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Abstract. In this paper we present new methods for deciding the sdtikityeof
formulas involving integer polynomial constraints. Inyiis work we proposed
to solve SMT(NIA) problems by reducing them to SMT(LIA): ntinear mono-
mials are linearized by abstracting them with fresh vagatend by performing
case splitting on integer variables with finite domain. Whanables do not have
finite domains, artificial ones can be introduced by imposingwer and an up-
per bound, and made iteratively larger until a solution s (or the procedure
times out). For the approach to be practical, unsatisfiatniescare used to guide
which domains have to be relaxed (i.e., enlarged) from agration to the fol-
lowing one. However, it is not clear then how large they havbd made, which
is critical.

Here we propose to guide the domain relaxation step by anglyzinimal mod-
els produced by the SMT(LIA) solver. Namely, we consider thifferent cost
functions: the number of violated artificial domain bouraisg the distance with
respect to the artificial domains. We compare these appesaeith other tech-
nigues on benchmarks coming from constraint-based progretysis and show
the potential of the method. Finally, we describe how onehelsé minimal-
model-guided techniques can be smoothly adapted to dehlthdt extension
Max-SMT of SMT(NIA) and then applied to program terminatjmmving.

1 Introduction

Polynomial constraints are ubiquitous. They arise nafumalmany contexts, ranging
from the analysis, verification and synthesis of softwat@iber-physical systems [1—
5] to, e.g., game theory [6]. In all these cases, it is ciitiochave dficient automatic
solvers that, given a formula involving polynomial consitawith integer or real vari-
ables, either return a solution or report that the formulanisatisfiable.

However, solving this kind of formulas has been a challeggiroblem since the
early beginnings of mathematics. A landmark result is dugaiski [7], who construc-
tively proved that the problem is decidable for the firsteriheory of real closed fields,
in particular if variables are reals. Still, the algorithmthe proof has no use in practice
as it has non-elementary complexity. More feasible prooesifor solving polynomial
constraints on the reals are based on cylindrical algedeiomposition (CAD) [8, 9].
However, their applicability is limited, as their complxis still doubly exponential.

With the breakthrough of SAT and SMT solving [10, 11], numeydechniques
and tools have been developed which exploit thciency and automaticity of this
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technology. Many of these approaches for solving polynbouastraints on the reals
are numerically-driven. E.g., in [12] interval constraprbpagation is integrated with
SMT(LRA) solving. In [13], non-linear formulas are pre-pgessed and then fed to an
off-the-shelf SMT(LRA) solver. Other works for instance imatg interval-based arith-
metic constraint solving in the SAT engine [14], combineimwal arithmetic and testing
[15], or focus on particular kinds of constraints like coxeenstraints [16]. In order to
address the ever-present concern that numerical errorgsalin incorrect answers in
these methods, it has been proposed to relax constraintoasdlers-complete deci-
sion procedures [17, 18]. As opposed to numerically-drygproaches, recently sym-
bolic CAD-based techniques have been successfully irtedjia a model-constructing
DPLL(T)-style procedure [19, 20], and several libraries and toxdis have been made
publicly available for the development of symbolicallyivam solvers [21, 22].

On the other hand, when variables must take integer valves, the problem of
solving a single polynomial equation is undecidable (HiflselOth problem, [23]). In
spite of this theoretical limitation, and similarly to theat case, several methods that
take advantage of the advancements in SAT and SMT solving begn proposed for
solving integer polynomial constraints. The common idethe$e methods is to reduce
instances of integer non-linear arithmetic into problerha simpler language that can
be directly handled by existing SASMT tools, e.g., propositional logic [24], linear
bit-vector arithmetic [25], or linear integer arithmet2g]. All these approaches are
satisfiability-oriented, which makes them more conveniebntexts in which finding
solutions is more relevant than proving that none exist. (@ invariant generation
[27)).

In this paper we build upon our previous method [26] for derjdhe satisfiability
of formulas involving integer polynomial constraints. mat work, non-linear mono-
mials are linearized by abstracting them with fresh vadaland by performing case
splitting on integer variables with finite domain. In the eds which variables do not
have finite domainsartificial ones are introduced by imposing a lower and an upper
bound, and made iteratively larger until a solution is fogmdthe procedure times out).
For the approach to be useful in practice, unsatisfiablescare employed to guide
which bounds have to be relaxed (i.e., enlarged) from omatite to the following
one. However, one of the shortcomings of the approach isuthestisfiable cores pro-
vide no hint on how large the new bounds have to be made. Thistisal, since the
size of the new formula (and hence the time required to deterits satisfiability) can
increase significantly depending on the number of new caseésrtust be added.

The contributions of this paper are twofold:

1. We propose heuristics for guiding the domain relaxattep by means of the anal-
ysis of minimal models generated by the SMT(LIA) solver. Eapecifically, we
consider two dierent cost functions: first, the number of violated artifida-
main bounds, which leads Maximum Satisfiability Modulo Theori¢slax-SMT,
[28, 29]) problems; and second, the distance with respétieartificial domains,
which boils down tdOptimization Modulo Theorig®©MT, [30, 31]) problems. The
results of comparing these approaches with other techsisjuew the potential of
the method.

2. We extend the first of these approaches to handle probleMax-SMT(NIA).
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This paper is structured as follows. Section 2 reviews bagkground on SMT,
Max-SMT and OMT, and also on our previous approach in [26]S&ttion 3 two
different heuristics for guiding the domain relaxation steppaoposed, together with
an experimental evaluation. Then Section 4 presents tieagirin of the technique from
SMT(NIA) to Max-SMT(NIA). Finally, Section 5 summarizeseltonclusions of this
work and sketches lines for future research.

2 Preliminaries

2.1 SMT, Max-SMT and OMT

Let® be a fixed finite set giropositional variableslf p € #, thenp and—-p areliterals.
The negationof a literall, written —l, denotes-p if | is p, andp if | is =p. A clause
is a disjunction of literal$; v - - - v I,. A (CNF) propositional formulas a conjunction
of clause<C; A --- A C,. The problem opropositional satisfiabilitfabbreviated SAT)
consists in, given a propositional formula, to determinethir it issatisfiablei.e., if
it has amodel an assignment of Boolean values to variables that sattsfee®rmula.

A generalization of SAT is thaatisfiability modulo theories (SMProblem: to
decide the satisfiability of a given quantifier-free firsther formula with respect to a
background theory. In this setting, a model (which we mag aéfer to as aolution)
is an assignment of values from the theory to variables ti#fes the formula. Here
we will focus on integer variables and the theoriedinéar integer arithmetic (LIA)
where literals are linear inequalities, and the more génieeary ofnon-linear integer
arithmetic (NIA) where literals are polynomial inequalitiés.

Another generalization of SAT iMax-SAT which extends the problem by ask-
ing for more information when the formula turns out to be diséable: namely, the
Max-SAT problem consists in, given a formufg to find an assignment such that the
number of satisfied clausesdnis maximized, or equivalently, that the number of fal-
sified clauses is minimized. This problem can in turn be gaized in a number of
ways. For example, imeighted Max-SA€ach claus€; of ¥ has aweightw; (a pos-
itive natural or real number), and then the goal is to find ts®gmnment such that the
cost i.e., the sum of the weights of the falsified clauses, is minéd. Yet a further ex-
tension of Max-SAT is th@artial weighted Max-SAproblem, where clauses $h are
either weighted clauses as explained above, catiittlausedn this setting, or clauses
without weights, calledhard clausesin this case, the problem consists in finding the
model of the hard clauses such that the sum of the weightedatkified soft clauses
is minimized. Equivalently, hard clauses can also be seeofaglauses with infinite
weight.

The problem oMax-SMTmerges Max-SAT and SMT, and is defined from SMT
analogously to how Max-SAT is derived from SAT. Namely, tfiax-SMT problem
consists in, given a set of paifgCy, w1], .. ., [Cm, wm]}, Wwhere eaclt; is a clause and
wj Is its weight (a positive number or infinity), to find a modehtiminimizes the sum
of the weights of the falsified clauses in the backgroundrheo

LIn some classes of formulas of practical interest, realadeis can also be handled by our
methods. See Section 2.2 for details.
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Finally, the problem ofOptimization Modulo Theories (OMT$§ similar to Max-
SMT in that they are both optimization problems, rather tdanision problems. It
consists in, given a formul& involving a particular variable calledost to find the
model of# such that the value assigneddmstis minimized. Note that this framework
allows one to express a wide variety of optimization protdémaximization, piecewise
linear functions, etc.).

2.2 Solving SMT(NIA) with Unsatisfiable Cores

In [26], we proposed a method for solving SMT(NIA) problemeseéd on encoding
them into SMT(LIA). The basic idea is to linearize each nmeér monomial in the
formula by applying a case analysis on the possible valuemwfe of its variables.
For example, if the monomiafyzappears in the input SMT(NIA) formula andmust
satisfy 0 < x < 2, we can introduce a fresh variablg,,, replace the occurrences
of x?yz by Vyey, and add to the clause set the following theese splitting clauses
X=0 = Ve, =0,X=1 = Ve, = yzandx = 2 — Vs, = 4yz In turn, new non-
linear monomials may appear, e.gzin this example. All non-linear monomials are
handled in the same way until a formula in SMT(LIA) is obtainéor which dficient
decision procedures exist [32].

Note that, in order to linearize a non-linear monomial, ¢hest be at least one
variable in it which is both lower and upper bounded. Whes tivioperty does not
hold, newartificial bounds can be introduced for the variables that require tthem
principle, this implies that the procedure is no longer ctat® since a linearized for-
mula with artificial bounds may be unsatisfiable while thgioal SMT(NIA) formula
is actually satisfiable. A way to overcome this problem is toceged iteratively: vari-
ables start with bounds that make the size of their domaitadl samd then the domains
are enlarged on demand if necessary, i.e., if the formulsstout to be unsatisfiable.
The decision of which bounds are to be relaxed is heurisfitaiken based on the anal-
ysis of anunsatisfiable cordan unsatisfiable subset of the clause set) that is obtained
when the solver reports unsatisfiability (for an accounechhiques for computing un-
satisfiable cores, see [33]). Note that the methodwelishbounds should be enlarged,
but does not provide any guidance in regardtav largethe new bounds should be.
This is critical, as the size of the formula in the next itemat(and so the time needed
to determine its satisfiability) can grow significantly deagdiang on the number of new
case splitting clauses that have to be added.

Altogether, the overall algorithm in [26] for solving a giveformula in
SMT(NIA) is as follows (see Figure 1). First, the neededfiaitil bounds are added
(procedurenitial _bound$ and the linearized formula (proceduneearize is passed
to an SMT(LIA) solver (procedursolveLIA). If the solver returnSAT, we are done.
If the solver returndJNSAT, then an unsatisfiable core is computed. If this core does
not contain any of the artificial bounds, then the originah#ioear formula must be
unsatisfiable, and again we are done. Otherwise, at leasbfotire artificial bounds
appearing in the core must be chosen for relaxation (proeedlax domain$. Once
the domains are enlarged and the formula is updated (prozagdatg, the new lin-
earized formula is tested for satisfiability, and the predesepeated (typically, while
a prefixed time limit is not exceeded).
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status solveNIA(Formula%y) {
b = initial _bounds(¥y); // enough artificial bounds to linearizg
F = linearizg¥o, b);
while (not timedout()) {
(st core) = solveLIA(¥); // core computed here to ease presentation
if (st== SAT) return SAT;
else if (b core==0) return UNSAT;
else {
b = relax.domaingb, core); // at least one in the intersection is relaxed
¥ = updaté¥, b); / add new bounds and case splitting clauses

bl
return UNKNOWN;

Fig. 1. Algorithm in [26] based on unsatisfiable cores

Finally, notice that the assumption that all variables $thdnave integer type can
be weakened, since it ffiices that there arenoughfinite domain variables to perform
the linearization. For example, this can be exploited inQMiT problems coming from
constraint-based program analysis [27, 34]. Those forsnaita produced by applying
Farkas’ Lemma [35], and therefore only quadratic mononuétbe forma - u appear.
Although in principle botht andu are real unknowns, in the context of invariant and
ranking function generation it is reasonable to assumeutshbuld be integer. Hence,
by case splitting oru one can linearize the monomial and does not need to force
to take integer values. Moreover, when analyzing prograitisinteger variables, one
often needs to be able to reason taking into account theradiggof the variables. In
this situation integer versions of Farkas’ Lemma [36] cambed, which when applied
in the context of, e.g., invariant generation, require agia¢ unknownsi to be inZ.

3 Domain Relaxation with Minimal Models

Taking into account the limitations of the method based aer€when domains have to
be enlarged, in this section we propose a model-guided appro perform this step.
The idea is to replace the satisfiability check in linearhamiétic with an optimization
call, so that the best model found by the linear solver candsel &as a reference for
relaxing bounds (e.g., by extending the domains up to theevial that best model for
those bounds that have to be relaxed).

Thus, the high-level algorithm we propose for solving a gif@mula in SMT(NIA)
is shown in Figure 2 (cf. Figure 1). Here the SMT(LIA) blackdxioes not just decide
satisfiability, but finds the minimum model of the formula aading to a prefixed non-
negative cost function (proceduogtimizeLlA). This function must have the property
that the models of the linearized formula with cost O are tnazlels of the original
non-linear formula, and that if the linearization is uns@ible then so is the original
formula. In addition to procedu@ptimizeLIA, the concrete implementations of proce-
dureslinearize relax.domainsandupdatealso depend on the cost function.
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status solveNIA(Formula%y) {
b = initial _bounds(¥y); // enough artificial bounds to linearizg
F = linearizg¥o, b);
while (not timedout()) {
(st mode} = optimizeLIA(F);
if (st==UNSAT) return UNSAT;
else if (cos{mode) == 0) return SAT;
else {
b = relax.domaingb, mode);
¥ = updaté¥F, b); / add new bounds and case splitting clauses

bl
return UNKNOWN;

}

Fig. 2. Algorithm for solving SMT(NIA) based on minimal models

Below we suggest two such cost functions: the number of tadlartificial bounds
(Section 3.1), and the distance with respect to the artifilienains (Section 3.2).

3.1 A Max-SMT(LIA) Approach

A possibility is to define the cost of an assignment as the rarrabviolated artificial
domain bounds. A natural way of implementing this is to tfama the original non-
linear formula into a linearized weighted formula and use axNsMT(LIA) tool. In

this settinglinearizeworks as in the core-based algorithm, with the followinfjett
ence: the clauses of the original formula (after being lirzea by replacing non-linear
monomials with fresh variables) together with the casdtsmii clauses are considered

to be hard, while the artificial bounds are soft (with weightFollowing the same con-
struction, procedurapdateupdates the soft clauses with the relaxed bounds, and adds
the new case splitting clauses as hard clauses.

As regards the optimization step, procedoptimizeLIA boils down to making a
call to a Max-SMT(LIA) solver on the linearized formula. Inis case, the statust in
Figure 2 corresponds to the satisfiability of the hard clauléés clear that if this status
is UNSAT, then the original non-linear clause set is also unsatisfiajiven that the
models of the original formula are a subset of the models eftthrd clauses of the
linearized formula. Another important property is thataimodel of the linearization
has cost 0, then it is a true model of the non-linear formula.

Finally, procedureelax domaingdetermines the bounds to be relaxed by inspecting
the soft clauses that are falsified. Moreover, as outlineda@fthe bounds are enlarged
as follows. Let us assume thak uis an artificial bound that is falsified in the minimal
model. Ifx is assigned valu® in that model (and, henca,< U), thenx < U becomes
the new upper bound of A similar construction applies for lower bounds.

Regarding the weights of the soft clauses, in general itisiaoessary to have unit
weights. One may use ftiérent values, provided they are positive, and then the cost
function corresponds to a weighted sum. Moreover, noteviiegghts can be dierent
from one iteration of the loop afolveNIA to the next one.
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Example 1.Let us consider the formutax+wy > 4 A t?+ x> +wW? +y? < 12, where
variablest, x,w, y are integer. Let us also assume that we add the followinfjcaati
boundsin order to linearize:l < t, x,w,y < 1. Then we obtain the following linearized
weighted formula:

Vix *Vy 24 A Ve + Ve + Ve + Ve <12 A

t=-1>Vy=-X A W=-1l->Vy=-y A
t=0 —>v=0 A wW=0 —-vy=0 A
t=1 —>Svy=X A w=1l Ssvy=y A

t=-1>5Vv=1 A W==-1->vVe=1 A (%)
t=0 ->v=0 A wW=0 —>ve=0 A
t=1 —->ve=1 A w=1 -ve=1 A

X=-1l-ve=1 A y=-1-ov=1 A
X=0 -»ve=0 A y=0 —->we=0 A
X=1 —-Vve=1 A y=1 —->v=1 A

[F1<tIJA[-1<x1A[-1<wWI1]A[-1<y, 1] A
[t<L,1]A [x<L1]1A [w<lL1]A[y<1,1],

wherevix, Vuy, Viz, Viz, V2, V2 are integer fresh variables standing for non-linear mono-
mials. Soft clauses are writte@[w], while clauses without weight are hard clauses.

In this case minimal solutions have cost 1, since at leasbbttee artificial bounds
has to be violated so as to satisfy+ vy > 4. For instance, the Max-SMT(LIA) solver
could return the assignmerit= 1, X = 4, ix = 4, W =Yy = Vyy = Vg = Vo = 0,
Ve = 1 andvye = 0, where the only soft clause that is violated xs§ 1, 1]. Note
that, asx = 4 is not covered by the case splitting clausesvipr the values ofs,. and
x are unrelated. Now the new upper bound fowould bex < 4 (so the soft clause
[x < 1,1] would be replaced byx < 4,1]), and the following hard clauses would be
addedx =2 > ve =4,Xx=3 > Ve = 9andx = 4 — v, = 16. In the next iteration
there are solutions with cost 0, e.95 1, X =3, Vix = 3, W =Y = Vuy = Vyz = Vyo = 1,

Vg = 1 andv,. = 9. [

One of the disadvantages of this approach is that potgntizdl Max-SAT(LIA)
solver could return models with numerical values much latiggn necessary. Since the
model is used for extending the domains, it could be the dedeatprohibitive number
of case splitting clauses are added, and at the next itardt@goMax-SAT(LIA) solver is
not able to handle the formula with a reasonable amount olress. For instance, in
Example 1, it could have been the case that the Max-SAT(LdNes returnedi = y =
0,t=1,x= 10, v, = 0, etc. However, as far as we have been able to experimest, thi
kind of behaviour is rarely observed in our implementatisge Section 3.3 for more
details. On the other hand, the cost function in Section 8l@vbdoes not sftier from
this drawback.
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3.2 An OMT(LIA) Approach

Another possibility is to define the cost of an assignmenhaslistance with respect to
the artificial domains. This can be cast as a problem in OMA]lals follows.

First of all, given a non-linear formulgy, the linearizatiory (procedurdinearize
is computed like in the algorithm based on cores, excephfofact that artificial bounds
are not included in the linearizatioff: consists only of the clauses @t (after being
linearized), and of the case splitting clauses (togethtr ather constraints to express
the cost function, to be described below).

Now, letS be the set of variablesfor which an artificial domain{y, v4] is added
in the linearization. Formally, the cost function}§.s 6(X, [1x, vx]), Whered(z [, v])
is thedistanceof zwith respect to {, v]:

A—-zifz<A
§(z1,v]) =40 ifi<z<y
z—v ifz>vy

Note that, in the definition of the cost function, one coulgloainclude true original
bounds: the contribution to the cost of these is null, sitey are part of the formula
and therefore must be respected.

In procedur@ptimizeLIA, the OMT(LIA) solver minimizes this function, expressed
in the following way. Letcostbe the variable that the solver minimizes. For each vari-
ablex € S with domain [iy, v«], let us introduce once and for all two extra integer vari-
ablesly anduy (meaning the distance with respect to the lower and to themupgpund
of the domain ok, respectively) and thauxiliary constraintsy > 0,1y > Ax—X, ux > 0,

Ux > X — vx. Then the cost function is determined by the equatiost= )’ ,.s(Ix + Uy),
which is added to the linearization together with the aagjliconstraints listed above.

Note that a model of the linearization that has cost 0 musgmasslues within
the bounds for all variables. Therefore the variables stanfr non-linear monomials
must be assigned consistent values with their semantiogrtoye of the case splitting
clauses. Thus, models of the linearization with null costrandels of the original non-
linear formula. Moreover, if the linearized formula is utiséable, then the original
formula must be unsatisfiable too, since the models of thggrai formula are included
in the models of the linearized formula.

As regards domain relaxation, procedumelax.domains determines the
bounds to be enlarged by identifying the varialiga, that are assigned a non-null
value. Further, again the bounds are enlarged by takinggtimal model as a refer-
ence: similarly as in Section 3.1, ¥ < u is an artificial bound to be relaxed amxd
is assigned valu® in the best model, ther < U becomes the new upper bound.
Then procedurapdateupdates the auxiliary constraints (eug.> x — uis replaced by
ux > x — U), and adds the new case splitting clauses (fortuhe u casesx = u + 1,

..., X = U, etc.). Note that precisely the valuewfin the optimal model i4J —u > 0.
Hence, intuitively the cost function corresponds to thunber of new casdhat will
have to be taken into account for the next iteration of the loiosolveNIA.

It is also possible to consider a slightlyfidirent cost function, which corresponds
to thenumber of new clausehat will have to be added for the next iteration. For that
purpose, it is only necessary to multiply variablgsuy in the equation that defines
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costhy the number of monomials whose value is determined by galitérey on Xx.
In general, similarly to Section 3.1, one may have a generit function of the form
cost= Y s(axlx+BxUx), Whereay, Bx > O for all x € S. Further, again these ci€ients
may be changed from one iteration to the next one.

Example 2.Let us consider again the same non-linear formula from Exarhpx +
wy > 4 A P+ x2+w2+y? < 12, where variables x, w, y are integer. Let us also assume
that we add the following artificial bounds in order to linear—-1 < t, x, w,y < 1. Then
we obtain the following OMT(LIA) problem:

min cost subject to

constraints £) from Example 1 A
cost=li+ U+ Iy +Ux+lw+ Uy +ly +uy A

>0 A k>-1-t A u=>20 A w>2t-1 A

x>0 A Ixy>2-1-X A U>0 A uUx=>x-1 A
lw>0 A ly>-1-w A Uy>0 A uUy>w-1 A
ly>0 A ly>-1-y A uw>0 A u>y-1

In this case, it can be seen that minimal solutions have cosbiexample, the
OMT(LIA) solver could return the assignmenti= 1,ve = 1,t =2, vix = 4,V = 0
andw =y = iy = V2 = W}z = 0. Note that, a = 2 is not covered by the case splitting
clauses, the values #f; andvy are unrelated td. Now the new upper bound fdris
t < 2, constrainy; >t — 1 is replaced by > t — 2, and clauses= 2 — v = 2x and
t=2 - vp = 4 are added.

At the next iteration there is still no solution with cost Bdaat least another further
iteration is necessary before a true model of the non-lifegarula can be found. m

One of the drawbacks of this approach is that, as the preerasiple suggests,
domains may be enlarged very slowly. This implies that, sesavhere solutions have
large numbers, many iterations are needed before one ofifdistovered. See Section
3.3 below for more details on the performance of this methagatactice.

3.3 Experiments

In this section we evaluate experimentally the performarid¢ke two minimal-model-
guided approaches proposed above, and compare them wéthcotipeting non-linear
solvers. Namely, we consider the following tcois

— bcl-maxsmt, our Max-SMT-based algorithm from Section 3.1;
— bcl-omt, our OMT-based algorithm from Section 3.2;

— bcl-cores, our core-based algorithm [26];

— Z3 version 4.3.1 [37].

2 We also experimented with other tools, name@Real [18], SMT-RAT [21] andMiniSMT [25].
It turned out that the kind of instances we are considering kee not well-suited for these
solvers, and many timeouts were obtained.
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The experiments were carried out on an Intel Core i7 with GH8 clock speed
and 16 GB of RAM. We set a timeout of 60 seconds.

All bcl-* solvers share essentially the same underlying SAT engine and Llérthe
solver. Moreover, some strategies are also common:

— procedurdnitial _boundsuses a greedy algorithm to approximate the minimal set
of variables that have to be introduced in the linearizaf$j. For each of them,
we force the domain-1, 1], even if variables have true bounds (for ease of pre-
sentation, we will assume here that true bounds always icojrtd, 1]). This turns
out to be useful in practice, as in some cases formulas havgoss with small
codficients. By forcing the domainl, 1], unnecessary case splitting clauses are
avoided and the size of the linearized formula is reduced.

— the first time a bound has been chosen to be enlarged is hasuedlly. Let us

assume it is the first time that a lower bound (respectively@per bound) ok has
to be enlarged. By virtue of the remark above, the bound naust the formx > -1
(respectivelyx < 1). Now, if x has a true bound of the form > | (respectively,
X < u), then the new bound is the true bound. Otherwis&,dbes not have a true
lower bound (respectively, upper bound), then the lowemnldas decreased by one
(respectively, the upper bound is increased by one). Adlaisjs useful to capture
the cases in which there are solutions with smalfitcients.

— from the second time a bound has to be enlarged onwards, daelakation of
bcl-maxsmt andbcl-omt follows basically what is described in Section 3, except
for a correction factor aimed at instances where soluti@ve lsome large values.
Namely, if x < u has to be enlarged and in the minimal mogé$ assigned value
U, then the new upper boundls+a-min(s, =), whereao andg are parameters,is
the number of times the upper bounddias been relaxed, amdis the number of
occurrences of in the original formula. As regardscl-cores, a similar expression
is used in which the current bounds used instead dfl, since there is no notion
of “best model”. The analogous strategy is applied for lol@unds.

In this evaluation we considered twdfiirent sets of benchmarks. The first bench-
mark suite consists of 1934 instances generated by ourregmsbased termination
prover [34]. As pointed out in Section 2.2, in these problems-linear monomials are
quadratic. Moreover, since it makes sense in our applicatar each benchmark we
have runz3 (which cannot solve any of our non-linear integer instapo@sversions
of the instances where all variables are reals. This has t@e@in order to perform a
fairer comparison, since unlike our approact®sis targeted to the real case. Results
can be seen in Table 1, where columns represent systemswasgossible outcomes
(SAT, UNSAT, UNKNOWN andTIMEOUT). Each cell contains the number of prob-
lems with that outcome obtained with the correspondingesysior the total time to
process them.

The second benchmark suite consists of 36 examples of SM)(@&nerated by
theQArmc-Hsf(c) tool [38], a predicate-abstraction-based model checkieravspecial
focus on liveness properties. In these problems all vaggahbte integer, and monomi-

3 Available atwww.1lsi.upc.edu/~albert/satl4.tgz.
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Table 1. Experiments with benchmarks from Termination prover

z3 bcl-cores || bcl-maxsmt bcl-omt
#prob| secs|| #prob| secs|| #prob| secs|| #prob| secs
SAT 1136 | 2578|| 1838 |5464|| 1852 |3198|| 1798|7896
UNSAT 0 0 0 0 4 0 62 | 112

UNKNOWN 11 2 0 0 0 0 0 0
TIMEOUT 787 |4722Q0| 96 |5760|| 78 |4680| 74 |4440

Table 2. Experiments with benchmarks from model checking

z3 bcl-cores || bcl-maxsmt bcl-omt

#prob| secs|| #prob| secs|| #prob| secs|| #prob | secs

SAT 30 2 35 | 55 35 | 72 34 | 263
UNSAT 1 0 1 0 1 0 1 0
UNKNOWN 0 0 0 0 0 0 0 0
TIMEOUT 5 | 300 0 0 0 0 1 60

als beyond quadratic appear. Results are in Table 2 andvftiie same format as in
Table 1.

As we can see in the tabldas;l-cores andbcl-maxsmt are the most féicient sys-
tems on satisfiable instances. WHhild-omt is doing slightly worseZ3 is clearly out-
performed, even when variables have real type. After inapgc¢he traces, we have
seen thabcl-omt enlarges the domains too slowly, which is hindering thedear

Regarding unsatisfiable instances, it can also be obsema¢td-cores performs
worse than the model-guided approaches, and that in plartioel-omt is surprisingly
effective. The reason is that, while the latter will always itifgrwhen the linear ab-
straction of the formula is unsatisfiable, this may not bectiee with the former, which
depending on the computed core may detect or not the unahiig§i. In particular,
bcl-cores does not guarantee that cores are minimal with respect ®esiticlusion,
and attempts to eliminate irrelevant clauses would implgwarhead that in most cases
would not pay d.

Finally, as a side note, it is worth mentioning that we alspegimented with a
mixed version of the Max-SMT and OMT approaches. This versiorks as follows.
Once the Max-SMT(LIA) finds a propositional model of the (positional skeleton of
the) linearization that minimizes the number of violatiofthe artificial bounds (this is
the Max-SMT part), instead of taking any of the solutiong gaisfy this propositional
model, one finds a solution among those that minimizes thardis with respect to
the artificial domains (this is the OMT part). This hybridina did not perform signif-
icantly better than the Max-SMT approach, because mosht dffite solution computed
by default by the Max-SMT(LIA) solver turns out to be alreamhtimal with respect to
the distance cost function, and in general the gain obtainitdthis final optimization
does not compensate the overhead it incurs in the total égadime.
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4 Extension to Max-SMT(NIA)

As we showed in previous work [34], the framework of Max-SMITA) is particu-
larly appropriate for constraint-based termination pngviOther applications of Max-
SMT(NIA) in program analysis can be envisioned given theremous expressive power
of its language. For the feasibility of this kind of appliicats, it is of paramount impor-
tance that fficient solvers are available. For this reason, this sectitiflbevdevoted to
the extension of our techniques for SMT(NIA) to Max-SMT(NIA

More specifically, the experiments in Section 3.3 indichtd,twhen applied to sat-
isfiable instances of SMT(NIA), the Max-SMT(LIA) approacthaves better than the
OMT(LIA) one, and similarly to the core-based one, althoogtthe instances coming
from our program analysis applications it tends to perfoetids. Because of this, in
Section 4.1 the Max-SMT(LIA) approach will be taken as a agion which a new
algorithm for Max-SMT(NIA) will be proposed, which is morarple and natural than
what a Max-SMT(NIA) system built on top of a core-based SMIKNsolver would
be. Finally, in Section 4.2 we will report on the applicat@mfran implementation of this
algorithm to program termination.

4.1  Algorithm

We will represent the inpuf, of a Max-SMT(NIA) instance as a conjunction of a set of
hard clause${ = {C1, - - - ,Cp} and a set of soft clausé&y = {{D1, wil, - - ,[Dm, wm]}-
The aim is to decide whether there exist assignmersisch thatr = Hp, and if so, to
find one such thakp ,jcs, | oep @ IS Minimized.

<Status Modeb solveMax SMT_NIA(Formula %) {
b = initial _bounds(¥y);
F = linearizg¥o, b);
bestsafar = 1;
maxsoft.cost= oo
while (not timedout()) {
(st mode} = solveMax SMT.LIA(¥, maxsoft.cos);
if (st== UNSAT)
if (bestsafar == 1) return < UNSAT, L >;
else return < SAT, bestsafar >;
else if (costz(mode) == 0) {
bestsafar = model;
maxsoft.cost= costs(mode) — 1;
}
else {
b = relax.domaingb, mode);
¥ = updatdF, b);
bl
return < UNKNOWN, L >;
}

Fig. 3. Algorithm for solving Max-SMT(NIA) based on Max-SMT(LIA)
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The algorithm for solving Max-SMT(NIA) is shown in Figure B its first step,
as usual the initial artificial bounds are chosen (procehitial _bound$ and the input
formulafo = Ho A So is linearized (procedutdearize). As a result, a weighted linear
formula¥ is obtained with hard clausé$ A C and soft clauseS A B, where:

— H andS are the result of replacing the non-linear monomialsfinandS, by their
corresponding fresh variables, respectively;

— C are the case splitting clauses;

— Bisthe set of artificial bounds of the form g |, Q], [x < u, '], where the weights
Q, & are positive numbers that are introduced in the lineadmati

Now notice that there are two kinds of weights: those fronathiginal soft clauses,
and those produced by the linearization. As they hafferdint meanings, it is conve-
nient to consider them separately. Thus, given an assignmeme define its(total)
costascos{a) = (cosl(a), costs(a)), wherecosiz(@) = Y g gjes | aps 2 IS thebound
cost i.e., the contribution to the total cost due to artificialubds, andcosts(a) =
YD.wjes | oD W IS the soft cost corresponding to the original soft clauses. Equiva-
lently, if weights are written as pairs, so that artificialupol clauses become of the
form [C, (€2, 0)] and soft clauses become of the for@) (0, w)], we can writecos{a) =
2IC(@w)]esus | apc(2, w) , where the sum of the pairs is component-wise.

In what follows, pairs ¢osts(«), costs(a)) will be lexicographically compared, so
that the bound cost (i.e., to be consistent in NIA) is morevaht than the soft cost.
Hence, by taking this cost function and this ordering we hawax-SMT(LIA) in-
stance in which weights are not natural or non-negativemaabers, but pairs of them.

In the next step of the algorithm, procedwelveMax SMT_LIA calls a Max-
SMT(LIA) tool to solve this instance. A efierence with the usual setting is that the Max-
SMT(LIA) solver admits a parametaraxsoft. costthat restrains the models of the hard
clauses we are considering: only assignmergach thatosk(a) < maxsoftcostare
taken into account. Thus, this adapted Max-SMT(LIA) solgemputes, among the
modelsa of the hard clauses such thaisis(a) < maxsoftcost(if any), one that min-
imizescos{«a). This allows one to prune the search lying under the Max-8NH)
solver when it is detected that the best soft cost found soalanot be improved. This
is not difficult to implement if the Max-SAT solver follows a branch-andund scheme,
as itis our case.

Now the algorithm examines the result of the call to the MMIELIA) solver.
If it is UNSAT, then there are no models of the hard clauses with soft casiat
maxsoftcost Therefore, the algorithm can stop and report the bestisaldbund
so far, if any. Otherwisemodelsatisfies the hard clauses and has soft cost at most
maxsoftcost If it has null bound cost, i.e., it is a true model of the halauses of
the original formula, then the best solution found so far anak soft costare updated,
in order to search for a solution with better soft cost. Hinal the bound cost is not
null, then domains are relaxed as described in SectionBdrdier to widen the search
space. In any case, the algorithm jumps back to a new catili@Max SMT_LIA.
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4.2 Application

As far as we know, none of the competing non-linear solvepsasiding native support
for Max-SMT, and hence no fair comparison is possible. Farrgason, in order to give
empirical evidence of the usefulness of the algorithm dlesdrin Section 4.1, here we
opt for giving a brief summary of the application of Max-SMY fgrogram termination

[34] and, most importantly, highlighting the impact of ouraldSMT solver on the

efficacy of the termination prover built on top of it.

Termination proving requires the generation of rankingfions as well as support-
ing invariants. Previous work [39] formulated invariantlaranking function synthesis
as constraint problems, thus yielding SMT instances. If, [84x-SMT is proposed as
a more convenient framework. The crucial observation i§ Hikeit the goal is to show
that program transitions cannot be executed infinitely bgifig a ranking function or
an invariant that disables them, if we only discover an imargy or an invariant and a
quasi-ranking functiorthat almost fulfills all needed properties for well-foundeds,
we have made some progress: either we can remove part ofs#titsarandor we have
improved our knowledge on the behavior of the program. A r@tway to implement
this idea is by considering that some of the constraints are {ihe ones guaranteeing
invariance) and others are soft (those guaranteeing weltdedness).

Thus, éficient Max-SMT solvers open the door to more refined analysesmina-
tion, which in turn allows one to prove more programs terrinta In order to support
this claim, we carried out the experiment reported in Tabletiere we considered two
termination provers:

— The tool SMT) implements the generation of invariants and ranking fionstus-
ing a translation to SMT(NIA), where all constraints arechar

— The tool Max-SMT) is based on the same infrastructure, but expresses tHeesjst
of invariants and ranking functions as Max-SMT(NIA) praiie As outline above,
this allows performing more refined analyses.

Table 3 presents the number of instances (#ins.) in eachhbear& suite we con-
sidered (from [40]) and the number of those that respegtigath system proved ter-
minating (with a timeout of 300 seconds). As can be seen ingbalts, there is a non-

Table 3. Comparison of SMT-based and Max-SMT-based terminationgrso

#ins.| SMT | Max-SMT
Setl| 449 | 212 228
Set2| 472 | 245 262

negligible improvement in the number of programs provethteating thanks to the
adoption of the Max-SMT approach and tHa@ency of our Max-SMT(NIA) solver.
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5 Conclusions and Future Work

In this paper we have proposed two strategies to guide damlaixation in the instantiation-
based approach for solving SMT(NIA) [26]. Both are based omjguting minimal
models with respect to a cost function, respectively, thelmer of violated artificial
domain bounds, and the distance with respect to the artitici@mains. The results of
comparing them with other techniques show their poteritalreover, we have devel-
oped an algorithm for Max-SMT(NIA) building upon the firstthiese approaches, and
have shown its impact on the application of Max-SMT(NIA) togram termination.

As for future work, several directions for further reseaceim be considered. Re-
garding the algorithmics, it would be interesting to lootoidifferent cost functions fol-
lowing the minimal-model-guided framework proposed héne the other hand, one of
the shortcomings of our instantiation-based approactoleiregy Max-SMT/SMT(NIA)
is that unsatisfiable instances that require non-trivial-tiwear reasoning cannot be
captured. In this context, the integration of real-goaléd@echniques adapted to SMT
[19] appears to be a promising line of work.

Another direction for future research concerns appliceti&o far we have applied
Max-SMT(NIA) to array invariant generation [27] and terrafion proving [34]. Other
problems in program analysis where we envision the Max-SWIAY framework could
help in improving the state-of-the-art are, e.g., the asialgf worst-case execution time
and the analysis of non-termination. Also, so far we have eohsidered sequential
programs. The extension of Max-SMT-based techniques tewoant programs is a
promising line of work with a potentially high impact in thedustry.

Acknowledgments. We thank C. Popeea and A. Rybalchenko for their benchmarks.
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