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Predicate abstraction - Overview

Model checking validates and debugs systems by exploration
of their state spaces

PROBLEM: state-space explosion

Hardware and protocols: very large number of states

Software: typically infinite-state

SOLUTION: analyze a finite-state abstraction of the system

PREDICATE ABSTRACTION [Graf and Saïdi, CAV’97]:

INPUT: a concrete system C (states + transition relation) and a
set of predicates P (properties of the system)

OUTPUT: finite-state conservative abstraction A.
(e.g. abstraction of state is the evaluation of P on it)

Conservative: if a property holds in A, a concrete version
holds in C
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Predicate abstraction - Key operation

PREDICATE ABSTRACTION-KEY OPERATION:

INPUT:

A theory T

A formula ϕ (representing, e.g., a set of concrete states)

A set of predicates P = {P1, . . . , Pn} describing some set of
properties of the system state

OUTPUT: the most precise T-approximation of ϕ using P

This amounts to compute either

FP(ϕ): the weakest Boolean
expression over P that T-implies ϕ,
or

ϕ

FP (ϕ)
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A set of predicates P = {P1, . . . , Pn} describing some set of
properties of the system state

OUTPUT: the most precise T-approximation of ϕ using P

This amounts to compute either

FP(ϕ): the weakest Boolean
expression over P that T-implies ϕ,
or

GP(ϕ): the strongest Boolean expres-
sion over P T-implied by ϕ

ϕ

GP (ϕ)
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Predicate abstraction - Example

INPUT: ϕ ≡ x < y − 2 ∨ x > y

P = {x < 0
︸ ︷︷ ︸

p1

, y = 2
︸ ︷︷ ︸

p2

, x 6= 4
︸ ︷︷ ︸

p3

)}

OUTPUT: FP(ϕ), the weakest formula over P T-entailing ϕ, is

(p1 ∧ p2) ∨ (p2 ∧ ¬p3)

Clearly:

x < 0, y = 2 |=T x < y − 2 ∨ x > y

y = 2, x = 4 |=T x < y − 2 ∨ x > y

But, is it the weakest such formula?
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Predicate abstraction - Computation

Some notation:

A cube is a conjunction of literals of P.

A minterm is a cube of size |P| with exactly one of Pi or ¬Pi.

The computation of FP(ϕ) and GP(ϕ) is given by:

FP(ϕ) is
∨
{c | c is a minterm over P and c |=T ϕ},

GP(ϕ) is ¬FP(¬ϕ).

GP(ϕ) is
∨
{c | c is a minterm over P and c ∧ ϕ is T-satisfiable},

ALGORITHM:

Check, for each minterm c, whether c∧ ϕ is T-satisfiable.
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Predicate abstraction - Existing methods

Three main approaches (in chronological order):

Check satisfiability of c ∧ ϕ for all minterms c (exponential
number of calls):

[Saidi and Shankar, CAV’99]: up to 3n calls

[Das et al, CAV’99]: up to 2n+1 calls

[Flanagan and Qaader, POPL’02]: up to n · 2n calls

Reduce the problem to Boolean quantifier elimination (and
use SAT-solving techniques):

[Lahiri et al, CAV’03]

[Clarke et al, FMSD’04]

Use symbolic decision procedures (symbolic execution of
decision procedures) [Lahiri et al, CAV’05]
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Introduction to SMT

Some problems are more naturally expressed in other logics
than propositional logic, e.g:

Software verification needs reasoning about equality,
arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a (ground) FO
formula with respect to a background theory T

Example ( Equality with Uninterpreted Functions – EUF ):

g(a)= c ∧ ( f (g(a)) 6= f (c) ∨ g(a)=d ) ∧ c 6=d

Wide range of applications:

Predicate abstraction

Model checking

Equivalence checking

Static analysis

Scheduling

...
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SMT - Eager approach vs lazy approach

EAGER APPROACH:

Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf SAT solver
[Bryant, Velev, Pnueli, Lahiri, Seshia, Strichman, ...]

Why “eager”? Search uses all theory information from the
beginning

Tools: UCLID [Lahiri, Seshia and Bryant]

LAZY APPROACH:

Methodology: integration of a SAT-solver with a theory solver

Why “lazy”? Theory information used lazily when checking
T-consistency of propositional models

Tools: CVC-Lite, Yices, MathSAT, TSAT+, Barcelogic ...
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SMT - Lazy approach example

Consider EUF and

g(a)= c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1, 2 ∨ 3, 4} to SAT solver
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SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models
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SMT - Lazy approach optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a
T-inconsistent subset M0 ⊆ M and add ¬M0 as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, use the conflicting clause ¬M0 to
backjump to some point where the assignment was still
T-consistent, as in SAT-solvers.
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SMT for Predicate Abstraction

INPUT: a formula ϕ, a set of predicates P and a theory T
OUTPUT: GP(ϕ) ≡

∨
{c | c is a minterm over P and c∧ϕ is T-sat}

IDEA:

introduce n fresh propositional variables B = {b1, . . . , bn}

consider the formula ψ ≡ ϕ ∧n
i=1 (bi ↔ Pi)

given a model M of ψ, project it onto B, i.e., collect the
conjunction of all B-literals in M and then replace each bi by
Pi. This gives a minterm c in GP(ϕ)

repeat the previous step for all models M

MISSING POINT:

need All-SAT mechanism to compute all models M
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Computation of all models of ψ

FIRST IDEA (black-box approach):

while ψ is T-satisfiable do

- Let the SMT-solver find a model M of ψ

- ψ := ψ ∧ ¬M

end while
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Computation of all models of ψ

FIRST IDEA (black-box approach):

while ψ is T-satisfiable do

- Let the SMT-solver find a model M of ψ

- M := projection of M onto B

- ψ := ψ ∧ ¬M

end while

Termination: each loops precludes a minterm, and there are
only finitely many

Calls to the SMT-solver are independent:

+ any off-the-shelf SMT-solver can be used

- no computations are reused between calls

Size of ψ may grow exponentially: 2n minterms to preclude
(however, note that typically n not larger than 30)
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Computations of all models of ψ (II)

SECOND IDEA (naive approach):

After adding ¬M to the formula, restart the SMT-solver but
reusing all generated lemmas
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Computations of all models of ψ (II)

SECOND IDEA (naive approach):

After adding ¬M to the formula, restart the SMT-solver but
reusing all generated lemmas

THIRD IDEA (refined approach):

Instead of adding ¬M to the formula do:

1. Consider ¬M as a conflicting clause

2. Apply conflict analysis mechanism to ¬M generating a
backjump clause (add it if wanted)

3. Backjump and continue the search for a model

Termination: more information at lower decision levels

ψ does not grow, but models may be enumerated more than
once
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Experimental evaluation

All three approaches were implemented on top of
BarcelogicTools SMT-Solver (BCLT)

The BDD package CUDD[Somenzi] was used to collect all
models and extract a compact representation

Benchmarks from different sources, but all of them are EUF +
Difference Logic, where atoms are, for example:

f (g(a), b) − c ≤ 4

Nelson-Oppen was not used, we used Ackermann’s reduction
instead to convert them into Difference Logic:

find two terms f (a1, . . . , an) and f (b1, . . . , bn)

replace them with ca and cb

add the clause a1 =b1 ∧ . . . ∧ an =bn → ca = cb
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Experimental results

Microsoft SLAM project: Windows device drivers verification

Initially, theorem prover ZAP [Ball et al, CAV’04] was used for
predicate abstraction

Specialized Symbolic Decision Procedures (SDP) [Lahiri et al,
CAV’05] obtained 100x speedup factor

The biggest availabe set of benchmarks (around 700 queries)
processed by SDP in around 700 seconds

BarcelogicTools only took 5 seconds, another 100x speedup
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Experimental results (II)

Hardware and protocol verification benchmarks used in [Lahiri and
Bryant, CAV’04]:

Benchmark UCLID BCLT

family # preds time (secs.) time (secs.) speedup

UCLID Suite:

aodv 21 657 4.6 143x

bakery 32 245 11 22x

BRP 22 3.5 0.1 35x

cache_ibm 16 34 1.3 26x

cache_bounded 26 1119 23 49x

DLX 23 335 13 26x

OOO 25 921 36 26x
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Experimental results (II)

Benchmarks from the verification of programs manipulating linked
lists (Qaader and Lahiri, POPL’06):

Benchmark UCLID BCLT

family # preds. time (secs.) time (secs.) speedup

Rec. Data Struct.:

reverse_acyclic 16 20 0.6 33x

set_union 24 22 0.7 31x

simple_cyclic 15 3.7 0.11 34x

sorted_int 21 765 19 40x
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Analysis of results - different settings

Benchmark BCLT (time in secs.) # cubes

family # minterms black-box naive refined in adv.

UCLID Suite:

aodv 2916 24 11 4.6 458

bakery 426 19 13 11 294

BRP 30 0.12 0.13 0.1 24

cache_ibm 326 2.3 2 1.3 123

cache_bounded 2238 63 31 23 1022

DLX 30808 242 63 13 2704

OOO 10728 176 57 36 242
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Incremental refinement

Computing GP(ϕ) might sometimes be too expensive

In those cases, a formula implied by ϕ might be enough

We have proposed a way to compute a sequence of

approximations {G
ki
P (ϕ)}m

i=1 such that:

Each approximation is more precise than the previous one

The last approximation is GP(ϕ)

The sequence can be computed incrementally

Basically, if restr(c, k) is a subcube of c of size k we have that

G
ki
P (ϕ) ≡

∨
{restr(c, ki) | c is a mint. over P and c ∧ ϕ is T-sat}

However, refinement is non-standard (not
counter-example-driven)
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Incremental refinement - Evaluation

Time in seconds

Benchmark only All sequence in steps of

family #preds. GP(ϕ) step of 1 step of 2 step of 5

UCLID Suite:

aodv 21 4.6 15 10 7.2

bakery 32 11 28 21 16

BRP 22 0.1 1.1 0.6 0.3

cache_ibm 16 1.3 3 2.2 1.7

cache_bounded 26 23 71 51 40

DLX 23 13 37 26 18

OOO 25 36 67 50 43

Step of 2 means computing G2
P(ϕ),G4

P(ϕ), . . . ,Gn
P(ϕ) ≡ GP(ϕ)
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Conclusions and future work

CONCLUSIONS:

SMT-based predicate abstraction engines can be very efficient

Very small implementation effort

FUTURE WORK:

Generation of partial models

Evaluate practicality of incremental refinement scheme

Develop refinement schemes over a monotonically growing
set of predicates
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