall algorithm in [26] for solving a given formula in
SMT(NIA) is as follows (see Figure 1). First, the needed artificial bounds are added
(procedureinitial bounds) and the linearized formula (procedurelinearize) is passed
to an SMT(LIA) solver (proceduresolveLIA). If the solver returnsSAT, we are done.
If the solver returnsUNSAT, then an unsatisfiable core is computed. If this core does
not contain any of the artificial bounds, then the original non-linear formula must be
unsatisfiable, and again we are done. Otherwise, at least oneof the artificial bounds
appearing in the core must be chosen for relaxation (procedure relax domains). Once
the domains are enlarged and the formula is updated (procedure update), the new lin-
earized formula is tested for satisfiability, and the process is repeated (typically, while
a prefixed time limit is not exceeded).
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status solveNIA(FormulaF0) {
b = initial bounds(F0); // enough artificial bounds to linearizeF0

F = linearize(F0, b);
while (not timedout ()) {
〈st, core〉 = solveLIA(F ); // core computed here to ease presentation
if (st== SAT) return SAT;
else if (b∩ core== ∅) return UNSAT;
else {

b = relax domains(b, core); // at least one in the intersection is relaxed
F = update(F , b); // add new bounds and case splitting clauses

} }

return UNKNOWN;
}

Fig. 1. Algorithm in [26] based on unsatisfiable cores

Finally, notice that the assumption that all variables should have integer type can
be weakened, since it suffices that there areenoughfinite domain variables to perform
the linearization. For example, this can be exploited in ourSMT problems coming from
constraint-based program analysis [27, 34]. Those formulas are produced by applying
Farkas’ Lemma [35], and therefore only quadratic monomialsof the formλ · u appear.
Although in principle bothλ andu are real unknowns, in the context of invariant and
ranking function generation it is reasonable to assume thatu should be integer. Hence,
by case splitting onu one can linearize the monomial and does not need to forceλ

to take integer values. Moreover, when analyzing programs with integer variables, one
often needs to be able to reason taking into account the integrality of the variables. In
this situation integer versions of Farkas’ Lemma [36] can beused, which when applied
in the context of, e.g., invariant generation, require again the unknownsu to be inZ.

3 Domain Relaxation with Minimal Models

Taking into account the limitations of the method based on cores when domains have to
be enlarged, in this section we propose a model-guided approach to perform this step.
The idea is to replace the satisfiability check in linear arithmetic with an optimization
call, so that the best model found by the linear solver can be used as a reference for
relaxing bounds (e.g., by extending the domains up to the value in that best model for
those bounds that have to be relaxed).

Thus, the high-level algorithm we propose for solving a given formula in SMT(NIA)
is shown in Figure 2 (cf. Figure 1). Here the SMT(LIA) black box does not just decide
satisfiability, but finds the minimum model of the formula according to a prefixed non-
negative cost function (procedureoptimizeLIA). This function must have the property
that the models of the linearized formula with cost 0 are truemodels of the original
non-linear formula, and that if the linearization is unsatisfiable then so is the original
formula. In addition to procedureoptimizeLIA, the concrete implementations of proce-
dureslinearize, relax domainsandupdatealso depend on the cost function.
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status solveNIA(FormulaF0) {
b = initial bounds(F0); // enough artificial bounds to linearizeF0

F = linearize(F0, b);
while (not timedout ()) {
〈st,model〉 = optimizeLIA(F );
if (st== UNSAT) return UNSAT;
else if (cost(model) == 0) return SAT;
else {

b = relax domains(b, model);
F = update(F , b); // add new bounds and case splitting clauses

} }

return UNKNOWN;
}

Fig. 2. Algorithm for solving SMT(NIA) based on minimal models

Below we suggest two such cost functions: the number of violated artificial bounds
(Section 3.1), and the distance with respect to the artificial domains (Section 3.2).

3.1 A Max-SMT(LIA) Approach

A possibility is to define the cost of an assignment as the number of violated artificial
domain bounds. A natural way of implementing this is to transform the original non-
linear formula into a linearized weighted formula and use a Max-SMT(LIA) tool. In
this setting,linearizeworks as in the core-based algorithm, with the following differ-
ence: the clauses of the original formula (after being linearized by replacing non-linear
monomials with fresh variables) together with the case splitting clauses are considered
to be hard, while the artificial bounds are soft (with weight 1). Following the same con-
struction, procedureupdateupdates the soft clauses with the relaxed bounds, and adds
the new case splitting clauses as hard clauses.

As regards the optimization step, procedureoptimizeLIA boils down to making a
call to a Max-SMT(LIA) solver on the linearized formula. In this case, the statusst in
Figure 2 corresponds to the satisfiability of the hard clauses. It is clear that if this status
is UNSAT, then the original non-linear clause set is also unsatisfiable, given that the
models of the original formula are a subset of the models of the hard clauses of the
linearized formula. Another important property is that, ifa model of the linearization
has cost 0, then it is a true model of the non-linear formula.

Finally, procedurerelax domainsdetermines the bounds to be relaxed by inspecting
the soft clauses that are falsified. Moreover, as outlined above, the bounds are enlarged
as follows. Let us assume thatx ≤ u is an artificial bound that is falsified in the minimal
model. If x is assigned valueU in that model (and, hence,u < U), thenx ≤ U becomes
the new upper bound ofx. A similar construction applies for lower bounds.

Regarding the weights of the soft clauses, in general it is not necessary to have unit
weights. One may use different values, provided they are positive, and then the cost
function corresponds to a weighted sum. Moreover, note thatweights can be different
from one iteration of the loop ofsolveNIA to the next one.
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Example 1.Let us consider the formulatx+wy ≥ 4 ∧ t2+ x2+w2+ y2 ≤ 12, where
variablest, x,w, y are integer. Let us also assume that we add the following artificial
bounds in order to linearize:−1 ≤ t, x,w, y ≤ 1. Then we obtain the following linearized
weighted formula:

vtx + vwy ≥ 4 ∧ vt2 + vx2 + vw2 + vy2 ≤ 12 ∧

t = −1 → vtx = −x ∧ w = −1→ vwy = −y ∧
t = 0 → vtx = 0 ∧ w = 0 → vwy = 0 ∧

t = 1 → vtx = x ∧ w = 1 → vwy = y ∧

t = −1 → vt2 = 1 ∧ w = −1→ vw2 = 1 ∧

t = 0 → vt2 = 0 ∧ w = 0 → vw2 = 0 ∧

t = 1 → vt2 = 1 ∧ w = 1 → vw2 = 1 ∧

x = −1→ vx2 = 1 ∧ y = −1 → vy2 = 1 ∧

x = 0 → vx2 = 0 ∧ y = 0 → vy2 = 0 ∧

x = 1 → vx2 = 1 ∧ y = 1 → vy2 = 1 ∧
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(⋆)

[−1 ≤ t, 1] ∧ [−1 ≤ x, 1] ∧ [−1 ≤ w, 1] ∧
[

−1 ≤ y, 1
]

∧

[t ≤ 1, 1] ∧ [x ≤ 1, 1] ∧ [w ≤ 1, 1] ∧
[

y ≤ 1, 1
]

,

wherevtx, vwy, vt2, vx2, vw2, vy2 are integer fresh variables standing for non-linear mono-
mials. Soft clauses are written [C, ω], while clauses without weight are hard clauses.

In this case minimal solutions have cost 1, since at least oneof the artificial bounds
has to be violated so as to satisfyvtx+ vwy ≥ 4. For instance, the Max-SMT(LIA) solver
could return the assignment:t = 1, x = 4, vtx = 4, w = y = vwy = vw2 = vy2 = 0,
vt2 = 1 andvx2 = 0, where the only soft clause that is violated is [x ≤ 1, 1]. Note
that, asx = 4 is not covered by the case splitting clauses forvx2, the values ofvx2 and
x are unrelated. Now the new upper bound forx would bex ≤ 4 (so the soft clause
[x ≤ 1, 1] would be replaced by [x ≤ 4, 1]), and the following hard clauses would be
added:x = 2→ vx2 = 4, x = 3→ vx2 = 9 andx = 4→ vx2 = 16. In the next iteration
there are solutions with cost 0, e.g.,t = 1, x = 3, vtx = 3, w = y = vwy = vw2 = vy2 = 1,
vt2 = 1 andvx2 = 9. �

One of the disadvantages of this approach is that potentially the Max-SAT(LIA)
solver could return models with numerical values much larger than necessary. Since the
model is used for extending the domains, it could be the case that a prohibitive number
of case splitting clauses are added, and at the next iteration the Max-SAT(LIA) solver is
not able to handle the formula with a reasonable amount of resources. For instance, in
Example 1, it could have been the case that the Max-SAT(LIA) solver returnedu = y =
0, t = 1, x = 105, vx2 = 0, etc. However, as far as we have been able to experiment, this
kind of behaviour is rarely observed in our implementation;see Section 3.3 for more
details. On the other hand, the cost function in Section 3.2 below does not suffer from
this drawback.
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3.2 An OMT(LIA) Approach

Another possibility is to define the cost of an assignment as the distance with respect to
the artificial domains. This can be cast as a problem in OMT(LIA) as follows.

First of all, given a non-linear formulaF0, the linearizationF (procedurelinearize)
is computed like in the algorithm based on cores, except for the fact that artificial bounds
are not included in the linearization:F consists only of the clauses ofF0 (after being
linearized), and of the case splitting clauses (together with other constraints to express
the cost function, to be described below).

Now, letS be the set of variablesx for which an artificial domain [λx, νx] is added
in the linearization. Formally, the cost function is

∑

x∈S δ(x, [λx, νx]), whereδ(z, [λ, ν])
is thedistanceof zwith respect to [λ, ν]:

δ(z, [λ, ν]) =



















λ − z if z< λ
0 if λ ≤ z≤ ν
z− ν if z> ν

Note that, in the definition of the cost function, one could also include true original
bounds: the contribution to the cost of these is null, since they are part of the formula
and therefore must be respected.

In procedureoptimizeLIA, the OMT(LIA) solver minimizes this function, expressed
in the following way. Letcostbe the variable that the solver minimizes. For each vari-
ablex ∈ S with domain [λx, νx], let us introduce once and for all two extra integer vari-
ableslx andux (meaning the distance with respect to the lower and to the upper bound
of the domain ofx, respectively) and theauxiliary constraints lx ≥ 0, lx ≥ λx−x, ux ≥ 0,
ux ≥ x− νx. Then the cost function is determined by the equationcost=

∑

x∈S(lx + ux),
which is added to the linearization together with the auxiliary constraints listed above.

Note that a model of the linearization that has cost 0 must assign values within
the bounds for all variables. Therefore the variables standing for non-linear monomials
must be assigned consistent values with their semantics, byvirtue of the case splitting
clauses. Thus, models of the linearization with null cost are models of the original non-
linear formula. Moreover, if the linearized formula is unsatisfiable, then the original
formula must be unsatisfiable too, since the models of the original formula are included
in the models of the linearized formula.

As regards domain relaxation, procedurerelax domains determines the
bounds to be enlarged by identifying the variableslx, ux that are assigned a non-null
value. Further, again the bounds are enlarged by taking the optimal model as a refer-
ence: similarly as in Section 3.1, ifx ≤ u is an artificial bound to be relaxed andx
is assigned valueU in the best model, thenx ≤ U becomes the new upper bound.
Then procedureupdateupdates the auxiliary constraints (e.g.,ux ≥ x− u is replaced by
ux ≥ x − U), and adds the new case splitting clauses (for theU − u casesx = u + 1,
..., x = U, etc.). Note that precisely the value ofux in the optimal model isU − u > 0.
Hence, intuitively the cost function corresponds to thenumber of new casesthat will
have to be taken into account for the next iteration of the loop of solveNIA.

It is also possible to consider a slightly different cost function, which corresponds
to thenumber of new clausesthat will have to be added for the next iteration. For that
purpose, it is only necessary to multiply variableslx, ux in the equation that defines
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costby the number of monomials whose value is determined by case splitting on x.
In general, similarly to Section 3.1, one may have a generic cost function of the form
cost=

∑

x∈S(αxlx+βxux), whereαx, βx > 0 for all x ∈ S. Further, again these coefficients
may be changed from one iteration to the next one.

Example 2.Let us consider again the same non-linear formula from Example 1: tx +
wy ≥ 4 ∧ t2+x2+w2+y2 ≤ 12, where variablest, x,w, yare integer. Let us also assume
that we add the following artificial bounds in order to linearize:−1 ≤ t, x,w, y ≤ 1. Then
we obtain the following OMT(LIA) problem:

min cost subject to

constraints (⋆) from Example 1 ∧
cost= lt + ut + lx + ux + lw + uw + ly + uy ∧

lt ≥ 0 ∧ lt ≥ −1− t ∧ ut ≥ 0 ∧ ut ≥ t − 1 ∧

lx ≥ 0 ∧ lx ≥ −1− x ∧ ux ≥ 0 ∧ ux ≥ x− 1 ∧

lw ≥ 0 ∧ lw ≥ −1− w ∧ uw ≥ 0 ∧ uw ≥ w− 1 ∧

ly ≥ 0 ∧ ly ≥ −1− y ∧ uy ≥ 0 ∧ uy ≥ y− 1

In this case, it can be seen that minimal solutions have cost 1. For example, the
OMT(LIA) solver could return the assignment:x = 1, vx2 = 1, t = 2, vtx = 4, vt2 = 0
andw = y = vwy = vw2 = vy2 = 0. Note that, ast = 2 is not covered by the case splitting
clauses, the values ofvtx andvt2 are unrelated tot. Now the new upper bound fort is
t ≤ 2, constraintut ≥ t − 1 is replaced byut ≥ t − 2, and clausest = 2→ vtx = 2x and
t = 2→ vt2 = 4 are added.

At the next iteration there is still no solution with cost 0, and at least another further
iteration is necessary before a true model of the non-linearformula can be found. �

One of the drawbacks of this approach is that, as the previousexample suggests,
domains may be enlarged very slowly. This implies that, in cases where solutions have
large numbers, many iterations are needed before one of themis discovered. See Section
3.3 below for more details on the performance of this method in practice.

3.3 Experiments

In this section we evaluate experimentally the performanceof the two minimal-model-
guided approaches proposed above, and compare them with other competing non-linear
solvers. Namely, we consider the following tools2 :

– bcl-maxsmt, our Max-SMT-based algorithm from Section 3.1;
– bcl-omt, our OMT-based algorithm from Section 3.2;
– bcl-cores, our core-based algorithm [26];
– Z3 version 4.3.1 [37].

2 We also experimented with other tools, namelydReal [18], SMT-RAT [21] andMiniSMT [25].
It turned out that the kind of instances we are considering here are not well-suited for these
solvers, and many timeouts were obtained.
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The experiments were carried out on an Intel Core i7 with 3.40GHz clock speed
and 16 GB of RAM. We set a timeout of 60 seconds.

All bcl-* solvers3 share essentially the same underlying SAT engine and LIA theory
solver. Moreover, some strategies are also common:

– procedureinitial boundsuses a greedy algorithm to approximate the minimal set
of variables that have to be introduced in the linearization[26]. For each of them,
we force the domain [−1, 1], even if variables have true bounds (for ease of pre-
sentation, we will assume here that true bounds always contain [−1, 1]). This turns
out to be useful in practice, as in some cases formulas have solutions with small
coefficients. By forcing the domain [−1, 1], unnecessary case splitting clauses are
avoided and the size of the linearized formula is reduced.

– the first time a bound has been chosen to be enlarged is handledspecially. Let us
assume it is the first time that a lower bound (respectively, an upper bound) ofx has
to be enlarged. By virtue of the remark above, the bound must be of the formx ≥ −1
(respectively,x ≤ 1). Now, if x has a true bound of the formx ≥ l (respectively,
x ≤ u), then the new bound is the true bound. Otherwise, ifx does not have a true
lower bound (respectively, upper bound), then the lower bound is decreased by one
(respectively, the upper bound is increased by one). Again,this is useful to capture
the cases in which there are solutions with small coefficients.

– from the second time a bound has to be enlarged onwards, domain relaxation of
bcl-maxsmt andbcl-omt follows basically what is described in Section 3, except
for a correction factor aimed at instances where solutions have some large values.
Namely, if x ≤ u has to be enlarged and in the minimal modelx is assigned value
U, then the new upper bound isU+α ·min(β, n

m), whereα andβ are parameters,n is
the number of times the upper bound ofx has been relaxed, andm is the number of
occurrences ofx in the original formula. As regardsbcl-cores, a similar expression
is used in which the current boundu is used instead ofU, since there is no notion
of “best model”. The analogous strategy is applied for lowerbounds.

In this evaluation we considered two different sets of benchmarks. The first bench-
mark suite consists of 1934 instances generated by our constraint-based termination
prover [34]. As pointed out in Section 2.2, in these problemsnon-linear monomials are
quadratic. Moreover, since it makes sense in our application, for each benchmark we
have runZ3 (which cannot solve any of our non-linear integer instances) on versions
of the instances where all variables are reals. This has beendone in order to perform a
fairer comparison, since unlike our approaches,Z3 is targeted to the real case. Results
can be seen in Table 1, where columns represent systems and rows possible outcomes
(SAT, UNSAT, UNKNOWN andTIMEOUT). Each cell contains the number of prob-
lems with that outcome obtained with the corresponding system, or the total time to
process them.

The second benchmark suite consists of 36 examples of SMT(NIA) generated by
theQArmc-Hsf(c) tool [38], a predicate-abstraction-based model checker with a special
focus on liveness properties. In these problems all variables are integer, and monomi-

3 Available atwww.lsi.upc.edu/˜albert/sat14.tgz.
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Table 1.Experiments with benchmarks from Termination prover

z3 bcl-cores bcl-maxsmt bcl-omt
#prob secs #prob secs #prob secs #prob secs

SAT 1136 2578 1838 5464 1852 3198 1798 7896
UNSAT 0 0 0 0 4 0 62 112

UNKNOWN 11 2 0 0 0 0 0 0
TIMEOUT 787 47220 96 5760 78 4680 74 4440

Table 2.Experiments with benchmarks from model checking

z3 bcl-cores bcl-maxsmt bcl-omt
#prob secs #prob secs #prob secs #prob secs

SAT 30 2 35 55 35 72 34 263
UNSAT 1 0 1 0 1 0 1 0

UNKNOWN 0 0 0 0 0 0 0 0
TIMEOUT 5 300 0 0 0 0 1 60

als beyond quadratic appear. Results are in Table 2 and follow the same format as in
Table 1.

As we can see in the tables,bcl-cores andbcl-maxsmt are the most efficient sys-
tems on satisfiable instances. Whilebcl-omt is doing slightly worse,Z3 is clearly out-
performed, even when variables have real type. After inspecting the traces, we have
seen thatbcl-omt enlarges the domains too slowly, which is hindering the search.

Regarding unsatisfiable instances, it can also be observed that bcl-cores performs
worse than the model-guided approaches, and that in particular bcl-omt is surprisingly
effective. The reason is that, while the latter will always identify when the linear ab-
straction of the formula is unsatisfiable, this may not be thecase with the former, which
depending on the computed core may detect or not the unsatisfiability. In particular,
bcl-cores does not guarantee that cores are minimal with respect to subset inclusion,
and attempts to eliminate irrelevant clauses would imply anoverhead that in most cases
would not pay off.

Finally, as a side note, it is worth mentioning that we also experimented with a
mixed version of the Max-SMT and OMT approaches. This version works as follows.
Once the Max-SMT(LIA) finds a propositional model of the (propositional skeleton of
the) linearization that minimizes the number of violationsof the artificial bounds (this is
the Max-SMT part), instead of taking any of the solutions that satisfy this propositional
model, one finds a solution among those that minimizes the distance with respect to
the artificial domains (this is the OMT part). This hybridization did not perform signif-
icantly better than the Max-SMT approach, because most often the solution computed
by default by the Max-SMT(LIA) solver turns out to be alreadyoptimal with respect to
the distance cost function, and in general the gain obtainedwith this final optimization
does not compensate the overhead it incurs in the total execution time.
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4 Extension to Max-SMT(NIA)

As we showed in previous work [34], the framework of Max-SMT(NIA) is particu-
larly appropriate for constraint-based termination proving. Other applications of Max-
SMT(NIA) in program analysis can be envisioned given the enormous expressive power
of its language. For the feasibility of this kind of applications, it is of paramount impor-
tance that efficient solvers are available. For this reason, this section will be devoted to
the extension of our techniques for SMT(NIA) to Max-SMT(NIA).

More specifically, the experiments in Section 3.3 indicate that, when applied to sat-
isfiable instances of SMT(NIA), the Max-SMT(LIA) approach behaves better than the
OMT(LIA) one, and similarly to the core-based one, althoughon the instances coming
from our program analysis applications it tends to perform better. Because of this, in
Section 4.1 the Max-SMT(LIA) approach will be taken as a basis upon which a new
algorithm for Max-SMT(NIA) will be proposed, which is more simple and natural than
what a Max-SMT(NIA) system built on top of a core-based SMT(NIA) solver would
be. Finally, in Section 4.2 we will report on the applicationof an implementation of this
algorithm to program termination.

4.1 Algorithm

We will represent the inputF0 of a Max-SMT(NIA) instance as a conjunction of a set of
hard clausesH0 = {C1, · · · ,Cn} and a set of soft clausesS0 = {[D1, ω1], · · · , [Dm, ωm]}.
The aim is to decide whether there exist assignmentsα such thatα |= H0, and if so, to
find one such that

∑

[D,ω]∈S0 | α6|=D ω is minimized.

<Status, Model> solveMax SMT NIA(FormulaF0) {
b = initial bounds(F0);
F = linearize(F0, b);
bestso far = ⊥;
max soft cost= ∞
while (not timedout ()) {
〈st,model〉 = solveMax SMT LIA(F , maxsoft cost);
if (st== UNSAT)

if (bestso far == ⊥) return < UNSAT,⊥ >;
else return < SAT,bestso far >;

else if (costB(model) == 0) {
bestso far =model;
maxsoft cost= costS(model) − 1;
}

else {
b = relax domains(b, model);
F = update(F , b);

} }

return < UNKNOWN,⊥ >;
}

Fig. 3. Algorithm for solving Max-SMT(NIA) based on Max-SMT(LIA)
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The algorithm for solving Max-SMT(NIA) is shown in Figure 3.In its first step,
as usual the initial artificial bounds are chosen (procedureinitial bounds) and the input
formulaF0 ≡ H0∧S0 is linearized (procedurelinearize). As a result, a weighted linear
formulaF is obtained with hard clausesH ∧ C and soft clausesS ∧ B, where:

– H andS are the result of replacing the non-linear monomials inH0 andS0 by their
corresponding fresh variables, respectively;

– C are the case splitting clauses;

– B is the set of artificial bounds of the form [x ≥ l, Ω], [x ≤ u, Ω′], where the weights
Ω, Ω′ are positive numbers that are introduced in the linearization.

Now notice that there are two kinds of weights: those from theoriginal soft clauses,
and those produced by the linearization. As they have different meanings, it is conve-
nient to consider them separately. Thus, given an assignment α, we define its(total)
costascost(α) = (costB(α), costS(α)), wherecostB(α) =

∑

[B,Ω]∈B | α6|=BΩ is thebound
cost, i.e., the contribution to the total cost due to artificial bounds, andcostS(α) =
∑

[D,ω]∈S | α6|=D ω is the soft cost, corresponding to the original soft clauses. Equiva-
lently, if weights are written as pairs, so that artificial bound clauses become of the
form [C, (Ω, 0)] and soft clauses become of the form [C, (0, ω)], we can writecost(α) =
∑

[C,(Ω,ω)]∈B∪S | α6|=C(Ω,ω) , where the sum of the pairs is component-wise.

In what follows, pairs (costB(α), costS(α)) will be lexicographically compared, so
that the bound cost (i.e., to be consistent in NIA) is more relevant than the soft cost.
Hence, by taking this cost function and this ordering we havea Max-SMT(LIA) in-
stance in which weights are not natural or non-negative realnumbers, but pairs of them.

In the next step of the algorithm, proceduresolveMax SMT LIA calls a Max-
SMT(LIA) tool to solve this instance. A difference with the usual setting is that the Max-
SMT(LIA) solver admits a parametermaxsoft costthat restrains the models of the hard
clauses we are considering: only assignmentsα such thatcostS(α) ≤ max soft costare
taken into account. Thus, this adapted Max-SMT(LIA) solvercomputes, among the
modelsα of the hard clauses such thatcostS(α) ≤ max soft cost(if any), one that min-
imizescost(α). This allows one to prune the search lying under the Max-SMT(LIA)
solver when it is detected that the best soft cost found so farcannot be improved. This
is not difficult to implement if the Max-SAT solver follows a branch-and-boundscheme,
as it is our case.

Now the algorithm examines the result of the call to the Max-SMT(LIA) solver.
If it is UNSAT, then there are no models of the hard clauses with soft cost atmost
maxsoft cost. Therefore, the algorithm can stop and report the best solution found
so far, if any. Otherwise,modelsatisfies the hard clauses and has soft cost at most
maxsoft cost. If it has null bound cost, i.e., it is a true model of the hard clauses of
the original formula, then the best solution found so far andmaxsoft costare updated,
in order to search for a solution with better soft cost. Finally, if the bound cost is not
null, then domains are relaxed as described in Section 3.1, in order to widen the search
space. In any case, the algorithm jumps back to a new call tosolveMax SMT LIA.
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4.2 Application

As far as we know, none of the competing non-linear solvers isproviding native support
for Max-SMT, and hence no fair comparison is possible. For this reason, in order to give
empirical evidence of the usefulness of the algorithm described in Section 4.1, here we
opt for giving a brief summary of the application of Max-SMT to program termination
[34] and, most importantly, highlighting the impact of our Max-SMT solver on the
efficacy of the termination prover built on top of it.

Termination proving requires the generation of ranking functions as well as support-
ing invariants. Previous work [39] formulated invariant and ranking function synthesis
as constraint problems, thus yielding SMT instances. In [34], Max-SMT is proposed as
a more convenient framework. The crucial observation is that, albeit the goal is to show
that program transitions cannot be executed infinitely by finding a ranking function or
an invariant that disables them, if we only discover an invariant, or an invariant and a
quasi-ranking functionthat almost fulfills all needed properties for well-foundedness,
we have made some progress: either we can remove part of a transition and/or we have
improved our knowledge on the behavior of the program. A natural way to implement
this idea is by considering that some of the constraints are hard (the ones guaranteeing
invariance) and others are soft (those guaranteeing well-foundedness).

Thus, efficient Max-SMT solvers open the door to more refined analyses of termina-
tion, which in turn allows one to prove more programs terminating. In order to support
this claim, we carried out the experiment reported in Table 3, where we considered two
termination provers:

– The tool (SMT) implements the generation of invariants and ranking functions us-
ing a translation to SMT(NIA), where all constraints are hard.

– The tool (Max-SMT) is based on the same infrastructure, but expresses the synthesis
of invariants and ranking functions as Max-SMT(NIA) problems. As outline above,
this allows performing more refined analyses.

Table 3 presents the number of instances (#ins.) in each benchmark suite we con-
sidered (from [40]) and the number of those that respectively each system proved ter-
minating (with a timeout of 300 seconds). As can be seen in theresults, there is a non-

Table 3.Comparison of SMT-based and Max-SMT-based termination provers

#ins. SMT Max-SMT
Set1 449 212 228
Set2 472 245 262

negligible improvement in the number of programs proved terminating thanks to the
adoption of the Max-SMT approach and the efficiency of our Max-SMT(NIA) solver.
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5 Conclusions and Future Work

In this paper we have proposed two strategies to guide domainrelaxation in the instantiation-
based approach for solving SMT(NIA) [26]. Both are based on computing minimal
models with respect to a cost function, respectively, the number of violated artificial
domain bounds, and the distance with respect to the artificial domains. The results of
comparing them with other techniques show their potential.Moreover, we have devel-
oped an algorithm for Max-SMT(NIA) building upon the first ofthese approaches, and
have shown its impact on the application of Max-SMT(NIA) to program termination.

As for future work, several directions for further researchcan be considered. Re-
garding the algorithmics, it would be interesting to look into different cost functions fol-
lowing the minimal-model-guided framework proposed here.On the other hand, one of
the shortcomings of our instantiation-based approach for solving Max-SMT/SMT(NIA)
is that unsatisfiable instances that require non-trivial non-linear reasoning cannot be
captured. In this context, the integration of real-goaled CAD techniques adapted to SMT
[19] appears to be a promising line of work.

Another direction for future research concerns applications. So far we have applied
Max-SMT(NIA) to array invariant generation [27] and termination proving [34]. Other
problems in program analysis where we envision the Max-SMT(NIA) framework could
help in improving the state-of-the-art are, e.g., the analysis of worst-case execution time
and the analysis of non-termination. Also, so far we have only considered sequential
programs. The extension of Max-SMT-based techniques to concurrent programs is a
promising line of work with a potentially high impact in the industry.

Acknowledgments. We thank C. Popeea and A. Rybalchenko for their benchmarks.
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Catalunya, Spain (January 2012).

32. Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In Ball,
T., Jones, R.B., eds.: CAV. Volume 4144 of Lecture Notes in Computer Science., Springer
(2006) 81–94
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