Journal of Artificial Intelligence Research 31 (2008) 1-32 Submitted 5/07; published 01/08

MINIMAX SAT: An Efficient Weighted Max-SAT Solver

Federico Heras FHERAS@LSI.UPC.EDU
Javier Larrosa LARROSA@LSI.UPC.EDU
Albert Oliveras OLIVERAS@LSI.UPC.EDU

Technical University of Catalonia, LSI Department
Jordi Girona 1-3, 08034, Barcelona, Spain.

Abstract

In this paper we introduce MIMAX SAT, a new Max-SAT solver that is built on top of IM-
ISAT+. It incorporates the best current SAT and Max-SAT techegjut can handle hard clauses
(clauses of mandatory satisfaction as in SAT), soft cladskesises whose falsification is penal-
ized by a cost as in Max-SAT) as well as pseudo-boolean dbgefetnctions and constraints. Its
main features are: learning and backjumping on hard claussslution-based and substraction-
based lower bounding; and lazy propagation with the tweehed literal scheme. Our empirical
evaluation comparing a wide set of solving alternatives broad set of optimization benchmarks
indicates that the performance ofiMMAX SAT is usually close to the best specialized alternative
and, in some cases, even better.

1. Introduction

Max-SAT is the optimization version of SAT where the goaldssatisfy the maximum number of
clauses. Itis considered one of the fundamental combimhtmstimization problems and many im-
portant problems can be naturally expressed as Max-SAW iflskide academic problems such as
max cutor max clique as well as real problems in domains likeuting, bioinformatics scheduling
or electronic markets

There is a long tradition of theoretical work about the sineed complexity (Papadimitriou,
1994) and approximability (Karloff & Zwick, 1997) of Max-SAMost of this work is restricted to
the simplest case in which all clauses are equally impottantunweighted Max-SAT) and have a
fixed size (mainly binary or ternary). From a practical paifitiew, significant progress has been
made in the last 3 years (Shen & Zhang, 2004; Larrosa & Heff}§;2 arrosa, Heras, & de Givry,
2007; Xing & Zhang, 2005; Li, Manya, & Planes, 2005, 2006 #result, there is a handful of
new solvers that can deal, for the first time, with instanogslving hundreds of variables.

The main motivation of our work comes from the study of Max¥3Astances modelling real-
world problems. We usually encounter three features:

e The satisfaction of all clauses does not have the same et so each clause needs to be
associated with a weight that represents the cost of itatiiwl. In the extreme case, which
often happens in practice as observed by Cha, lwama, Karsbiayand Miyazaki (1997),
there are clauses whose satisfaction is mandatory. Thaysaedly modelled by associating
a very high weight with them.

e Literals do not appear randomly along the clauses. On th&agnit is easy to identify
patterns, symmetries or other kinds of structures.

(©2008 Al Access Foundation. All rights reserved.

HERAS, LARROSA, & OLIVERAS

¢ In some problems there are mandatory clauses that redunatically the number of feasible
assignments, so the optimization part of the problem ordygh secondary role. However,
in some other problems mandatory clauses are triviallgfalile and the real difficulty lays
on the optimization part.

When we look at current Max-SAT solvers, we find that none efrthis robust over these three
features. For instance, Li et al.’s (2005, 2006) solvergestricted to formulas in which all clauses
are equally important (i.e. unweighted Max-SAT), Shen ahdrfy’s (2004) one is restricted to bi-
nary clauses, the one described by Larrosa et al. (2007)sstedwe efficient on very overconstrained
problems {.e., only a small fraction of the clauses can be simultaneowigfted), while the one by
Alsinet, Manya, and Planes (2005) seems to be efficientightll overconstrained problemsd.
almost all the clauses can be satisfied). The solver degdopérgelich and Manya (2007), devel-
oped in parallel to the research described in this papethaadle mandatory clauses and is the only
one that incorporates some learning, so it seems to perfaihow structured problems. However,
all non-mandatory clauses must have the same weight. ¥imglproaches based on translating a
Max-SAT instance into a SAT instance and solve them with a SélVer seem to be effective in
highly structured problems in which almost all clauses aaadatory (Fu & Malik, 2006; Le Berre,
2006).

In this paper we introduce MIMAXSAT, a hew weighted Max-SAT solver that incorporates
the current best SAT and Max-SAT techniques. It is build gndbMINISAT+ (Eén & Sorensson,
2006), so it borrows its capability to deal with pseudo-leaol problems and all the iIMI SAT (Eén
& Sorensson, 2003) features processing mandatory clausbsas learning and backjumping. We
have extended it allowing it to deal with weighted clausdsilevpreserving the two-watched literal
lazy propagation method. The main original contributionMoivi M AX SAT is that it implements
a novel and very efficient lower bounding technique. Speaitlficit applies unit propagation in
order to detect disjoint subsets of mutually inconsistdatises as done by Li et al. (2006). Then
it simplifies the problem following Larrosa and Heras (2Q@3¢ras and Larrosa (2006), Larrosa
et al. (2007) in order to increment the lower bound. Howewmkile in those works only the clauses
that accomplish specific patterns are transformed, iIRIMAX SAT there is no need to define such
patterns.

The structure of the paper is as follows: Section 2 providesminary definitions on SAT and
Section 3 presents state-of-the-art solving techniquesrjrorated in a modern SAT solver such as
MINISAT. Then, Section 4 presents preliminary definitions on MaX-8Ad Section 5 overviews
MINIMAX SAT. After that, Sections 6 and 7 focus on its lower bounding additenal features,
respectively. In Section 8 we present the benchmarks usedrirempirical evaluation and we
report the experimental results. Finally, Section 9 preseslated work and Section 10 concludes
and points out possible future work.

2. Preliminaries on SAT

In the sequeK = {x1,X,..., %} is the set of boolean variables.literal is either a variable; or its
negationx. The variable to which literdlrefers is notediar(l). Given a literal, its negatior is x;

if 1 isx and isx; if | isx;. A clause Gis a disjunction of literals. Theizeof a clause, notefC|, is the
number of literals that it has. The set of variables that appeC is notedvar(C). Sometimes we
associate a subscript Greek letter to a clause (&.X;)q) in order to facilitate future references
of such clause.

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

Algorithm 1: DPLL basic structure.
Function Search() : boolean

1 InitQueue() ;

2 Loop

3 UP();

4 if Conflictthen

5 AnalyzeConflict() ;

6 if Top Conflictthen return false;
else

7 LearnClause() ;

8 L Backjump() ;

9 else ifall variables assignedhen return true;

10 else

11 | := SelectLiteral() ;

12 | Enqueue,l) ;

An assignments a set of literals not containing a variable and its negatidssignments of
maximal sizen are calledcomplete otherwise they are callgghrtial. Given an assignment, a
variablex is unassignedf neither x nor x belong toa . Similarly, a literall is unassignedf var(l)
is unassigned.

An assignmensatisfiesa literal iff it belongs to the assignmentsiatisfiesa clause iff it satisfies
one or more of its literals and falsifiesa clause iff it contains the negation of all its literals. et
latter case we say that the clausedmflicting as it always happens with the empty clause, noted
0. A boolean formular in conjunctive normal fornrfCNF) is a set of clauses representing their
conjunction. A model ofr is a complete assignment that satisfies all the clauses in

If # has a model, we call gatisfiable otherwise we say it isinsatisfiable Moreover, if all
complete assignments satisfy, we say thatr is atautology

Clauses of size one are calladit clausesor simply units When a formula contains a uritit
can be simplified by removing all clauses containlirand removing from all the clauses where it
appears. The application of this rule until quiescence lis¢anit propagation(UP) and it is well
recognized as a fundamental propagation technigue in abicuSAT solvers.

Another well-known rule igesolution which, given a formula containing two clauses of the
form (xV A), (xV B) (calledclashing clausgs allows one to add a new claus&V B) (calledthe
resolveny.

3. Overview of State-of-the-art DPLL-based SAT Solvers

In this section we overview the architecture of SAT solveasdal on the DPLL (Davis, Logemann,
& Loveland, 1962) procedure. This procedure, currentlyardgd as the most efficient complete
search procedure for SAT, performs a systematic depthstiestch on the space of assignments. An
internal node is associated to a partial assignment andidtsticcessors are obtained by selecting
an unassigned variableand extending the current assignment withndx, respectively. At each
visited node, new units are derived due to the applicatioanitf propagation (UP). If that leads

HERAS, LARROSA, & OLIVERAS

Algorithm 2: Unit Propagation.
Function UP(Q) : Conflict

while (Q contains non-propagated literglslio
13 | :== GetFirstNonPropagatedL@); MarkAsPropagatetly ;
14 foreach clause Cv | that becomes unit or falsifiedo
15 if CVv | becomes a unit then EnqueuéQ,q) ;
16 L else ifCV | becomes falsifiethen return Conflict;
| return None;

to a conflicting clause, the procedure backtracks, perfognmion-chronological backtracking and
clause learning, as originally proposed by Silva and Sakd[1996).

An algorithmic description of the DPLL procedure appearlgorithm 1. The algorithm uses a
propagation queu® which contains all units pending propagation and also dositarepresentation
of the current assignment.

First, propagation queu@ is filled with the units contained in the original formulan@ 1). The
main loop starts in line 2 and at each iteration proceduredJP ¢harge of propagating all pending
units (line 3). If a conflicting clause is found (line 4), thendlict is analyzed (line 5) and as a result
a new clause ikarned(i.e, inferred and recorded, line 7).

Then, the procedure backtracks, using the propagationeqQdo undo the assignment until
exactly one of the literals of the learned clause becomessigized (line 8). If one can further
backtrack while still maintaining this condition, it is aattageous to do so (this is commonly re-
ferred to asbackjumpingor non-chronological backtrackingsee Silva & Sakallah, 1996). If UP
leads to no conflict, a new unassigned literal is selectecktiend the current partial assignment.
The new literal is added tQ (line 10) and a new iteration takes place.

The procedure stops when a complete assignment is fouredQ)Jior when a top level conflict
is found (line 6). In the first case, the procedure retarns which indicates that a model has been
found, while in the second case it returfalse which means that no model exists for the input
formula.

The performance of DPLL-based SAT solvers was greatly ingotdn 2001, when the SAT
solver (HAFF (Moskewicz, Madigan, Zhao, Zhang, & Malik, 2001) incorpe thetwo-watched
literal scheméfor efficient unit propagation, thEirst UIP schemgZhang, Madigan, Moskewicz,
& Malik, 2001) for clause learning and the chedfIDSbranching heuristic. Currently, most state-
of-the-art SAT solvers, like MiISAT (Eén & Sorensson, 2003), implement small variations bf al
these three features. In the following we describe them irerdepth.

3.1 Unit Propagation

The aim of unit propagation is twofold: on the one hand, itdiatl clauses that have become units
due to the current assignment, and on the other hand, ittdetdether some clause has become
conflicting. A more concrete procedure is given in AlgoritBmWhile non-propagated literals exist
in Q, it picks the oldest onk and marks it as propagated (line 13). Then all clauses aontgi
that may have become falsified or units are traversed (wdatdt describe how these clauses are
detected). If one of such clauses becomes agyriitis enqueued i to be propagated later (line

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

15). The procedure iterates until there are no more unitsdpamate or until a conflicting clause is
found (line 16).

There are two types of literals @: decision literalsare those that the algorithm has heuristically
selected and assigned at a branching point (lines 11 andAlganithm 1); consequence literaksre
those which are added because they are logical consequafmmevious decision literals (line 15).
MINISAT uses a hon-standard queue to handle units pending proprgiilike classical queues,
after fetching an element, it is not removed, but just markeduch. Consequenti@ is formed
by two sets of elements: the already propagated literalsfandterals pending propagation. The
advantage of such strategy is that at any execution pQimtiso contains the current assignment.
Besides, the propagated literals@fre divided intadecision levelsEach decision level contains a
decision literal and the set of its related consequenceashémore, a literal is associated with the
original clause that caused its propagation and it is nosd¢og; such a clause is usually referred

to as thereasonof |. Note that a decision literdldoes not have easonand will be represented as
19,

Example 1 Consider the formuld (X1 V X2)a, (X1 V X3)g, (X4 V X5)y}. Before starting the execution,
the propagation queue is empty=-Q)[||]. We use the symbgito separate propagated literals (on
the left) from literals pending propagation (on the rightlf. literal x; is selected, it is added to
Q. Before propagation the queue contains:QHx‘l’]. UP will propagate x and add two new
consequencesyyand %. The propagation queue is now Q [x{||xx(a),xs(B)] and the current
assignment i$x1, x2,X3}. The propagation ofxand % does not add new literals to Q, so it becomes
Q= [X(i,Xz((X),X;g(B)H] _

If x4 is decided, UP will add a new consequence After the propagation, we have 9
x4, % (a),%3(B), x4, %5(Y)||]. The current assignment {1, Xz, X, X4, Xs }. Note that no more literals
can be propagated and a complete assignment has been fourtd.abl well that Q contains two
decision levels: the first one is formed by literals % and » while the second one is formed by
literals x4 and xs.

3.1.1 Lazy DATA STRUCTURES

As mentioned, the aim of UP is to detect all units and all cofiflg clauses. Taking into account
that this process typically takes up to 80% of the total metiof a SAT solver, it is important to
design efficient data structures.

The first attempt was the use adijacency listsFor each literal, one keeps the list of all clauses
in which the literal appears. Then, upon the addition ofexditl to the assignment, only clauses
containingl have to be traversed. The main drawback of further refinesnentletect efficiently
when a clause has become unit, such as keepingtersindicating the number of unassigned
literals of a clause, is that they involved a considerablewarhof work upon backtracking.

The method used by M1 SAT is thetwo-watched literal scheniatroduced by Moskewicz et al.
(2001). Its basic idea is that a clause cannot be unit or ctinfii if (i) it has one satisfied literal or
(ii) it has two unassigned literals.

The algorithm keeps two special literals for each clausbeatdhe watched literals initially
two unassigned literals, and tries to maintain the invarihat always one satisfied literal or two
unassigned literals are watched.

The invariant may be broken only if one of the two watcheddite becomes falsified. In this
case, the clause is traversed looking for another non-fadgal to watch in order to restore the

HERAS, LARROSA, & OLIVERAS

invariant. If one such literal cannot be found, the clauskerdared to be true, unit or conflicting de-
pending on the value of the other watched literal. Hence ywvehléerall is added to the assignment,
the clauses that may have become falsified or unit (line 14lgohm 2) are only those clauses
wherel is watched.

The main advantage of such an approach is that no work on slused has to be done upon
backtracking. However, the main drawback is that the only teaknow how many literals are
unassigned for a given clause is by traversing all its liserlote that this information is used by
other techniques such as theo-sided Jeroslowranching heuristic (See Section 3.3).

3.1.2 RESOLUTION REFUTATION TREES

If UP detects a conflict, an unsatisfiable subset of clausesan be determined using the infor-
mation provided byQ. Sincer ’ is unsatisfiable, the empty clausecan be derived fronx ’ via
resolution. Such resolution process is calledfatation A refutation for an unsatisfiable clause set
7' is aresolution refutation tre€or simply arefutation tre¢ if every clause is used exactly once
during the resolution process.

A refutation tre€Y"can be built from the propagation quees follows: letCy be the conflicting
clause. Travers® in aLIFO (Last In First Ouj fashion until a clashing claud®, is found. Then
resolution is applied betwedy andDy, obtaining resolvent;. Next, the traversal o continues
until a clauseD1 that clashes witl€; is found, giving resolvent, and we iterate the process until
the resolvent we obtain is the empty clause The importance of refutation trees will become
relevant in Section 6.

Example 2 Considers = {(X1)a, (X1 V Xa)p, (X1 V X2)y, (X1 VX3V X4)5, (X1 V X2 V X3)e, (X1 V X5)¢ } -

If we apply unit propagation the unit clauseis enqueued producing € [||xi(a)]. Thenx is
propagated and Q becomes (a)||x4(B),*2(Y),Xs($)]. After that, literal » is propagated causing
claused to become unit and Q becomes (a),x4(B)||%2(y),Xs(d),x3(d)]. After that, literal %
is propagated and clauseis found to be conflicting. Figure 1.a shows the state of Qrdfie
propagation.

Now we build the refutation tree. Starting from the tail of g ffirst clause clashing with the
conflicting clause is 8. Resolution betweenand & generates the resolvent X x, V X4. The first
clause clashing withxis y, producing resolventx/ x4. The next clause clashing with s 3 and
resolution generates;x Finally, we resolve with clause and we obtaind.Figure 1.b shows the
resulting refutation tree.

3.2 Learning and Backjumping

Learning and backjumping are best illustrated with an exartgee Silva & Sakallah, 1996; Zhang
et al., 2001, for a precise description):

Example 3 Consider the formuld (X1 VV X2)q, (X3 V Xa)p, (X5 V X6)y, (X2 V X5 V X6)5} and the partial
assignment{xi, X2, X3, X4, X5, X} that leads to a conflict over clause Suppose that the current
propagation queue is @ [x{,xz(cr), X3, xa(B), X2, (V)]

In the example it is easy to see that decisi@hsdncompatible with decisiongx Such incom-
patibility can be represented with clauée V xs). Similarly, consequence s incompatible with
decision § and it can be represented with the clayseV Xs).

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

Fo={(%)a, (X1 VXa)p, (X1 VX2)y, (X1 VX3V Xa) 5, (X1 VX2V X3)e, (X1 V X5) }

| (X1VX2VX3)e (X1VX3VXa)s
X3(8) X1VXeVXe (X1 VX)y
(0) -
X2(Y) X1V Xa (X1VXa)p
_1(0() X1 (X_1>a

Y

O
a) b)

Figure 1: Graphical representation of the propagation g@zand a refutation tre® of example
2. On the top, the original formula . On the left, the propagatio@ after step 1. Arrows
indicate the order in which resolving clauses are selec@ethe right, the resolution tree
computed in step 2.

Clause learning implements different techniques that seel tiodiscoversuch implicit incom-
patibilities and adds them to the formula. Learned clausesaccelerate the subsequent search,
since they can increase the potential of future UP execsitiblfowever, it has been observed that
unrestricted clause learning can be impractical in somescégcorded clauses consume memory
and repeated recording may lead to its exhaustion). Fordghson, current SAT solvers incorporate
different clause deletion policies in order to remove soffrth® learned clauses.

Learned clausesan also be used to backjump if their presence would haveedl@ unit prop-
agation at an earlier decision level. In this case, we saythieeclause isssertingand backjumping
can proceed by going back to that level and adding the unjiggated literal. Among the several
automated ways of generating asserting clauses) 8AT uses the so-callelirst Unique Implica-
tion Point(1UIP) (Zhang et al., 2001).

3.3 Branching Heuristic

Branching occurs in the functid®el ect Li t er al (Algorithm 1). When there are no more literals
to propagate, this function chooses one variable from allitiassigned ones and assigns it a value.

HERAS, LARROSA, & OLIVERAS

The importance of the branching heuristic is well knowngsiudlifferent branching heuristic may
produce different-sized search trees.

Early branching heuristics include tiBohm’s Heuristic(Buro & Bining, 1993), theMaxi-
mum Ocurrences on Minimum sized clau@d©M) (Freeman, 1995) and thievo sided-Jeroslow
Wang Heuristic(Jeroslow & Wang, 1990). Those heuristics try to choose iteeal such that its
assignment will generate the largest number of implicationthat satisfy most clauses. All these
heuristics arestate dependenthat is, they use information about the state of the clagses the
current assignment. In most of them, such information isitiber of unassigned literals for each
clause. Hence, they were implemented jointly with datacstines based on adjacency lists since
they keep such information. For instance, the Two sidedslerv Wang Heuristic computes for
each literal of F the following function:

J() = 2-[Cl
S
st. 1eC

and selects the literalthat maximizes functiod(l).

As solvers become more efficient, updating metrics of ddafgendent heuristics dominates the
execution time. Hence MiISAT uses a slight modification of a state-independent heurfistit
proposed by Moskewicz et al. (2001). Such heuristic, cll@dable State Independent Decaying
Sum(VSIDS, selects the literal that appears more frequently overlallses, but giving priority to
recently learned clauses. The advantage of this heursstiat metrics only have to be updated when
clauses are learned. Since this only occurs occasionallypimputation has very low overhead. The
VSIDS heuristic suits perfectly with lazy data structurastsas the two-watched literal scheme.

4. (Weighted) Max-SAT

A weightedclause is a paifC,w), whereC is a clause andv is an integer representing the cost
of its falsification, also called itaveight If a problem contains clauses thaustbe satisfied, we
call such clausemandatoryor hard and associate with them a special weight Non-mandatory
clauses are also callebft A weighted formulan conjunctive normal forrfWCNF) is a set of
weighted clauses. fnodelis a complete assignment that satisfies all mandatory daddeecost

of an assignmeris the sum of weights of the clauses that it falsifies. Given@N¥ formular ,
WeightedMax-SAT is the problem of finding a model of of minimum cost. This cost will be
called theoptimal cost off . Note that if a formula contains only mandatory clauses,giveid
Max-SAT is equivalent to classical SAT. If all the clausewéaveight 1, we have the so-called
(unweighted) Max-SAT problem. In the following, we will asae weighted Max-SAT.

We say that a weighted formula’ is arelaxationof a weighted formular (noteds ' C #) if
the optimal cost ofr / is less than or equal to the optimal costrin(non-models are considered to
have cost infinity). We say that two weighted formufasands areequivalent(noteds ' = #) if
F'Cr andy C7'.

Max-SAT simplification rules transforms a formula into an equivalent, but presumably sim-
pler formulas ’. All SAT simplification rules (e.g. unit propagation, talatgy removal,...) can be
directly applied to Max-SAT if restricted to mandatory cd@s. However, several specific Max-SAT
simplification rules exist (Larrosa et al., 2007). For imst®, if a formula contains clauség, u)
and(C,v), they can be replaced B, u+ V). If it contains a claus€C,0), it may be removed. If it
contains a unitl, T), it can be simplified by removing all (including soft) clagssontainind and

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

removingl from all the clauses (including soft clauses) where it apped@he application of this
rule until quiescence is the natural extensiomnit propagationto Max-SAT.

The empty clause may appear in a weighted formula. If its lteig T, it is clear that the
formula does not have any model. If its weightis< T, the cost of any assignment will include
that weight, sawv is an obvious lower bound of the formula optimal cost. Weaghempty clauses
and their interpretation in terms of lower bounds will beeoralevant in Section 6.

As shown by Larrosa et al. (2007), the notion of resolutiomtmaextended to weighted formulas
as follows?

(AVB,m),
(xVAU—m),
{(xVAu),(xVBw}=< (xvVBw—m),
(xVAVB,m),
(xVAVB,m)

whereA andB are arbitrary disjunctions of literals amd= min{u, w}.

(xVA,u) and(xV B,w) are called therior clashing clauses(Av B, m) is called theresolvent
(xVA,u—m) and(xV B,w—m) are called theposterior clashing clausesnd (xV AV B,m) and
(xVAV B, m) are called theompensation clause$he effect of Max-SAT resolution, as in classical
resolution, is to infer (namely, make explicit) a connecthietweenA andB. However, there is an
important difference between classical resolution and{84aX resolution. While the former yields
theadditionof a new clause, Max-RES is a transformation rule. Nametggqtires theeplacement
of the left-hand clauses by the right-hand clauses. Th@neiaghat some cost of the prior clashing
clauses must be substracted in ordecampensatehe new inferred information. Consequently,
Max-RES is better understood asw@vemenbf knowledge in the formula.

The resolution rule for Max-SAT preserves equivalereg (The last two compensation clauses
may lose the clausal form, so the following rule (Larrosal €2807) may be needed to recover it:

AVl : |B|=0

CNF(AvIvB,u):{{(AvrvB,u)}uCNF(AvB_,u) : |B|>0

Example 4 If we apply weighted resolution to the following claus®; Vv x2,3), (X1 VX2 V X3,4) }
we obtain{ (X2 VX2 VX3, 3), (X1 VX2,3—3), (X1 VX2 VX3,4—3), (X1 VX2 V (X2 V X3),3), (X1 VX2 VX2 V
X3,3)}. The first clause can be simplified. The second clause can figEedrbecause it weight is
zero. The fifth clause can be omitted because it is a tautoldgg fourth element is not a clause
because it is not a simple disjunction. Hence, we a@f rule to it and we obtain two new
clauseCNF(x1 Vxo V (X2 V X3),3) = { (X1 VX2 VX2V X3,3), (X1 VX2 V X3,3) }. Note that the first new
clause is a tautology. Therefore, we obtain the equivatemtdila{ (x2 VX3, 3), (X1 VX2V X3, 1), (X1 V
X2V X3,3)}.

5. Overview of MINIM AX SAT

MINIMAX SAT is a weighted Max-SAT solver built on top of IMI SAT+ (Eén & Soérensson, 2006).
Any other DPLL-based SAT solver could have been used, buti BhT+ was particularly well-
suited because of its short and open-source code. Besides) deal with pseudo-boolean con-
straints.

1. If Aiis the empty clause theﬁrepresents a tautology. For the special weightve have the relations —m=T
andT — T =T (Larrosa et al., 2007)

HERAS, LARROSA, & OLIVERAS

Algorithm 3: MINIMAX SAT basic structure.
Function Search() : integer

17 ub:= LocalSearch()lb:=0;

18 InitQueueQ) ;

19 Loop
20 Propagate() ;
21 if Hard Conflictthen

AnalyzeConflict() ;
if Top Level Hard Conflicthen return ub;
else
LearnClause() ;
L Backjump() ;

22 el_se if Soft Conflictthen
ChronologicalBactrack() ;
| if End of Searclthen return ub;

23 else ifall variables assignedhen
ub:=1b;
24 if ub=0then return ub;
25 ChronologicalBactrack() ;
| if End of Searctthen return ub;
26 else
| := SelectLiteral() ;
| Enqueue,l) ;

Given a WCNF formula (possibly containing hard and soft s&s), MNIMAX SAT returns the
cost of the optimal model (of if there is no model). This is achieved by means of a branch-an
bound search, as it is usually done to solve optimizatiomblpros.

Like MINISAT, the tree of assignments is traversed in a depth-first maAheach search point,
the algorithm tries to simplify the current formula and,atlg detect a conflict, which would mean
that the current partial assignment cannot be successutbnded. MNIMAX SAT distinguishes
two types of conflicts: hard and softlard conflicts indicate that there is no model extending the
current partial assignment (namely, all the mandatorysgawcannot be simultaneously satisfied).
Hard conflicts are detected taking only into account handsela and using the methods ofNMISAT.
When a hard conflict occurs, IMIMAX SAT learns a hard clause and backjumps asi8AT would
do. Softconflicts indicate that the current partial assignment oatue extended to an optimal
assignment. In order to identify soft conflicts, the aldoritmaintains two values during the search:

e The cost of the best model found so far, which is an upper bobrad the optimal solution.

e An underestimation of the best cost that can be achieveddixig the current partial assign-
ment into a model, which is a lower bouftwlof the current subproblem.

A soft conflict is detected whdib > ub, because it means that the current assignment cannot lead to
an optimal model. When a soft conflict is detected, the algribacktracks chronologically. Note

10

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

Algorithm 4: MiniMaxSat propagation.
Function MS-UP() : conflict
while (Q contains non-propagated literglslio

27 | :== GetFirstNonPropagatedL@); MarkAsPropagatedl ;

28 Ib:=1b+V(l));

29 if Ib > ubthen return Soft Conflict,

30 foreach Hard clause(CVI, T) that becomes unit or falsifiedio
31 if (CvI1,T)becomes unitg, T) then Enqueu¢Q,q) ;

32 L else if(C V1, T) becomes falsifiethen return Hard Conflict;
33 foreach Soft clausgCV1,u) that becomes unio

34 | if (CvI,u) becomes a unitg,u) thenV (q) :=V(q) +u;

| return None;

Function Propagate() : conflict

35 c:=MS-UP();

36 if ¢ = Hard or Soft Conflicthen return c;
37 improvelLB() ;

38 if Ib > ubthen return Soft Conflict;

39 return None;

that one could also backjump by computing a clause expigdbimn reasons that led tb > ub.
However, in the presence of lots of soft clauses, this agpr@nds up creating too many long
clauses which affect negatively to the efficience of the esond hence we decided to perform
simple chronological backtracking.

We also want to remark that any soft clay&€w) with w > ub must be satisfied in an optimal
assignment. Therefore, in the following we assume that sofihclauses are automatically trans-
formed into hard clauses previous to search. Other thae thioss, no other soft clause is promoted
into a hard one during the search.

An algorithmic description of MNIMAX SAT is presented irdlgorithm 3 Before starting the
search, a good initial upper bound is obtained with a locatcemethod (line 17) which may yield
the identification of some new hard clauses. In our curreptémentation we use RESAT (Tomp-
kins & Hoos, 2004) with default parameters. The selectedllsearch algorithm iBRROTS(Iterated
Robust Tabu Searyl{Smyth, Hoos, & Stitzle, 2003). Besides, the lower boundhitialized to
zero. Next, the queu® is initialized with all unit hard clauses in the resultingrfaula (line 18).
The main loop starts in line 19 and each iteration is in charfggropagating all pending literals
(line 20) and, if no conflict is detected, attempting the egten of the current partial assignment
(line 26). Pending literals iQ are propagated in functioBr opagat e (line 20), which may re-
turn a hard or soft conflict. If a hard conflict is encountertide(21) the conflict is analyzed, a
new hard clause is learned and backjumping is performed i$ldone as introduced in Section 3.
If a soft conflict is encountered (line 22) chronological kisacking is performed. If no conflict is
found (line 26), a literal is heuristically selected andeditbQ for propagation in the next iteration.
However, if the current assignment is complete (line 23),upper bound is updated. Search stops
if a zero-cost solution is found, since it cannot be furtmepiioved (line 24). Else, chronological
backtracking is performed (line 25). Note that backjumgdiags to termination if a top level hard

11

HERAS, LARROSA, & OLIVERAS

conflictis found, while chronological backtracking leadsd@rmination if the two values for the first
assigned variable have been tried.

Algorithm 4describes the propagation process (funcioropagat e). It uses an array/ (l)
which accumulates the weight of all soft clauses that haweine unit ovel; namely, original
clauseg AV l,w) such that the current assignment falsiffedf no such clauses exists, we assume
V(I) = 0. First of all, it performs a Max-SAT-adapted form of unibpeagation §/5- UP, line 35).
MS- UP iterates over the non-propagated litedais Q (line 27). Firstly, addind to the assignment
may make a set of soft clauses falsified. Since the cost ofuah slauses is kept W (1), we
add it to the lower bound (line 28). If the lower bound incremientifies a soft conflict, it is
returned (line 29). Then, if a hard clause becomes unit, éneesponding literal is added ©Q
for future propagation (line 31). Finally, if a soft clausecbmes a unit claus@, u) (line 33), its
weightu is added to/(qg) (line 34). If during this process a hard conflict is detectée, function
returns it (lines 32,36). Else, the algorithm attempts tiectea soft conflict with a call to procedure
i mprovelB (line 37), and it returns the soft conflict if it is found (lir88). In the next section a
detailed description af npr oveLB can be found. Finally, if no conflict is detected, the funatio
returnsNone(line 39).

6. Lower Bounding in MINIMAX SAT

In the following, we consider an arbitrary search state aRNAXSAT before the call to the
procedure npr ovelLB. For the purpose of this section, such a search state canapactérized
by the current assignment. The current assignment detesntiirecurrent subformulavhich is the
original formulaconditionedby the current assignment: If a clause contains a literdlishpart of
the current assignment, it is removed. Besides, all thealgavhose negation appear in the current
assignment are removed from the clauses where they appear.

The value oflb maintained by MNIMAX SAT is precisely the aggregation of costs of all the
clauses that have become empty due to the current assignBieritarly, we recall that the value
V(I) is the aggregation of costs of all the clauses that have beaorit overl due to the current
assignment. Thus, the current subformula contéingb) and(l,V (1)) for everyl.

MINIMAX SAT computes its lower bound by deriving new soft empty claysgsv) through
a resolution process. Such clauses are added to the alreatipng clause(d,1b) producing an
increment of the lower bound.

As a first stepj npr ovelLB replaces each occurrence (bfu) and(I,w) by (I,u—m), (I,w—
m), (O, m) (with m = min{u,w}), which amounts to applying a restricted version of Max-3£3-
olution known as Unit Neighborhood Resolution (UNR) (Laacet al., 2007).

It produces an immediate increment of the lower boure, the weight of the empty clause at
line 43) as it is illustrated in the following example,

Example 5 Consider the current state {$0,3), (x1,1), (X2, 1), (X1,2), (X2,2), (X1 V X2,3)}. UNR
would resolve on clausds, 1) and(xq,2) replacing them byx;, 1) and (O, 1) (all other compen-
sation clauses are removed because their weight is zereyratie tautologies). The two empty
clauses can be grouped intd,3+ 1 =4). UNR would also resolve on clausés,1) and(xy,2)
replacing them byx,, 1) and(d,1). The two empty clauses can be grouped {{iio4+ 1 =5). So,
the new equivalent formula i§0,5), (X1,1), (x2,1), (X1 V X2,3) } with a higher lower bound of 5.

12

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

Algorithm 5: Lower Bounding in MNIMAX SAT

Function SUP() : conflict
40 InitQueueQ) ;
while (Q contains non-propagated literglslo

| := GetFirstNonPropagatedL@); MarkAsPropagated) ;
a1 foreach (Hard or Soft) Clause @ | that becomes unit or falsifiedo
L if CVv | becomes a unit then EnqueuéQ,q) ;

else ifC v | becomes falsifiethen return conflict;

| return None;

ProcedureimprovelB() : Ib
42 | foreach(l,v),(l,w) € F do

43 | replace them byl,v—m), (I,w—m), (0,m) with m:= min(v,w) ;
44 | while SUR) = conflict do

45 Y := BuildTree() ;

46 m:= minimum weight among clauses ¥}

47 if Conditionthen ApplyResolution(Y, m) ;

48 elselb := Ib +m; remove weighim from clauses irY;

As a second stepnpr ovelB executes aimulation of unit propagation{SUP, line 44) in
which soft clauses are treated as if they were hard. Fd®, adds toQ all unit soft clauses (line
40). Then, the new literals iQ are propagated. When new (hard or soft) clauses become unit,
they are inserted iQ (line 41). If SUP yields a conflict, it means that there is a subset of (soft or
hard) clauses that cannot be simultaneously satisfied. Bigeshin Section 3 thaf) can be used
to identify such subset and build a refutation théel npr ovelL B computes such a tree (line 45).
If we take into account again the weights of the clauses aply &fpax-SAT resolution (Section 4)
as dictated byy; one can see that it will produce a new claysem), wherem is the minimum
weight among all the clauses in the tree (line 46). It meaasttie extension of the current partial
assignment to the unassigned variables will have a costleastm.

It is important to remark that at each step in the Max-SAT lkd&mn process we do not consider
the minimum of the weight of the two clauses, but rather theimim of all the clauses in the
resolution tree. This is whgnis passed as a parameter in line 47.

The result of the resolution process is the replacementl dfi@lclauses in the leaves ®fby
(0,m) and the corresponding compensation clauses (funémul yResol uti on in line 47),
thus obtaining an equivalent formula with a lower bound @ncent ofm. We call this procedure
resolution-basedower bounding.

Example 6 Consider the formulad = {(X1,2)q, (X1 V Xa,1)g, (X1 VX2, T)y, (X1 V X3V X4,2)5, (X V
%o\ %, 3)e., (X1 V ¥, 1)g }

Step 1. Apply SUP. Initially, the unit clausea is enqueued producin® = [||xi(a)]. Then
X1 is propagated an@ becomegx; (a)|[xa(B),%2(Y),Xs(d)]. Literal x4 is propagated and clauge
becomes unit, producin@ = [x1(a),Xa(B)||X2(Y), Xs($),Xx3(d)]. After that, literalx, is propagated
and clause is found to be conflicting. Figure 2.a shows the stat@affter the propagation.

13

HERAS, LARROSA, & OLIVERAS

F = {()?172)(’13 (Xl V Xa, 2)[33 (Xl V X2, T)ya (Xl \/)(3\/)(7172)57 (Xl \/)?2 \/)?3, 3)87 (Xl \/X_57 1)¢}

(X1V X2 VX3,3)e (X1VX3VXa,2)5

+ fo) (X1VX2Vxs,1) /
€ (X1 VX2 VX3V X4,2) | (X1 VX2V Xa,2) (X1V X2, T)

X3(6) I/y (Xl\/Xz\/Xg\/XZ,Z) '
X5(9) I/
x2(Y) I/B (X1 VX2, T) (X1VXe,2) (X1VX4,2)
x4(B) I/G /

_1(“) - <2)/(2>

(0,2)
a) b) c)

Fl={(aVxe,T),(x1V%s,1),(0,2), (X1 VX2 VX3, 1), (X1 VX2 V X3 V X4,2), (X1 V X2 V X3V X4, 2)]
F "= {(XlVX27T)a(Xl\/X_Z\/X_37l)7(X1V)€71)7(D72)}

Figure 2: Graphical representation ofiMMAX SAT lower bounding. On the top, the original
current formular . On the left, the propagatid@ after step 1. In the middle, the structure
of the refutation tree computed by the simulation of UP irpste On the right, the
effect of actually executing the Max-SAT resolution (st§p Bhe resulting formular /
appears bellow. If substraction-based lower bounding ifopeaed, step 3 is replaced by
a substraction of weights, producing formuld.

Step 2.Build the simulated refutation treéStarting from the tail ofQ the first clause clashing
with the conflicting clause is d. Resolution betweea andd generates the resolvert Vv X, \V X4.
The first clause clashing witk, is y, producing resolvent; V x4. The next clause clashing with
X4 is B and resolution generates. Finally, we resolve with clause and we obtairid.Figure 2.b
shows the resulting resolution tree.

Step 3.Apply Max-SAT resolutionMe apply Max-SAT resolution as indicated by the refutation
tree computed in Step 2. Figure 2.c graphically shows theltre§the process. Leaf clauses are
the original (weighted) clauses involved in the resolutiBach internal node indicates a resolution
step. The resolvents appear in the junction of the edgesd®each resolvent, inside a box, there
are the compensation clauses that must be added to the fotmplreserve equivalence. Since
clauses that are used in resolution must be removed, thitimgsformula 7 ’ consists of the root of

14

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

the tree (O, 2)),all compensation clauses and all clauses not used in fiatien tree. That is, the
resulting formulaisr ' = {(x1 VX2, T), (X1 Vs, 1),(3,2), (X1 VX2 VX3, 1), (X1 VX2 V X3V X4, 2), (X1 V
X2V X3V X4,2)}. The soundness of Max-SAT resolution guarantees#hat 7 ’.

Remark 1 All the transformations applied by thesolution-based lower boundirmgn be passed
on to descendent nodes because the changes preserve eqoé/aNevertheless, transformations
have to be restored when backtracking takes place.

An alternative to problem transformation through resolutis to identify the lower bound in-
crementm and then substract it from all the clauses that would havecpzated in the resolution
tree. This procedure is similar to the lower bound computed.ibet al. (2005) and we call it
substraction-basegline 48) lower bounding.

Example 7 Consider formular from the previous example. Steps 1 and 2 are identical. Hexyev
substraction-based lower bounding would replace Step 3dgy 3 that substracts weight 2 from
the clauses that appear in the refutation tree and then @idy to the formula. The result is
7" ={(xaVx,T),(X1V*2Vxs1),(X1Vxs1),(3,2)}. Note thatr " C # .

Remark 2 All the substractions applied by tlsibstraction-based lower boundihgve to be re-
stored before moving to a descendent node because they geesetve equivalence.

After the increment of the lower bound with either technigomcedureSUP can be executed
again, which may yield new lower bound increments. The m®dg repeated untBUP does not
detect any conflict.

When comparing the two previous approaches, we observeei@tition-based lower bounding
has a larger overhead, because resolution steps need ttubiyamomputed and their consequences
must be added to the current formula and removed upon bakkita However, the effort invested
in the transformation may be well amortized because theeiment obtained in the lower bound
becomes part of the current formulso it does not have to bdiscoveredagain and again by all
the descendent nodes of the search. On the other hand,astiostibased lower bounding has a
smaller overhead because resolution needs not to be gctaaiputed. This also facilitates the
context restoration upon backtracking.

MINIMAX SAT incorporates the two alternatives and chooses to apply otrewther heuris-
tically (lines 47,48) depending on a specifendition(line 47). We observed that resolution-based
lower bounding seems to be more effective if resolution Iy applied to low arity clauses. As a
consequence, after the identification of the resolutioa, tkéiNi M AX SAT applies resolution-based
lower bounding only if the largest resolvent in the resalntiree has arity strictly less than 4. Oth-
erwise, it applies substraction-based lower bounding.S&etion 8 for more detalils.

7. Additional Features of MINIMAX SAT

In this section we overview other important features aRMV AX SAT, namely the use of the two-
watched literal scheme, its branching heuristic, the ussofif probing and how MiIMAX SAT
deals with pseudo-boolean functions.

15

HERAS, LARROSA, & OLIVERAS

7.1 Two-Watched Literals

MINIMAX SAT uses théwo-watched literal schemadso on soft clauses. Recall that one of the main
advantages of this technique, when applied to pure SAT enob| is that when backtracking takes
place, no work has to be done on the clauses. Unfortunatelyeicase of soft clauses some restora-
tion needs to be done. When a soft clause becomes unit e liin function MS-UP, its weight

is added to/(l) and the clause is eliminated (or marked as eliminated) talaewsing it in the
lower bounding procedure. These changes, as well as antycadtdi Ib, have to be restored when
backtracking is performed. However, note that during thecaiions ofSUP (simulation of unit
propagation) all clauses are considered as hard. In théstbastwo-watched literal scheme works
exactly as in a SAT solver with both hard and soft clauses. M#reinconsistency is detected by
SUP or it stops because there are no more literals to propadmténitial state has to be recovered.
In that situation restoring the initial state is completelierhead free.

7.2 Branching Heuristic

MINIMAX SAT incorporates two alternative branching heuristics. Ttst @ine is the VSIDS heuris-
tic (Moskewicz et al., 2001) disregarding soft clausest(haViiNI SAT’ s default). This heuristic is
likely to be good in structured problems in which learningl @ackjumping play a significant role,
as well as in problems in which it is difficult to find models (maly, the satisfaction component of
the problem is more difficult than the optimization compdheSince this heuristic disregards soft
clauses, it is likely to be ineffective in problems wheresiteiasy to find models and the difficulty
is to find the optimal one and prove its optimality. In the erte case, where problems only con-
tain soft clauses (every complete assignment is a modely#$BS heuristic is blind and therefore
completely useless.

To overcome this limitation of VSIDS, MilMAX SAT also incorporates thé/eighted Jeroslow
heuristic (Heras & Larrosa, 2006). It is the extension of 8 Jeroslow heuristic described in
Section 3. Given a weighted formufg for each literal of F the following function is defined:

=3 271w
(Cw)eF
st. leC

where mandatory clauses are assumed to have a weight edbalupper boundb. The heuristic
selects the literal with the highest value 3it). Its main disadvantage is that metrics need to be
updated at each visited node. In combination with the twizhed literal this updating becomes
expensive and does not seem to pay off in general. Thus, iwwent implementation of the
heuristic, thel(l) values are computed only at the root node and used througtiathie solving
process. We found in our experiments that this heuristicge@d alternative in problems where
the difficulty lies on the optimization part (e.g. problemghsmany models). NMNIMAXSAT
automatically changes from VSIDS to weighted Jeroslowafithoblem does not contain any literal

| such that there are some hard clauses éhd some other hard clauses wlith

In both heuristics, if there is some litedasuch tha¥ (1) +1b > ub at some node of the search
tree, therl is the selected literal arlds never assigned.

16

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

7.3 Soft Probing

Probingis a well-known SAT technique that allows the formulatiorhgpothetical scenarios (Lynce
& Silva, 2003). The idea is to temporarily assume thigta hard unit clause and then execute unit
propagation. If UP yields a conflict, we know that any modéeeging the current assignment must
containl. The process is iterated over all the literals until quiesee Exhaustive experiments in
the SAT context indicate that it is too expensive to probeémduthe search (Le Berre, 2001; Lynce
& Silva, 2003), so it is normally done as a pre-process in otdeeduce the initial number of
branching points.

We can easily extend this idea to Max-SAT. In that contexsjdes thediscoveryof unit hard
clauses, it may be used to make explicit weighted unit ceudfe call itsoft probing As in SAT, the
idea is to temporarily assume tHds a unit clause and thesimulateunit propagationi(e., execute
SUP()). Then, we build the resolution trééfrom the propagation queu@. If all the clauses iry’
are hard, we know thatmust be added to the assignment. Else, we can reprodapplying Max-
SAT resolution with the weighted clauses and derive a uaiis#(l, m) wheremis the minimum
weight among the clauses ¥ Having unit soft clauses upfront makes the future exenstiof
i mpr ovelL B much more effective in the subsequent search. Besides, ifenee both(l,u) and
(I,w), we can generate via unit neighborhood resolution (see BbaB) an initial non-trivial lower
bound ofmin{u,w}. We tested soft probing during the search and as a prepiogessseveral
benchmarks. We observed empirically that soft probing agprpcessing was the best option as it
is in SAT.

Example 8 Consider formular = {(X1V X2, 1)q, (X1 V X3,1)g, (X2 V X3,1)y}. If we assumex; by
adding it toQ and then execut8UP a conflict is reached. We obtal@ = [§,x,(a),x3(B)] and
we detect thay is a conflicting clause. The clauses involved in the refatatiee arey, 3, anda.
Resolving clausegandp results in{ (x; VX2, 1)q, (X1 V X2,1), (X1 VX2V X3,1), (X1 VX2 VX3,1)}. The
resolution of the previous resolvent andoroduces the (equivalent) formuta’ = {(x1,1), (X3 V
X2V X3,1), (X1 VX2V X3,1) }.

7.4 Pseudo-boolean Functions

A pseudo-boolean optimization problefi@BO) (Barth, 1995; Sheini & Sakallah, 2006; Eén &
Sorensson, 2006) has the form:

minimize 3_; ¢j - X

subject toy|_; a&jlj > b, i=1...m

wherex; € {0,1}, | is eitherx; or 1—X;, andcj, &; andb; are non-negative integers.

If M INIMAX SAT is provided with a PBO instance, it translates it into a MaF$ormula as fol-
lows: each pseudo boolean constraint is translated intoaf sard clausesising MINISAT+ (Eén
& Sorensson, 2006) (the algorithm heuristically decidesrnost appropriate translation choosing
amongadders sortersor BDDs). The objective function is translated into a sesoft unit clauses

Each summand; - x; becomes a new soft unit clauég,c;). After the translation MNIMAX SAT
is executed as usual.

17

HERAS, LARROSA, & OLIVERAS

8. Empirical Results

In this section we present the benchmarks and the solvedsingrir empirical evaluation. Then,
we report the experiments performed in order to adjust therpeters of MNIMAX SAT. Finally, a
comparison with other solvers is presented.

8.1 Benchmarks and Encodings

Having a good set of problems is fundamental to show the tafleess of new solvers. In the
following, we present several problems and we explain hoantmode them as Weighted Max-SAT.

8.1.1 MaX-K-SAT

A k-SAT CNF formula is a CNF formula in which all clauses haveesiz We generated random
unsatisfiable 2-SAT and 3-SAT formulas with tBafgengeneratot and solved the corresponding
MAX-SAT problem. In the benchmarks, we fixed the number ofalasles and varied the number of
clauses, which can be repeated.

8.1.2 Max-cuT

Given a graphG = (V,E), acutis defined by a subset of vertices C V. The size of a cut is
the number of edge®y;,vj) such thaty, € U andv; € V —U. The Max-cutproblem consists on
finding a cut of maximum size. It can be encoded as Max-SATdatH0g one variable; to each
graph vertex. Valudgrue (respectivelyfalsg indicates that vertey; belongs tdJ (respectively, to
V —U). For each edgév;,v;), there are two soft clausgs; \VV xj,1), (X VV Xj,1). Given a complete
assignment, the number of violated clauseg&js- SwhereSis the size of the cut associated to the
assignment. In our experiments we considered Max-Cutrinstaextracted from random graphs of
60 nodes with varying number of edges.

8.1.3 MAX-ONE

Given a satisfiable CNF formulamax-oneis the problem of finding a model with a maximum
number of variables set to true. This problem can be encodddax-SAT by considering the
clauses in the original formula as mandatory and adding gived unary clauséx;, 1) for each
variable in the formula. Note that solving this problem isamdnarder than solving the usual SAT
problem, because the search cannot stop as soon as a maueids The optimal model must be
found and its optimality must be proved. We considered thg-ame problem over two types of
CNF formula: random 3-SAT instances of 120 variables (gaeerwithCnfger), and structured
satisfiable instances coming from the 2002 SAT Compefition

8.1.4 MINIMUM VERTEX COVERING AND MAX-CLIQUE

Given a graplG = (V,E), avertex coverings a setd C V such that for every edg@,v;) either
vi €U orvj e U. The size of a vertex covering {§/|. The minimum vertex coveringroblem
consists in finding a covering of minimal size. It can be raturformulated as (weighted) Max-
SAT. We associate one variableto each graph verte. Valuetrue (respectivelyfalse indicates

2. A. van Gelder ftp://dimacs.rutgers.edu/pub/challésagesfiability/contributed/UCSC/instances
3. http://www.satcompetition.org/2002/

18

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

that vertexv; belongs tdJ (respectively, t&/ —U). There is a binary hartk; v xj, T) for each edge
(vi,vj). It specifies that one or both of these two vertices have taltke covering because there
is an edge connecting them. There is a unary cléisgé) for each variable, in order to specify
that it is preferred not to add verticeslth There is a simple way to transform minimum vertex
coverings into max-cliques and vice-versa (Fahle, 2002).

In our experiments, we considered maximum clique instaegéscted from random graphs
with 150 nodes and varying number of edges. We also considbe66 Max-Clique instances
from the DIMACS challengt

8.1.5 GOMBINATORIAL AUCTIONS

A combinatorial auctioris defined by a set of goods and a set of bidders that bid for indivisible
subsets of goods. Each hLiik defined by the subset of requested goBds G and the amount of
money offered. The bid-taker, who wants to maximize its nes must decide which bids are to be
accepted. Note that if two bids request the same good, theyothe jointly accepted (Sandholm,
1999). In its Max-SAT encoding, there is one variakleassociated to each bid. There are unit
clauses(x;, uj) indicating that if bidi is not accepted there is a loss of prafit Besides, for each
pairi, j of conflicting bids, there is a mandatory claugev x;j, T).

In our experiments, we used the CATS generator (K. LeytomwBr& Shoham, 2000) that
allows to generate random instances inspired from realedvamenarios. In particular, we generated
instances from th&egions Pathsand Schedulingdistributions. The number of goods was fixed to
60 and we increased the number of bids. By increasing the auoilbids, instances become more
constrained (namely, there are more conflicting pairs of)agehd harder to solve.

8.1.6 MISCELLANEOUS

We also considered the following sets of instances widedgs the literature:

e The unsatisfiable instances of the 2nd DIMACS Implemema@iballenge® considered by
de Givry, Larrosa, Meseguer, and Schiex (2003) and Li eR@D%): random 3-SAT instances
(aim and dubois), pigeon hole problem (hole) and colorirabfams (pret). Observe that all
these instances are modelled as unweighted Max-SAT (I.elaakes have weight 1).

e Max-CSPrandom instances generated using the protocol specifiedabyd4a and Schiex
(2003) and de Givry, Heras, Larrosa, and Zytnicki (2005). digginguish 4 different sets of
problems:Dense Loos€DL), Dense Tigh{DT), Sparse Loos€¢SL) and Sparse Tigh(ST).
Tight instances have about 20 variables while loose inshave about 40 variables. Each
set contains 10 instances with 3 values and 10 instancesiwilues per variable.

e Planning (Cooper, Cussat-Blanc, de Roquemaurel, & Régnier, 2008)geaph coloring®
structured instances taken fromAfeighted Constraint Satisfaction Probl€YCSB reposi-
tory ’.

. ftp://dimacs.rutgers.edu/pub/challenge/graph/berarks/clique

. http://mat.gsia.cmu.edu/challenge.html

. http://mat.gsia.cmu.edu/COLORINGO02/benchmarks

. http://mulcyber.toulouse.inra.fr/plugins/scmcwsieeb.php/benchs/?cvsroot=toolbar

~NOo oA

19

HERAS, LARROSA, & OLIVERAS

e Problems taken from the 2006 pseudo-boolean evalutitwgic synthesismisc(garder),
routing, MPI (Minimum Prime Implicant) MPS (miplib). These instances are encoded to
Max-SAT as specified in the previous section.

Note that Max-CSP, Planning and graph coloring instancesacoded into Max-SAT using the
direct encodingWalsh, 2000).

8.2 Alternative Solvers

We compare NNIMAX SAT with several optimizers from different communities. Wetrieted our
comparison to freely available solvers. We considereddhevfing ones:

e MAXsSATZz (Lietal., 2006; Li, Manya, & Planes, 2007). Unweighted MBAT solver. It was
the best unweighted Max-SAT solver in the 2006 Max-SAT Eaxabn.

e MAXx-DPLL (Heras & Larrosa, 2006; Larrosa et al., 2007). Weight#ax-SAT solver. Itis
part of the TOOLBAR package. It was the best solver for weighted Max-SAT and ¢icersd
best solver for unweighted Max-SAT in the 2006 Max-SAT Eadilon.

e TOOLBAR (Larrosa, 2002; Larrosa & Schiex, 2003; de Givry et al., 200305). Itis a
state-of-the-art Weighted CSP solver.

e PUEBLO 1.5 (Sheini & Sakallah, 2006). It is a pseudo-boolean soleranked first on
several categories of the 2005 Pseudo Boolean Evaluation.

e MINISAT+ (E€n & Sorensson, 2006). It is a pseudo-boolean soharttanslates the prob-
lems into SAT and solves them with MiniSat. It ranked first exesal categories of the 2005
Pseudo Boolean Evaluation.

Those instances taken from the pseudo-boolean evaluationgiven in their original format to
PUEBLO and MINISAT+. All other instances were translated from Max-SAT to PBhstitioning
the set of clauses into three sets: contains the mandatory claus@s, T), w contains the non-
unary weighted clause&C,u < T) and u contains the unary weighted clausgsu). For each
hard claus€C;, T) € # there is a pseudo boolean constra(D’j\tz 1, WhereCj is obtained from
C; by replacingv by + and negated variablesby 1—x. For each non-unary weighted clause
(Cj,uj) € w there is a pseudo boolean constramjm- ry > 1, whereC} is computed as before,
andr; is a new variable that, when set to 1, trivially satisfies tbestraint. Finally, the objective
function to minimize is,

Z ujrj + Z Uj|j

(Cj,uj)ew (Ij.uj)eu

8.3 Experimental Results

We divide the experiments in two parts. The purpose of the fiast is to evaluate the impact
of the different techniques of MIMAX SAT and set the different parameters. Since some of the
techniques can be effective in some benchmarks and uselegsrocounterproductive in some oth-
ers (Brglez, Li, & Stallman, 2002), we aimed at finding a comfédion such that MuIMAX SAT

8. http://www.cril.univ-artois.fr/PB06/

20

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

performs reasonably well on all the instances. The purpbfigecsecond part is to comparelivt
IMAX SAT with alternative solvers. Since some of these solvers aeifigally designed for some
type of problems, we do not expect that\WM Ax SAT will outperform them. We rather want to
show the robustness of IMIMAX SAT by showing that it is usually close in performance with the
best alternative for each type of problems.

Results are presented in plots and tables. Regarding tabéefirst column contains the name
of the set of problems. The second column shows the numbastarices. The remaining columns
report the performance of the different solvers. Each aafit&@ins the averagepu time that the
solver required to solve all instances. If some solver cawgtisolve all the instances of a set, a
number inside brackets indicates the number of solvedrinegand the averagmu time only
takes into account solved instances. If a cell contains h,dameans that no instance could be
solved within the time limit. Regarding plots, note that thgend goes in accordance with the
performance of the solvers. The time limit was set to 900 @& dor each instance.

Our solver, written in C++, was implemented on top of\\VBAT+ (Eén & Sodrensson, 2006).
Executions were made on a 3.2 Ghz Xeon computer with Linugll ihe experiments with random
instances, samples had 30 instances and plots reportepadime in seconds.

8.4 Setting the Parameters oM INIMAX SAT

In the following we evaluate in order the importance of théofeing techniques inside Mii-
MAX SAT: lower bounding, soft probing, branching heuristics, éag and backjumping.

Starting from a basic version that guides search with thesllaw branching heuristic and has
the rest of techniques deactivated, we analyze them oneédoyE@ath analysis studies one technique
and incorporates all the previously analyzed ones with tineesponding tuned parameters. In the
three first experiments we only consider little but challaggnstances generated randomly in which
lower bounding plays a fundamental role to solve them. Kinake consider structured instances in
which learning and backjumping is required to solve them.

8.4.1 LOWER BOUNDING

In this experiment we analyze the impact of resolution-ddew/er bounding versus substraction-
based lower bounding, as well as combined strategies. Wadmed the following combination
of the two techniques: when SUP detects an inconsistencythandefutation tree is computed,
we look at the resolvent with maximum size. If its size is l#s#n or equal to a parametk,
then resolution-based lower bounding is applied, otherwisbstraction-based lower bounding is
applied. We testell = {0,1,2,3,4,5,0}. Note thatk = 0 corresponds to pure substraction-based
lower bounding (and therefore is similar to the approachiet &l., 2005), while = c corresponds

to a pure resolution-based lower bounding.

The results are presented in Figure 3. As can be seen, theyhstraction-based lower bound-
ing K = 0 is always the worst option. Better results are obtaine® ascreases. However, the
improvement stops (or nearly stops) when= 3. WhenK > 3 no significant improvement is no-
ticed. The plot omits th& = 4 andK = 5 case for clarity reasons. Since higher value& ohay
produce new clauses of higher size and this may cause odeifsame instances, we dét= 3
for the rest of the experiments.

21

20 ‘ 60 .
{ 50 r ¥
15 | i 2
g g 40 v
S 10t] S 30t
& 5| Sy & 20t -
o 10 ¢

HERAS, LARROSA, & OLIVERAS

(a) Max-2-SAT, 100 variables

0 .
200 300 400 500

600 700 800

number of clauses

(b) Max-3-SAT, 60 variables

300 400 500 600 700 800
number of clauses

(c) Max-CUT, 60 nodes

14 K‘:O ‘/‘#’

120 K=l —f 7
GE-‘ 10 t K=2 ¥
=1 8+ K=3 /;
3_ 6 K=inf ---4-# {;
o a e

2 e <

200 250 300 350 400 450

number of nodes

Figure 3: Performance of MIMAX SAT with different mixed lower boundingd(= 0, 1, 2, 3,inf).

8.4.2 DFT PROBING

In our second experiment, we evaluate the impact of softipgoldn our preliminary experiments,
we observed that soft probing was too time consuming, so wale@ to limit soft probing as
follows. Initially, we assign g@ropagation levebf O to the variable to probe. Then, each new literal
to propagate is assignedpsopagation level L+ 1 if the literal that produces its propagation has
level L. We limited probing to propagate literals with a maximumpagation level oM. We
finally restrictedM < 2 since it gives the best results. Note thgrapagation levels not the same
as adecision level

We compare three alternatives: probing at each node of Hrels€S), probing as a pre-process
before search (P) and no probing at all (N). The results, guféi 4, indicates that probing during
search is the worst option for Max-2-SAT and Max-3-SAT wlitlproduces some improvement in
Max-CUT. Finally, probing as a preprocessing gives slightiprovement for Max-2-SAT and the
best results for Max-CUT. Note that soft probing as a pregssinng on Max-3-SAT has no effect
and is omitted from the plot (its results are similar to N)v&i these results, we decided to include
soft probing only as a preprocessing.

8.4.3 EROSLOW BRANCHING HEURISTIC

In the following experiment, we evaluate the importancehefweighted Jeroslow heuristic. Figure
5 shows the time difference betweenNWIMAX SAT with the Jeroslow heuristic as in the previous
two experiments (Jeroslow) and without heuristic (Nondje Tesults indicates that guiding search
with the Jeroslow heuristic gives important speed ups. Eewe maintain the Jeroslow heuristic
for MINIMAX SAT.

22

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

(a) Max-2-SAT, 100 variables (b) Max-3-SAT, 60 variables
g 70fs ——
o 20 N ——— o 60 [N ———
P 50
£ L £
£ 15 = a0l
g8 10| g8 30|
20
- 10 ¢
0 " " L 0 " L L
200 300 400 500 600 700 800 300 400 500 600 700 800
number of clauses number of clauses

(c) Max-CUT, 60 nodes

cpu time

300 350 400 450 500
number of nodes

Figure 4: Performance of MIMAX SAT without soft probing, with probing as preprocessing (P)
and with probing during the search (S).

8.4.4 LEARNING, BACKJUMPING AND VSIDS

In the final experiment, we evaluate the importance of legraind backjumping. For these exper-
iments we use structured instances, since it is well knowahldarning and backjumping are only
useful in this type of problems. Besides, we also evaluatdrttportance of the VSIDS heuristic

in combination with learning and backjumping. Recall thas heuristic was specially designed to
work in cooperation with learning, so it is meaningless talgze its effect by itself.

Table 6 reports the results of this experiment. The thirdrmol reports results without learning
and backjumping but with the lower bounding, probing and Xaeoslow heuristic (None). The
fourth column reports results adding learning and backjamo the previous version (Learning).
The fifth column reports results adding learning, backjurggiut changing the Jeroslow heuristic
by the VSIDS heuristic (VSIDS). The results show thainMM AX SAT without learning and back-
jumping (None) is clearly the worst option. Significant irmpements are obtained when learning
and backjumping (Learning) are added. Finally, adding tB¢DS heuristic (VSIDS) improve fur-
ther the results specially on the routing instances. Basdtase results, we incorporated learning
and backjumping to MuIMAX SAT.

Regarding the branching heuristic, for problems in whitéréls appear in hard clauses with
both polarities it applies the VSIDS heuristic, otherwise feroslow heuristic is computed in the
root of the search tree as stated in Section 7. This choiocenis dnce and for all before starting the
search.

23

HERAS, LARROSA, & OLIVERAS

(a) Max-2-SAT, 100 variables (b) Max-3-SAT, 60 variables

20 " None — ‘ ‘ 100 None -

15 | Jeroslow 80 Jeroslow -
(4] (4]
E E 60t
S 10! =
= 2 40¢
(&) o

5 B 20 L

0 R x L

200 300 400 500 600 700 800
number of clauses number of clauses

(c) Max-CUT, 60 nodes

None
Jeroslow -

cpu time

O P N W b~ O

o

200 250 300 350 400 450 500
number of nodes

Figure 5: Performance of MIMAX SAT without Heuristic (None) and with the Jeroslow heuristic
computed in the root node of the search tree (Jeroslow).

Problem n. inst. None Learning | VSIDS
Max-One 3col 40 - 29.06 1541
Max-One cnt 3 1357(1) 11953 6.58
Max-One dp 6 16.11(4) 40.03 28.63

Max-One ezfact32 10 | 65494(2) 0.70 0.77
Routing S3 5 22.26(4) 1.02 0.10
Routing S4 10 - 41061(2) | 91.09(9)

Figure 6: Structured instances.

8.5 Comparison with Other Boolean Optimizers

When reporting results, we will omit a solver if it cannot Heath the corresponding instances
for technical reasons (e.g. it cannot deal with weightedis#a) or it performs extremely bad in
comparison with the others.

Figure 7 contains plots with the results on different benatk®. Plotsa andb reports results on
random unweighted Max-SAT instancesuEBLO and MINISAT+ are orders of magnitude slower,
so they are not included in the graphics. On Max-2-SAT (pIRtMINIMAX SAT lays between
Max-DPLL and MaxsATz, which is the best option. On Max-3-SAT (plb} MINIMAX SAT
clearly outperforms Mx-DPLL and is very close to MxSATz, which is again the best. In both
Max-2-SAT and Max-3-SAT MXSATZ is no more than 3 times faster thanfMM AX SAT.

24

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

Plot c reports results on random Max-CUT instancesiINNW AX SAT performs slightly better
than MaxsATz, which is the second alternative.

On random Max-One (plad) MINIMAX SAT is the best solver by far. Almost all instances are
solved instantly while BEBLO and Max-DPLL require up to 10 seconds in the most difficult in-
stances. MNISAT+ performs very poorly. The results on structured Max-Os¢ainces are reported
in Figure 9. MNISAT+ seems to be the fastest in generallNMM AX SAT is close in performance
to PUEBLO. Note, however, that in thép instances, NNIMAX SAT is the only system solving all
instances.

Plotereports the results on Random Max-Clique instancesii M AX SAT is the best solver, up
to an order of magnitude faster thamd-DPLL, the second best optionuBBLO and MINISAT+
perform poorly again. Regarding the structured Dimacsmsts, MNIMAX SAT is again the best
option. It solves 36 instances within the time limit, whileaM-DPLL,MINISAT+ and RJEBLO
solve 34, 22 and 18 respectively.

Plots f, g andh present the results on Combinatorial Auctions followinfjedent distributions.
On the paths distribution, MiIMAX SAT is the best solver, twice faster thanaM-DPLL, which
ranks second. On the regions distribution|NWM AX SAT is the best solver while Mx-DPLL is
the second best solver requiring double time. On the pattisegions distributions, PeBLO and
MINISAT+ perform very poorly. On the scheduling distributionjNWBAT+ is the best solver while
MINIMAX SAT and Max-DPLL are about one order of magnitude slower.

Results regarding the unsatisfiable DIMACS instances asepited in Figure 8. Note that all
these instances have optimum cost 1. Hence, as soonnadvMx SAT find a solution of cost 1,
all the clauses are declared hard and learning and backjgnagin be applied when hard conflicts
arise. The results indicate thatAMsATz and Max-DPLL do not solve any instance on some sets
(Pret150 and Aim200), while MilMAX SAT solves all sets of instances with the best times in all
of them, except for the hole instances in whiclak&ATz is slightly faster. If we encode these
problems in the most advantageous way foEBLO and MINISAT+, that is, as decision problems
rather than optimization problems they solve all the instanwith similar times to MiIMAX SAT.

On the planning instances (Fig. 10y B8LO is the best solver. MilMAX SAT is the second best
solver, TOOLBAR is the third and the last one isIMISAT+. This is not surprising sinceGOLBAR
does not perform learning over the hard constraints. Resedfarding graph coloring instances are
presented in Fig. 10. As can be observedNNIAX SAT is able to solve one more instance than
TOOLBAR, while PUEBLO and MINISAT+ solve many less instances. On the Max-CSP problems
(Fig. 10) ToOLBAR solves all the instances instantly whileEsLo0 is the worst option unable to
solve a lot of instances. MIMAX SAT is clearly the second best solver andNVISAT + is the third
best performing solver. Note that both of them solve all tigtances.

Results regarding the instances taken from the pseud@dmelvaluation can be found in Figure
11. Note that this is the first time that a Max-SAT solver iggdson pseudo-boolean instances.
Results indicate that no solver consistently outperfornesdther and that MitMAX SAT is fairly
competitive with RIEBLO and MINISAT+.

¢From all these results we can conclude tham i Ax SAT is a very robust Weighted Max-
SAT solver. It is very competitive for pure optimization ptems and for problems with lots of
hard clauses and, sometimes, it is the best option.

As a final remark, note that MiMAX SAT and almost all the previous benchmarks were sub-
mitted to theSecond Max-SAT Evaluation 2Q@/co-located event of tHEenth International Con-
ference on Theory and Applications of Satisfiability Testience, the interested reader can find a

25

HERAS, LARROSA, & OLIVERAS

(a) Max-2-SAT, 100 variables (b) Max-3-SAT, 60 variables
50 Max-DPLL —— 300 axDPLL
40t MiniMaxSat - 250 MiniMaxSat -
é’ 30l Maxsatz -) é’ 200 + Maxsatz -
B 4 S 1507
> >
g 20 g 100}
10 ¢] 50 t _—
0 . R 0 . B
200 300 400 500 600 700 800 900 300 400 500 600 700 800 900
number of clauses number of clauses
(c) Max-CUT, 60 nodes (d) Max-ONE, random 3-SAT, 120 variables
10} Max-DPLL ——] 30 Minisat+ -
gl Maxsatz - | 25 ¢ Pueblo ——
GE) MiniMaxSat - GE) 20 -DPLL -
ER| S 15
& 4 1 & 10}
2r] 5| e
Q b e S 0 s A e
300 350 400 450 500 150200250300350400450500550
number of edges number of hard clauses
(e) Max-Clique, 150 nodes (f) C. Auctions PATHS, 60 Goods
50 Minisat+ — 00 Pueblo +
o 40 f Pueblo - o 80 f Minisat+ j---
Max-DPLL - Max-DPLL /-
£ 307 MiniMaxsat |/ £ 60 iniMaxSat; =
2 20 ’ 2 40
o | o P
10 ¢ , 20 e .
0 P 0 . P
0 25 50 75 100 70 80 90 100110120130140150
connectivity (%) number of bids
(g9) C. Auctions SCHEDULING, 60 Goods (h) C. Auctions REGIONS, 60 Goods
>0 "Pueblo —— 20 Minisat+ ——;
40 - Max-DPLL ——— 15 | Pueblo -~
g MiniMaxSat - g Max-DPLL =
£ 307 Minisat+ = | MiniMaxSat =/
=] r =] 10 A
o 20+t 4 o
o o e
10| e ST
0 ,,r»»i'iff::/;;’ ; o x:)(P - o
70 80 90 100110120130140150 100 120 140 160 180 200
number of bids number of bids

Figure 7: Plots of different benchmarks. Note that the ondehe legend goes in accordance with
the performance of the solvers.

more exhaustive comparison, including more instances alvdrs, in the Second Max-SAT Eval-
uation 2007 web pade The results of such evaluation showed thatNW AX SAT was the best
performing solver in two of the four existing categories.

9. http://www.maxsat07.udl.es/

26

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

Problem| n. inst. | MINIMAXSAT | MAXSATZ | MAX-DPLL
Dubois 13 0.02 14818(7) 174.33(6)
Pret60 4 0.07 10.06 22.00
Pret150 4 0.01 — —

Hole 5 8.68 8.34 28.00
Aim50 8 0.00 0.01 0.00
Aim100 8 0.00 9.55 17200

Aim200 8 0.00 — —

Figure 8: Unsatisfiable DIMACS instances.

Problem| n. inst. | MINIMAXSAT | PUEBLO | MINISAT+
3col80 10 0.15 0.10 0.02
3col100 10 2.25 173 0.12
3col120 10 20.49 14.52 0.74
3col140 10 3833 8317 161
cnt 3 6.59 0.13 0.12
dp 6 2881 1.19(3) 1.21(4)
ezfact32| 10 0.77 0.34 0.33

Figure 9: Structured Max-one instances.

Problem n.inst.| Toolbar | MINIMAXSAT PUEBLO | MINISAT+
Planning 71 4.02 3.81 0.16 7.40
Graph Coloring| 22 49.29(16) 4.16(17) 68.50(11) 0.57(11)
Max-CSP DL 20 0.08 0.20 34908(13) 8.60
Max-CSP DT 20 0.00 0.01 — 2.40
Max-CSP SL 20 0.01 0.03 12367 0.48
Max-CSP ST 20 0.00 0.01 — 1.29

Figure 10: Results for WCSP and Max-CSP instances.

9. Related Work

Some previous work has been done about incorporating SAitgues inside a Max-SAT solver.
Alsinet et al. (2005) presented a lazy data structure toctlethen clauses become unit, but it re-
quires a static branching heuristic. Argelich and Many@0@a) test different versions of a branch
and bound procedure. One of these versions uses the twheusdliterals, but it uses a very basic
lower bounding. We can conclude that none of these previppoaches is as general as our use of
the two-watched literals. As far as we know, the rest of M@X-Solvers are based aadjacency
lists. Therefore, they are presumably inefficient for unit pradam (Lynce & Silva, 2005), par-

27

HERAS, LARROSA, & OLIVERAS

Problem n. inst. | MINIMAX SAT PUEBLO | MINISAT+
misc 7 3.08(5) 8.51(5) 0.14(5)

Logic synthesis| 17 82.55(2) 36.21(5) | 25393(5)

MPI 148 37.35(107) 32.04(101) | 3.06(105
MPS 16 22.65(5) 36.90(8) 8.50(8)
Routing 15 58.74(14) 5.96 13.09

Figure 11: Results for pseudo-boolean instances.

ticularly in the presence of long clauses. Argelich and Ma(B8006b) enhance a Max-SAT branch
and bound procedure with learning over hard constraintsit lisi used in combination with sim-
ple lower bounding techniques. An improved version is pitesi by Argelich and Manya (2007)
with a more powerful lower bound, but it does not incorportte two-watched literal scheme,
backjumping, etc. To the best of our knowledge, no Max-SA/esoincorporates backjumping.
Note that MNIMAX SAT restricts backjumping to the occurrence of hard conflictslaied works
on the integration of backjumping techniques into brancth laound include work by Zivan and
Meisels (2007) foMeighted CSPManquinho and Silva (2004) for pseudo-boolean optimixati
and Nieuwenhuis and Oliveras (2006) AT Modulo Theories

Most Max-SAT solvers use variations of what we call subsivaebased lower bounding. In
most cases, they search for special patterns of mutuallynsistent subsets of clauses (Shen &
Zhang, 2004; Xing & Zhang, 2005; Alsinet et al., 2005). Fdicgncy reasons, these patterns are
always restricted to small sets of small arity clauses (2 olaB8ses or arity less than 3). IM-
MAX SAT uses a natural weighted extension of the approach propgseicebal. (2005). It was the
first one able to detect inconsistencies in arbitrarily éasgts of arbitrarily large clauses.

The idea of what we call resolution-based lower boundingingggired from the WCSP domain
(Larrosa, 2002; Larrosa & Schiex, 2003; de Givry et al., 20®)5) and it was first proposed in
the Max-SAT context by Larrosa and Heras (2005) and furtegelbped by Li et al. (2007), Heras
and Larrosa (2006), and Larrosa et al. (2007). In these waiky special patterns of fixed-size
resolution trees were executed. The use of simulated uajiggation allows MNIMAX SAT to
identify arbitrarily large resolution trees. In the followy example, we present two inconsistent
subsets of clauses that are detected byiMiAX SAT and transformed into an equivalent formula
while previous solvers cannot transform them since theyimited to specific patterns:

o {(X1,W1), (X2, W2), (X3,W3), (X1 V X2V X3, Wa) }
o {(X1,W1), (X1 V X2, W2), (X1 VX2V X3,W3), (X1 VX2V X3V Xa,Wa), (X1 V X2 V X3V Xg,Ws) }

In the first case, MN\IMAX SAT replaces the clauses B, m) with m = min{w;, wy, w3, wy}
and a set of compensation clauses. For the second caselMMXx SAT replaces it by(O, m) with
m = min{wz, W, W3, W4, W5} and a set of compensation clauses. In both cases, the emdeals
preserved. However, other solvers in the literature detexge inconsistent subset of clauses but
cannot transform the problem into an equivalent one (Li e28I07) or simply cannot detect them
(Heras & Larrosa, 2006).

Our probing method to derive weighted unit clauses is rdlatethe 2— RESand cycle rule
of Heras and Larrosa (2006) and Larrosa et al. (2007), tedditerals of Li et al. (2006), and

28

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

to singleton consistency in CSP (Debruyne & Bessiére, 199@ain, the use of simulated unit
propagation allows MuI M AX SAT to identify arbitrarily large resolution trees.

10. Conclusions and Future Work

MINIMAX SAT is an efficient and very robust Max-SAT solver that can dedhwkiard and soft
clauses as well as pseudo-boolean functions. It incorpetéie best available techniques for each
type of problems, so its performance is similar to the bestigfized solver. Besides the develop-
ment of MINIMAX SAT combining, for the first time, known techniques from difierdields, the
main original contribution of this paper is a novel lower hding technique based on resolution.
MINIMAX SAT lower bounding combines in a very clean and elegant way miogheoap-
proaches that have been proposed in the last years, maisdyl lwen unit-propagation-based lower
bounding and resolution-based problem transformatiorthilypaper we use the information pro-
vided by the propagation queue (i) to determine a subsetohsistent clauses and (ii) to determine
a simple ordering in which resolution can be applied to iasesthe lower bound and generate an
equivalent formula. However, this is not necessarily the bedering to do so. It is easy to see that
different orderings may generate resolvents and comgensatuses of different arities. If one
selects the ordering that generates the smallest resslaet compensation clauses the resulting
formula may be presumably simpler. Future work concernsthey of such orderings, the devel-
opment of VSIDS-like heuristics for soft clauses and batkjing techniques for soft conflicts.

Acknowledgments

We would like to thank to Niklas Eén and Niklas Sorenssannfiaking MiNISAT+ code publicly
available. We are also grateful to the anonymous referegbda helpful suggestions on improving
the paper.

This work has been partially supported by the Spanish Minisf Education and Science
through the projects TIN2006-15387-C03-02 (Heras anddsaiyand TIN2004-03382 (Oliveras).

References

Alsinet, T., Manya, F., & Planes, J. (2005). Improved Ex@otvers for Weighted Max-SAT. In
Proceedings of SAT'Q5%/l. 3569 of LNCS pp. 371-377. Springer.

Argelich, J., & Manya, F. (2006a). Exact Max-SAT solvers fiver-constrained problemsJ.
Heuristics 12(4-5), 375-392.

Argelich, J., & Manya, F. (2006b). Learning Hard Consttaim Max-SAT. InProceedings of
CSCLP’06 Vol. 4651 of LNCS pp. 1-12. Springetr.

Argelich, J., & Manya, F. (2007). Partial Max-SAT SolvergiwClause Learning. IRroceedings
of SAT’'07 Vol. 4501 of LNCS pp. 28-40. Springer.

Barth, P. (1995). A Davis-Putnam Based Enumeration Algorifor Linear pseudo-Boolean Op-
timization. Research report MPI-1-95-2-003, Max-Plaraktitut fir Informatik, Im Stadt-
wald, D-66123 Saarbricken, Germany.

Brglez, F., Li, X., & Stallman, M. (2002). The role of a skep#gent in testing and benchmarking
of SAT algorithms. Inn Proceedings of SAT'Q2p. 354-361.

29

HERAS, LARROSA, & OLIVERAS

Buro, M., & Buning, H. K. (1993). Report on a SAT CompetitiorBulletin of the European
Association for Theoretical Computer Sciepd®, 143-151.

Cha, B., lIwama, K., Kambayashi, Y., & Miyazaki, S. (1997). cebsearch algorithms for partial
MAXSAT. In Proceedings of AAAI'Qp. 263—-268. The MIT Press.

Cooper, M., Cussat-Blanc, S., de Roquemaurel, M., & Ré&ghRie(2006). Soft Arc Consistency
Applied to Optimal Planning. IfProceedings of CP'06Vol. 4204 of LNCS pp. 680-684.
Springer.

Davis, M., Logemann, G., & Loveland, G. (1962). A machinegseon for theorem provingCom-
munications of the ACI\b, 394-397.

de Givry, S., Heras, F., Larrosa, J., & Zytnicki, M. (2005) xigtential arc consistency: getting
closer to full arc consistency in weighted CSPsPceedings of the 1DIJCAI, pp. 84—89.
Professional Book Center.

de Givry, S., Larrosa, J., Meseguer, P., & Schiex, T. (2088)ving Max-SAT as weighted CSP. In
Proceedings of CP'03vol. 2833 of LNCS pp. 363-376. Springer.

Debruyne, R., & Bessiére, C. (1999). Some practicableifiietechniques for the constraint satis-
faction problem. IrProceedings of ICJAI'97pp. 412—-417. Morgan Kaufmann.

Eén, N., & Sorensson, N. (2003). An Extensible SAT-salNarProceedings of SAT'Q3/0l. 2919
of LNCS pp. 502-518. Springer.

Eén, N., & Sorensson, N. (2006). Translating Pseudo-@wolConstraints into SATJournal on
Satisfiability, Boolean Modeling and Computati@ 1—-26.

Fahle, T. (2002). Simple and fast: Improving a branch-amdrll algorithm for maximum clique.
In Proceedings of ESA’Q2/0l. 2461 of LNCS pp. 485-498. Springer.

Freeman, J. W. (1995)Improvements to Propositional Satisfiability Search Aigons Ph.D.
thesis, University of Pennsylvania.

Fu, Z., & Malik, S. (2006). On Solving the Partial MAX-SAT Rriem. InProceedings of SAT'Q6
Vol. 4121 of LNCS pp. 252-265. Springer.

Heras, F., & Larrosa, J. (2006). New Inference Rules for EffitMax-SAT Solving. IrProceedings
of the 21"AAAI. AAAI Press.

Jeroslow, R. G., & Wang, J. (1990). Solving propositiondis$iability problems.Annals of Math-
ematics and Artificial Intelligencel, 167-187.

K. Leyton-Brown, M. P., & Shoham, Y. (2000). Towards a unsadrtest suite for combinatorial
auction algorithms. IrProceedings of ACM Conference on Electronic Commercg)po
66—76.

Karloff, H. J., & Zwick, U. (1997). A 7/8-Approximation Algathm for MAX 3SAT?. INnFOCS
pp. 406-415.

Larrosa, J., & Heras, F. (2005). Resolution in Max-SAT asdrélation to local consistency for
weighted CSPs. IRroceedings of IJCAI'O5pp. 193-198. Professional Book Center.

Larrosa, J., Heras, F., & de Givry, S. (2007). A logical apgtoto efficient max-sat solving. In
Artificial Intelligence To appear.

30

MINIMAXSAT: AN EFFICIENT WEIGHTED MAX-SAT SOLVER

Larrosa, J., & Schiex, T. (2003). In the quest of the best fofrtocal consistency for weighted
CSP. InProceedings of the 18IJCAI, pp. 239-244.

Larrosa, J. (2002). Node and Arc Consistency in Weighted.d8MProceedings of AAAI'02op.
48-53. AAAI Press.

Le Berre, D. (2001). Exploiting the real power of Unit Proptign Lookahead. IProceedings of
LICS Workshop on Theory and Applications of Satisfiabilégtifig

Le Berre, D. (2006). The SAT4j project for Max-SAT.. httpuiw.sat4j.org/.

Li, C., Manya, F., & Planes, J. (2005). Exploiting Unit Pagation to Compute Lower Bounds
in Branch and Bound Max-SAT Solvers. Rroceedings of CP’05Vol. 3709 of LNCS pp.
403-414.

Li, C., Manya, F., & Planes, J. (2007). New Inference Rut@sMax-SAT. InJournal of Artificial
Intelligence Researchlo appear.

Li, C.-M., Manya, F., & Planes, J. (2006). Detecting Digpinconsistent Subformulas for Com-
puting Lower Bounds for Max-SAT. IRroceedings of the 2IAAAL AAAI Press.

Lynce, I., & Silva, J. P. M. (2003). Probing-Based Preprsoas Techniques for Propositional
Satisfiability. InProceedings of ICTAI'03pp. 105-111. IEEE Computer Society.

Lynce, 1., & Silva, J. P. M. (2005). Efficient data structufesbacktrack search SAT solver&nn.
Math. Artif. Intell, 43(1), 137-152.

Manquinho, V. M., & Silva, J. P. M. (2004). Satisfiability-Bed Algorithms for Boolean Optimiza-
tion. Ann. Math. Artif. Intell, 40(3-4), 353—-372.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Mal&. (2001). Chaff: Engineering an
Efficient SAT Solver. InProceedings of DAC'0lpp. 530-535. ACM.

Nieuwenhuis, R., & Oliveras, A. (2006). On SAT Modulo Thesriand Optimization Problems. In
Proceedings of SAT'Q6/0l. 4121 ofLNCS pp. 156-169. Springer.

Papadimitriou, C. (1994)Computational ComplexityAddison-Wesley, USA.

Sandholm, T. (1999). An Algorithm for Optimal Winner Detemation in Combinatorial Auctions.
In Proceedings of IJCAI'99p. 542-547. Morgan Kaufmann.

Sheini, H. M., & Sakallah, K. A. (2006). Pueblo: A Hybrid PsiedBoolean SAT SolverJournal
on Satisfiability, Boolean Modeling and Computati@n165-189.

Shen, H., & Zhang, H. (2004). Study of lower bounds for Ma$&F. In Proceedings of AAAI'04
pp. 185-190. AAAI Press / The MIT Press.

Silva, J. P. M., & Sakallah, K. A. (1996). GRASP - a new seargjorithm for satisfiability. In
ICCAD, pp. 220-227.

Smyth, K., Hoos, H. H., & Stitzle, T. (2003). Iterated Rabliabu Search for MAX-SAT. In
Proceedings of AI'03Vol. 2671 ofLNCS pp. 129-144. Springer.

Tompkins, D. A. D., & Hoos, H. H. (2004). UBCSAT: An Implemeartipn and Experimentation
Environment for SLS Algorithms for SAT & MAX-SAT. IrProceedings of SAT QA0l.
3542 ofLNCS pp. 306-320. Springer.

Walsh, T. (2000). SAT v CSP. IRroceedings of CP’00vol. 1894 ofLNCS pp. 441-456. Springetr.

31

HERAS, LARROSA, & OLIVERAS

Xing, Z., & Zhang, W. (2005). MaxSolver: An efficient exacgatithm for (weighted) maximum
satisfiability. Artificial Intelligence 164(1-2), 47-80.

Zhang, L., Madigan, C. F., Moskewicz, M. W., & Malik, S. (2Q0Efficient Conflict Driven Learn-
ing in Boolean Satisfiability Solver. IRroceedings of ICCAD’Qlpp. 279-285.

Zivan, R., & Meisels, A. (2007). Conflict directed Backjumgifor MaxCSPs. IrProceedings of
IJCAI'07, pp. 198-204.

32

