
DPLL(T):Fast Decision
Procedures

Harald Ganzinger George Hagen Robert Nieuwenhuis
Cesare Tinelli Albert Oliveras

MPI, Saarburcken The University of Iowa UPC, Barcelona

Computer Aided-Verification (CAV)

Boston, July 2004

1

In Memoriam

Harald Ganzinger (1950-2004)

2

Overview of this talk

1. Introduction

2. Lazy vs eager approach

Lazy approach: advantages and disadvantages

Eager approach: advantages and disadvantages

3. DPLL(T): Our framework for SMT

The DPLL algorithm

Branching heuristics, unit propagation and conflict

analysis

Comparison with existing approaches

4. A concrete case: EUF with offsets

A solver for EUF

Experimental results

5. Conclusions and future work

3

1.-Introduction

SMT: Satisfiability modulo theories

g(a)=c ∧ (f(g(a)) 6=f(c) ∨ g(a)=d) ∧ c 6=d

Theories of interest: EUF [Burch and Dill ’94], CLU

[Bryant, Lahiri and Seshia ’02], separation logic [BLS ’03],

arrays, ...

Applications: circuit design, compiler optimization,

planning, scheduling, software/hardware verification, ...

4

2.-State of the art

Lazy vs eager approach

Lazy approach

The following three steps are iterated

SAT solver looks for a propositional model

Specialized procedure for conjunctions of literals checks its

consistency

If model consistent then formula is SAT, otherwise a lemma

is added precluding the model

– constraints imposed by the theory introduced on demand

– Lazy/eager notification, online/offline SAT solver, extraction

of inconsistency proofs [Armando et al ’00; deMoura and Ruess

’02; Barret, Dill and Stump ’02; Flanagan et al ’03, etc]

5

2.-Lazy vs eager approach

Lazy vs eager approach

Lazy approach

Advantages:

• Use of off-the-shelf theory solvers

• Can use of almost off-the-shelf SAT solvers

Disadvantages:

• Information from the theory only used to validate

propositional models

• Too many iterations may be required

Tools: SVC, CVC (Lite), ICS, VeriFun, MathSAT

6

2.-Lazy vs eager approach

Lazy vs eager approach

Eager approach

formula converted into an equisatisfiable propositional one

to be checked by a SAT solver

Two steps (for CLU)

• Functional symbols are removed, only constants left

• (in)Equality is removed

Small-domain encoding (SD) [Pnuelli et al ’99, BLS ’02],

Per-constraint encoding (EIJ) [Bryant, German and Velev

’02; Bryant and Velev ’02], Hybrid methods [BLS ’02, ’03]

7

2.-State of the art

Lazy vs eager approach
Eager approach: different encodings

Given the equality formula:

(k1 = k2 ∨ k3 = k4) ∧ (k2 = k3 ∨ k1 = k4 ∨ k2 = k4)

Small Domain encoding (SD): propositional formula small but

suffers from loss of structure

(x11 ∨ ((x31 ∧ x41) ∨ (¬x31 ∧ x32 ∧ ¬x41))) ∧
(x31 ∨ ((x11 ∧ x41) ∨ (¬x11 ∧ x12 ∧ ¬x41)) ∨ x41)

Per-constraing encoding (EIJ): structure preserved but size

may be exponential if pred/succ allowed

(e12 ∨ e34) ∧ (e23 ∨ e14 ∨ e24)

e12 ∧ e24 ⇒ e14

e12 ∧ e14 ⇒ e24

. . .

8

2.-Lazy vs eager approach

Lazy vs eager approach

Eager approach

Advantages:

• Best SAT solver may be used as is

• Theory information compiled into the translated formula

Disadvantages:

• Loss of formula structure, exponential blowup in size

• Limited range of application

Tools: UCLID

9

3.-DPLL(T): Our framework for SMT

Our framework for SMT

DPLL(X) SolverT

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@R
DPLL(T)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�	

Based on theoretical calculus in [Tinelli’02]

10

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

-

Set a=b to true

a=b

11

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

�

Consequences: a=b

f(a)=f(b)

g(a)=g(b)

g(a)=g(b)

f(a)=f(b)

a=b

12

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

-

Set f(c) 6=e to true

g(a)=g(b)

f(a)=f(b)

a=b

f(c) 6=e

13

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

�

Consequences: f(c) 6=e

g(a)=g(b)

f(a)=f(b)

a=b

f(c) 6=e

14

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

-

Set c=a to true

g(a)=g(b)

f(a)=f(b)

a=b

f(c) 6=e

c=a

15

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

�

Consequences: c=a

f(a) 6=e

f(b) 6=e

g(a)=g(b)

f(a)=f(b)

f(a) 6=e

f(b) 6=e

a=b

f(c) 6=e

c=a

16

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

-

Is f(a)=f(b) true?

g(a)=g(b)

f(a)=f(b)

f(a) 6=e

f(b) 6=e

a=b

f(c) 6=e

c=a

17

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

�

YES

g(a)=g(b)

f(a)=f(b)

f(a) 6=e

f(b) 6=e

a=b

f(c) 6=e

c=a

18

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

-

Why is f(a) 6=e true?

g(a)=g(b)

f(a)=f(b)

f(a) 6=e

f(b) 6=e

a=b

f(c) 6=e

c=a

19

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

�

Because c=a, f(c) 6=e

g(a)=g(b)

f(a)=f(b)

f(a) 6=e

f(b) 6=e

a=b

f(c) 6=e

c=a

20

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

-

Backtrack 2 steps

g(a)=g(b)

f(a)=f(b)

f(a) 6=e

f(b) 6=e

a=b

f(c) 6=e

c=a

21

3.-DPLL(T): Our framework for SMT

Our framework for SMT
SolverT

DPLL(X)

'

&

$

%
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

DPLL(T)

���������������������

�

g(a)=g(b)

f(a)=f(b)

a=b

22

3.-DPLL(T): Our framework for SMT

The Davis-Putnam algorithm (DPLL)

Depth-first search algorithm with backtracking

At each point, the algorithm keeps a partial interpretation

and tries to extend it

Three successful mechanisms to speed up the search

• Branching heuristic: determines the literal to extend the

interpretation

• Unit propagation: prunes the search space

• Conflict Analysis: indicates where to backtrack to and

adds lemmas

23

3.-DPLL(T): Our framework for SMT

Branching heuristics

Unassigned literal with the highest score is selected

New literals introduced in CNF translation can be selected

VSIDS heuristic [Moskewicz et al ’01]

24

3.-DPLL(T): Our framework for SMT

T-based Branching heuristics

Unassigned literal with the highest score is selected

New literals introduced in CNF translation can be selected

VSIDS heuristic [Moskewicz et al ’01]

Theory-dependent heuristics

25

3.-DPLL(T): Our framework for SMT

Unit Propagation

A literal appearing in a unit clause has to be true

EXAMPLE:

• Consider the binary clause

a 6=d ∨ g(c)=h(a)

• Now add a=d to the interpretation.

• The binary clause becomes unit and g(c)=h(a) is added

to the interpretation

State-of-the-art mechanism to detect unit clauses: two

watched literal scheme [Moskewicz’01]

26

3.-DPLL(T): Our framework for SMT

T-based Unit Propagation

A literal appearing in a unit clause has to be true

EXAMPLE:

• Consider the binary clause

c 6=d ∨ g(c)=h(a)

• Now add a=d to the current interpretation I = {a=c}.

• The binary clause becomes unit due to the theory and

g(c)=h(a) is added to the interpretation

Literals returned by SetTrue allow DPLL(X) to detect these

unit clauses

27

3.-DPLL(T): Our framework for SMT

Conflict analysis

Analysis performed on the implication graph

Literals true due to

• decision (no antecedent in the graph)

• Unit propagation

Learning schemes: decision scheme, 1UIP, 2UIP, AllUIP

28

3.-DPLL(T): Our framework for SMT

T-based Conflict analysis

Analysis performed on the implication graph

Literals true due to

• decision (no antecedent in the graph)

• T -based unit propagation

Learning schemes similar to decision scheme, 1UIP, 2UIP,

AllUIP

UIP-based learning schemes do not lift with non-exhaustive

solvers

29

3.-DPLL(T): Our framework for SMT

Comparison with existing approaches

Neither loss of structure nor blowup in size

Theory information used to drive the search

General framework

Benefits from improvements in SAT technology

30

4.-A concrete case: EUF with offsets

A concrete case: EUF with offsets

Extension of EUF, but not full CLU

The sintax is:

formula :== true | false | predicateSymbol(int term, . . . , int term)
| ¬formula | (formula ∨ formula)
| (formula ∧ formula) | (int term = int term)

int term :== functionSymbol(int term, . . . , int term)
| ite(formula, int term, int term)
| succ(int term) | pred(int term)

31

4.-A concrete case: EUF with offsets

A solver for EUF with offsets

New DST-like algorithm for CC with offsets [Nieuwenhuis

and Oliveras ’03] is the key ingredient

Two initial transformations at the formula level done once

and for all

After that, only (dis)equalities between constants

32

4.-A concrete case: EUF with offsets

A solver for EUF with offsets

The full solver is an extension of the CC algorithm:

Deals with disequalities

Incremental and backtrackable

Explanations based on CC with proof extraction

[Nieuwenhuis and Oliveras ’04]

33

4.-A concrete case: EUF with offsets

Experimental results

Comparison with lazy approaches:

Family SVC ICS DPLL(T)

Buggy Cache (1 T) 6000 179 7
Code Validation 57 55 4
DLX processor 17 4 1
Elf processor (1 T) 6078 (4 T) 24001 575
OOO-rf (2 T) 12666 (2 M) 12458 6385
OOO-tag (4 T) 28768 (2 M, 2 T) 24050 1979
Load-Store (3 T) 18475 (1 M, 1 T) 12167 30
Cache Protocol (4 T) 26112 (5 T) 32022 3601
Two queues 1872 (2 M) 12175 74

T: timeout (more than 6000s.)

M: out of memory, counted as timeout

34

4.-A concrete case: EUF with offsets

Experimental results

Comparison with eager approaches (using BerkMin):

Family SD Hybrid DPLL(T)

Buggy Cache 2 3 7
Code Validation 45 28 4
DLX processor 10 13 1
Elf processor 5882 3182 575
OOO-rf (2 T) 18211 (1 T) 10126 6385
OOO-tag 247 6918 1979
Load-Store 51 45 30
Cache Protocol 4151 209 3601
Two queues 407 793 74

35

4.-A concrete case: EUF with offsets

Experimental results

Comparison with eager approaches (using Siege):

Family SD Hybrid DPLL(T)

Buggy Cache 2 4 7
Code Validation 34 28 4
DLX processor 12 13 1
Elf processor 3585 1653 575
OOO-rf (3 T) 18689 (2 T) 13180 6385
OOO-tag 211 (1 T) 7600 1979
Load-Store 54 45 30
Cache Protocol 4594 228 3601
Two queues 858 (1 T) 6809 74

36

5.-Conclusions and future work

Conclusions and future work

Conclusions:

New approach for SMT

Combines advantages of lazy and eager approaches

Experimental tests are highly positive

Future work:

Experiment with more theories

Define isolated core functionalities of the DPLL(X) engine

Extend to non-quantifier-free formulas

37

