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Introduction

® [Historically, automated reasoning = uniform proof-search
procedures for FO logic

® [ittle success: is FO logic the best compromise between
expressivity and efficiency?

® Current trend is to gain efficiency by:

» addressing only (expressive enough) decidable fragments
of a certain logic
» incorporate domain-specific reasoning, e.g:
s arithmetic reasoning
s equality
s data structures (arrays, lists, stacks, ...)
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Introduction (2)

Examples of this recent trend:

® SAT: use propositional logic as the formalization language

+ high degree of efficiency
- expressive (all NP-complete) but not natural encodings

® SMT: propositional logic + domain-specific reasoning

+ improves the expressivity
- certain (but acceptable) loss of efficiency

GOAL OF THIS COURSE:
study techniques, tools and applications of SAT/SMT
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Need and Applications of SMT

® Some problems are more naturally expressed in other logics
than propositional logic, e.g:

» Software verification needs reasoning about equality,
arithmetic, data structures, ...

® SMT consists of deciding the satisfiability of a (ground) FO
formula with respect to a background theory

® FExample ( Equality with Uninterpreted Functions — EUF ):
g@=c A (f(g(@)#f(c)Vvg@=d) A cid
® Wide range of applications:

: . Static analysis
o Predicate abstraction Y

» Model checking Scheduling

: : Test-case generation
» Equivalence checking 5

e o o o
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Theories of Interest - EUF

® Equality with Uninterpreted Functions, i.e. “=" is equality
® [f background logic is FO with equality, EUF is empty theory

® Consider formula
ax(f(b)+f(c))=d A bx(f(a)+f(c))#d A a=b

#® Formula is UNSAT, but no arithmetic resoning is needed

® If we abstract the formula into

h(a, g(f(b),f(c)))=d A h(b, g(f(a),f(c)) )#d A a=b
it is still UNSAT

® FEUFis used to to abstract non-supported constructions
» Non-linear multiplication
o ALUs in circuits
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Theories of Interest - Arithmetic

® Very useful for obvious reasons

® Restricted fragments support more efficient methods:
» Bounds: x>tk with e {<,>,<,>}
s Difference logic: X —y <k, with xe {<,>,<,>}
o UTVPL x+ymxk, with xe {<,>,<,>}
» Linear arithmetic, e.g: 2x—3y+4z<5
s Non-linear arithmetic, e.g: 2xy + 4xz> — 5y < 10

» Variables are either reals or integers
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Theories of Interest - Arrays

® Two interpreted function symbols read and write

°

Theory is axiomatized by:

s VaVivv (read(write(a,i,v),i) = V)

s Vavivjwv (i # ] — read(write(a,i,v),i) =read(a,j))
® Sometimes extensionality is added:
s Vavb ((Vi(read(a,i) =read(b,i))) —a=Db

® [s the following set of literals satisfiable?
write(a,i,x) #b read(b,i) =y read(write(b,i,x),j) =y

® Used for:
o Software verification
o Hardware verification (memories)
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An Introduction toSatisfiability Modulo Theories — p. 8



Theories of Interest - Fixed-width bit vectors

® Constants represent vectors of bits

® Useful both for hardware and software verification

® Different type of operations:
» String-like operations: concat, extract, ...
» Logical operations: bit-wise not, or, and, ...
» Arithmetic operations: add, substract, multiply, ...

® Assume bit-vectors have size 3. Is the formula SAT?

al0:1] #bl0:1] A (ab)=c A c[0]=0 A all]+b[1] =0
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Theories of Interest - Combinations

® In practice, theories are not isolated
® Software verifications needs arithmetic, arrays, bitvectors, ...

® Formulas of the following form usually arise:

a=b+2 A A=write(B,a+1,4) A (read(Ab+3)=2V f(a—1)# f(b+1))

® The goal is to combine decision procedures for each theory
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Eager approach

® Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf SAT solver
[Bryant, Velev, Pnueli, Lahiri, Seshia, Strichman, ...]

®» Why “eager”?
Search uses all theory information from the beginning

® C(Characteristics:

+ Can use best available SAT solver
- Sophisticated encodings are needed for each theory

® Tools: UCLID [Lahiri, Seshia and Bryant]
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Lazy approach

Methodology:
Example: consider EUF and

g(@a)=c A (f(g(a))#f(c)vg(@=d) A c#d
N—— \ $ v N — ——
1 5 3 i
® SAT solver returns model [1, 2, 4]
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Lazy approach

Methodology:
Example: consider EUF and

&a)lif A (j(g(a)l#f(c)JvQ(a)g:q) A 3;9
2 Z

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent
Send {1,2Vv3,4,1V 2V 4} to SAT solver
SAT solver returns model [1, 2, 3,4

Theory solver says T-inconsistent

SAT solver detects {1,2Vv3,4,1v2Vv4,1v2Vv3V4}
UNSATISFIABLE

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

An Introduction toSatisfiability Modulo Theories — p. 12



Lazy approach (2)

® Why “lazy”?
Theory information used lazily when checking T-consistency
of propositional models

® C(Characteristics:

+ Modular and flexible
- Theory information does not guide the search

® Tools:
» Barcelogic (UPC)

o CV(C3 (Univ. New York +
Iowa)

o DPT (Intel)

MathSAT (Univ. Trento)
Yices (SRI)
Z3 (Microsoft)

e o o @
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Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

® Check T-consistency only of full propositional models
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Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

p CheckTcons: oo £l )

® Check T-consistency of partial assignment while being built

»_Cs T . . M-_add—M ]

® Given a T-inconsistent assignment M, identify a T-inconsistent
subset Mg € M and add —Mg as a clause

® Upon a T-inconsistency, add clause and restart
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Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

p CheckTcons: oo £l )

® Check T-consistency of partial assignment while being built

»_Cs T . . M-_add—M ]

® Given a T-inconsistent assignment M, identify a T-inconsistent
subset Mg € M and add —Mg as a clause

o U T : o ddel i
® Upon a T-inconsistency, bactrack to some point where the
assignment was still T-consistent
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Lazy approach - Important points

Important and benefitial aspects of the lazy approach:
(even with the optimizations)

® Everyone does what he/she is good at:

» SAT solver takes care of Boolean information
» Theory solver takes care of theory information

® Theory solver only receives conjunctions of literals

® Modular approach:
» SAT solver and T-solver communicate via a simple API
» SMT for a new theory only requires new T-solver

» SAT solver can be embedded in a lazy SMT system with
very few new lines of code (40?)
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Lazy approach - T-propagation

® As pointed out the lazy approach has one drawback:
» Theory information does not guide the search

#® How can we improve that?
T-Propagate :
M=t |

M| F = MI || F If
| | { | or =l occurs in F and not in M

® Search guided by T-Solver by finding T-consequences,
instead of only validating it as in basic lazy approach.

® Naive implementation:: Add —l. If T-inconsistent then infer |.
But for efficient Theory Propagation we need:

-T-Solvers specialized and fast in it.
-fully exploited in conflict analysis

This approach has been named DP LL(T )

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
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DPLL(T) - Example

Consider again EUF and the formula:

g@)=c A (f(g(@)#f(c) vg@=d) A c#d
1 2 3 z

0| 1, 2v3,4 = (UnitPropagate)
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DPLL(T) - Example

Consider again EUF and the formula:

g(a)lzc A (j(g(a)i#f(C)VQ(aQZQ) N ozd
2 4

\

0| 1, 2v3,4 = (UnitPropagate)
1] 1,2v3,4 = (T-Propagate)
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DPLL(T) - Example

Consider again EUF and the formula:

g@=c A (f(g(@)#f(c)va@=d) A cid

N—— ~- o ~- S~
1 2 3 4
0| 1, 2v3, 4 (UnitPropagate)

=
N

=
=  (T-Propagate)
=

N
e
NI
<

W
N

(UnitPropagate)
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DPLL(T) - Example

Consider again EUF and the formula:

g@=c A (f(g(@)#f(c)va@=d) A cid

1 Yy 3 o
0| 1, 2v3,4 = (UnitPropagate)
1] 1,2v3,4 = (T-Propagate)
12| 1, 2v3, 4 = (UnitPropagate)
123 || 1, 2v3,4 = (T-Propagate)
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0| 1, 2v3,4 = (UnitPropagate)
1] 1,2v3,4 = (T-Propagate)
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DPLL(T) - Overall algorithm

High-levew view gives the same algorithm as a CDCL SAT solver:
whi l e(true){

whil e (propagate_gives conflict()){
| f (decision_|evel==0) return UNSAT,
el se anal yze conflict();

}

restart if _applicable();
renove | emmas i f _applicable();

If (!decide()) returns SAT;, // Al vars assigned
}

Differences are in:
® propagate gives conflict
® analyze conflict

An Introduction toSatisfiability Modulo Theories — p. 18



DPLL(T) - Propagation

propagate gives conflict( ) returns Bool
do {

[l unit propagate
If ( unit_prop gives conflict() ) thenreturn false

[l check T-consistency of the nodel
If ( solver.is nodel inconsistent() ) thenreturn false

[l theory propagate
sol ver.theory propagate()

} while (sonmeTheoryPropagation)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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DPLL(T) - Propagation (2)

® Three operations:
» Unit propagation (SAT solver)
» Consistency checks (T-solver)
» Theory propagation (T-solver)

® Cheap operations are computed first
® [f theory is expensive, calls to T-solver are sometimes skipped

® For completeness, only necessary to call T-solver at the leaves
(i.e. when we have a full propositional model)

® Theory propagation is not necessary for completeness

Departament de Llenguatges i Sistemes Informatics
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DPLL(T) - Conflict Analysis

Remember conflict analysis in SAT solvers:

C.= conflicting clause
while C contains nore than one [it of |ast DL

|.=last literal assigned in C
C: =Resol ution(C, reason(l))

end while

/[l et C=C v I wherel is UP
backj unmp(maxDL(C ))

add | to the nodel wth reason C
| earn(C
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DPLL(T) - Conflict Analysis (2)

Conflict analysis in DPLL(T):

If bool ean conflict then C.= conflicting clause
else C:.=—( solver.explain_inconsistency() )
while C contains nore than one |it of last DL

|.=last literal assigned in C
C: =Resol ution(C, reason(l))

end while

[l et C=C v I wherel is UP
backj unmp(maxDL(C ))

add | to the nodel wth reason C
| earn( C)
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DPLL(T) - Conflict Analysis (3)

What does expl ai n_i nconsi st ency return?

® A (small) conjuntion of literals I1 A ... Aln such that:
» They were in the model when T-inconsistency was found
» [tis T-inconsistent

What is now reason(l)?

® [f | was unit propagated — clause that propagated it

® [f| was T-propagated?

» T-solver has to provide an explanation for |, i.e.
a (small) set of literals I1,...,|, such that:

s They were in the model when | was T-propagated
s |1/\.../\|n):'|'|
® Thenreason(l)is —lyV...V—lp Vi

Departament de Llenguatges i Sistemes Informatics
TTTTTTTTTTTTTTTTT CNICA DE CATALUNYA

An Introduction toSatisfiability Modulo Theories — p. 23



DPLL(T) - Conflict Analysis (4)

Let M be of the form N,c=Db, f(a)# f(b) and let F contain
a=bvg(@#gb), h@=h(c)vp  g@=gb)Vv-p

Take the following sequence:

Decide h(a) #h(c)

T-Propagate a# b (due to h(a) #h(c) and c=h)

UnitPropagate g(a) #=g(b)

UnitPropagate p

Conflicting clause g(a) =g(b) VvV —p

o1 & =

Explain(a#b) is {h(a) #h(c),c=b}

a=bv h(a)=h(c) v
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DPLL(T) - Some final remarks

® Completing a partial model is no longer a trivial task
(no proper solution found so far)

® What about T-based decision heuristics?
(no successful alternative found so far)

® What about producing proofs? 3 things to check

» Explanations of inconsistencies are T-tautologies
» Explanations of T-propagations are T-tautologies
» Resolution propositional proof is correct

See http://ww.sntlib.org for benchmarks, theories, ...

® Seehttp://waw. sntconp.org for competition results
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