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Abstract
In this paper we introduce MINI MAX SAT, a new Max-SAT solver that is built on top of MIN-

ISAT+. It incorporates the best current SAT and Max-SAT techniques. It can handle hard clauses
(clauses of mandatory satisfaction as in SAT), soft clauses(clauses whose falsification is penal-
ized by a cost as in Max-SAT) as well as pseudo-boolean objective functions and constraints. Its
main features are: learning and backjumping on hard clauses; resolution-based and substraction-
based lower bounding; and lazy propagation with the two-watched literal scheme. Our empirical
evaluation comparing a wide set of solving alternatives on abroad set of optimization benchmarks
indicates that the performance of MINI MAX SAT is usually close to the best specialized alternative
and, in some cases, even better.

1. Introduction

Max-SAT is the optimization version of SAT where the goal is to satisfy the maximum number of
clauses. It is considered one of the fundamental combinatorial optimization problems and many im-
portant problems can be naturally expressed as Max-SAT. They include academic problems such as
max cutor max clique, as well as real problems in domains likerouting, bioinformatics, scheduling
or electronic markets.

There is a long tradition of theoretical work about the structural complexity (Papadimitriou,
1994) and approximability (Karloff & Zwick, 1997) of Max-SAT. Most of this work is restricted to
the simplest case in which all clauses are equally important(i.e., unweighted Max-SAT) and have a
fixed size (mainly binary or ternary). From a practical pointof view, significant progress has been
made in the last 3 years (Shen & Zhang, 2004; Larrosa & Heras, 2005; Larrosa, Heras, & de Givry,
2007; Xing & Zhang, 2005; Li, Manyà, & Planes, 2005, 2006). As a result, there is a handful of
new solvers that can deal, for the first time, with instances involving hundreds of variables.

The main motivation of our work comes from the study of Max-SAT instances modelling real-
world problems. We usually encounter three features:

• The satisfaction of all clauses does not have the same importance, so each clause needs to be
associated with a weight that represents the cost of its violation. In the extreme case, which
often happens in practice as observed by Cha, Iwama, Kambayashi, and Miyazaki (1997),
there are clauses whose satisfaction is mandatory. They areusually modelled by associating
a very high weight with them.

• Literals do not appear randomly along the clauses. On the contrary, it is easy to identify
patterns, symmetries or other kinds of structures.
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• In some problems there are mandatory clauses that reduce dramatically the number of feasible
assignments, so the optimization part of the problem only plays a secondary role. However,
in some other problems mandatory clauses are trivially satisfiable and the real difficulty lays
on the optimization part.

When we look at current Max-SAT solvers, we find that none of them is robust over these three
features. For instance, Li et al.’s (2005, 2006) solvers arerestricted to formulas in which all clauses
are equally important (i.e. unweighted Max-SAT), Shen and Zhang’s (2004) one is restricted to bi-
nary clauses, the one described by Larrosa et al. (2007) seems to be efficient on very overconstrained
problems (i.e., only a small fraction of the clauses can be simultaneously satisfied), while the one by
Alsinet, Manyà, and Planes (2005) seems to be efficient on slightly overconstrained problems (i.e.
almost all the clauses can be satisfied). The solver described by Argelich and Manya (2007), devel-
oped in parallel to the research described in this paper, canhandle mandatory clauses and is the only
one that incorporates some learning, so it seems to perform well on structured problems. However,
all non-mandatory clauses must have the same weight. Finally, approaches based on translating a
Max-SAT instance into a SAT instance and solve them with a SATsolver seem to be effective in
highly structured problems in which almost all clauses are mandatory (Fu & Malik, 2006; Le Berre,
2006).

In this paper we introduce MINI MAX SAT, a new weighted Max-SAT solver that incorporates
the current best SAT and Max-SAT techniques. It is build on top of MINI SAT+ (Eén & Sörensson,
2006), so it borrows its capability to deal with pseudo-boolean problems and all the MINI SAT (Eén
& Sörensson, 2003) features processing mandatory clausessuch as learning and backjumping. We
have extended it allowing it to deal with weighted clauses, while preserving the two-watched literal
lazy propagation method. The main original contribution ofM INI MAX SAT is that it implements
a novel and very efficient lower bounding technique. Specifically, it applies unit propagation in
order to detect disjoint subsets of mutually inconsistent clauses as done by Li et al. (2006). Then
it simplifies the problem following Larrosa and Heras (2005), Heras and Larrosa (2006), Larrosa
et al. (2007) in order to increment the lower bound. However,while in those works only the clauses
that accomplish specific patterns are transformed, in MINI MAX SAT there is no need to define such
patterns.

The structure of the paper is as follows: Section 2 provides preliminary definitions on SAT and
Section 3 presents state-of-the-art solving techniques incorporated in a modern SAT solver such as
M INI SAT. Then, Section 4 presents preliminary definitions on Max-SAT and Section 5 overviews
M INI MAX SAT. After that, Sections 6 and 7 focus on its lower bounding and additional features,
respectively. In Section 8 we present the benchmarks used inour empirical evaluation and we
report the experimental results. Finally, Section 9 presents related work and Section 10 concludes
and points out possible future work.

2. Preliminaries on SAT

In the sequelX = {x1,x2, . . . ,xn} is the set of boolean variables. Aliteral is either a variablexi or its
negation ¯xi . The variable to which literall refers is notedvar(l). Given a literall , its negation̄l is x̄i

if l is xi and isxi if l is x̄i . A clause Cis a disjunction of literals. Thesizeof a clause, noted|C|, is the
number of literals that it has. The set of variables that appear inC is notedvar(C). Sometimes we
associate a subscript Greek letter to a clause (e.g.(xi ∨x j)α) in order to facilitate future references
of such clause.
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Algorithm 1: DPLL basic structure.
Function Search() : boolean

1 InitQueue( ) ;
2 Loop
3 UP( ) ;
4 if Conflict then
5 AnalyzeConflict( ) ;
6 if Top Conflictthen return f alse;

else
7 LearnClause( ) ;
8 Backjump( ) ;

9 else ifall variables assignedthen return true ;
10 else
11 l := SelectLiteral( ) ;
12 Enqueue(Q, l ) ;

An assignmentis a set of literals not containing a variable and its negation. Assignments of
maximal sizen are calledcomplete, otherwise they are calledpartial. Given an assignmentA , a
variablex is unassignedif neitherx nor x̄ belong toA . Similarly, a literall is unassignedif var(l)
is unassigned.

An assignmentsatisfiesa literal iff it belongs to the assignment, itsatisfiesa clause iff it satisfies
one or more of its literals and itfalsifiesa clause iff it contains the negation of all its literals. In the
latter case we say that the clause isconflictingas it always happens with the empty clause, noted
2. A boolean formulaF in conjunctive normal form(CNF) is a set of clauses representing their
conjunction. A model ofF is a complete assignment that satisfies all the clauses inF .

If F has a model, we call itsatisfiable, otherwise we say it isunsatisfiable. Moreover, if all
complete assignments satisfyF , we say thatF is atautology.

Clauses of size one are calledunit clausesor simplyunits. When a formula contains a unitl , it
can be simplified by removing all clauses containingl and removinḡl from all the clauses where it
appears. The application of this rule until quiescence is called unit propagation(UP) and it is well
recognized as a fundamental propagation technique in all current SAT solvers.

Another well-known rule isresolution, which, given a formula containing two clauses of the
form (x∨A),(x̄∨B) (calledclashing clauses), allows one to add a new clause(A∨B) (called the
resolvent).

3. Overview of State-of-the-art DPLL-based SAT Solvers

In this section we overview the architecture of SAT solvers based on the DPLL (Davis, Logemann,
& Loveland, 1962) procedure. This procedure, currently regarded as the most efficient complete
search procedure for SAT, performs a systematic depth-firstsearch on the space of assignments. An
internal node is associated to a partial assignment and its two successors are obtained by selecting
an unassigned variablex and extending the current assignment withx and x̄, respectively. At each
visited node, new units are derived due to the application ofunit propagation (UP). If that leads
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Algorithm 2: Unit Propagation.
Function UP(Q) : Conflict

while (Q contains non-propagated literals) do
13 l := GetFirstNonPropagatedLit(Q); MarkAsPropagated(l ) ;
14 foreach clause C∨ l̄ that becomes unit or falsifieddo
15 if C∨ l̄ becomes a unit qthen Enqueue(Q,q) ;
16 else ifC∨ l̄ becomes falsifiedthen return Conflict ;

return None;

to a conflicting clause, the procedure backtracks, performing non-chronological backtracking and
clause learning, as originally proposed by Silva and Sakallah (1996).

An algorithmic description of the DPLL procedure appears inAlgorithm 1. The algorithm uses a
propagation queueQwhich contains all units pending propagation and also contains a representation
of the current assignment.

First, propagation queueQ is filled with the units contained in the original formula (line 1). The
main loop starts in line 2 and at each iteration procedure UP is in charge of propagating all pending
units (line 3). If a conflicting clause is found (line 4), the conflict is analyzed (line 5) and as a result
a new clause islearned(i.e, inferred and recorded, line 7).

Then, the procedure backtracks, using the propagation queue Q to undo the assignment until
exactly one of the literals of the learned clause becomes unassigned (line 8). If one can further
backtrack while still maintaining this condition, it is advantageous to do so (this is commonly re-
ferred to asbackjumpingor non-chronological backtracking, see Silva & Sakallah, 1996). If UP
leads to no conflict, a new unassigned literal is selected to extend the current partial assignment.
The new literal is added toQ (line 10) and a new iteration takes place.

The procedure stops when a complete assignment is found (line 9) or when a top level conflict
is found (line 6). In the first case, the procedure returnstrue which indicates that a model has been
found, while in the second case it returnsf alse which means that no model exists for the input
formula.

The performance of DPLL-based SAT solvers was greatly improved in 2001, when the SAT
solver CHAFF (Moskewicz, Madigan, Zhao, Zhang, & Malik, 2001) incorporated thetwo-watched
literal schemefor efficient unit propagation, theFirst UIP scheme(Zhang, Madigan, Moskewicz,
& Malik, 2001) for clause learning and the cheapVSIDSbranching heuristic. Currently, most state-
of-the-art SAT solvers, like MINI SAT (Eén & Sörensson, 2003), implement small variations of all
these three features. In the following we describe them in more depth.

3.1 Unit Propagation

The aim of unit propagation is twofold: on the one hand, it finds all clauses that have become units
due to the current assignment, and on the other hand, it detects whether some clause has become
conflicting. A more concrete procedure is given in Algorithm2. While non-propagated literals exist
in Q, it picks the oldest onel and marks it as propagated (line 13). Then all clauses containing l̄
that may have become falsified or units are traversed (we willlater describe how these clauses are
detected). If one of such clauses becomes a unitq, it is enqueued inQ to be propagated later (line
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15). The procedure iterates until there are no more units to propagate or until a conflicting clause is
found (line 16).

There are two types of literals inQ: decision literalsare those that the algorithm has heuristically
selected and assigned at a branching point (lines 11 and 12 inAlgorithm 1);consequence literalsare
those which are added because they are logical consequencesof previous decision literals (line 15).
M INI SAT uses a non-standard queue to handle units pending propagation. Unlike classical queues,
after fetching an element, it is not removed, but just markedas such. Consequently,Q is formed
by two sets of elements: the already propagated literals andthe literals pending propagation. The
advantage of such strategy is that at any execution point,Q also contains the current assignment.
Besides, the propagated literals ofQ are divided intodecision levels. Each decision level contains a
decision literal and the set of its related consequences. Furthermore, a literall is associated with the
original clause that caused its propagation and it is noted as l(α); such a clause is usually referred
to as thereasonof l . Note that a decision literall does not have areasonand will be represented as
ld.

Example 1 Consider the formula{(x̄1∨x2)α,(x̄1∨x3)β,(x̄4∨ x̄5)γ}. Before starting the execution,
the propagation queue is empty Q= [‖]. We use the symbol‖ to separate propagated literals (on
the left) from literals pending propagation (on the right).If literal x1 is selected, it is added to
Q. Before propagation the queue contains Q= [‖xd

1]. UP will propagate x1 and add two new
consequences x2 and x3. The propagation queue is now Q= [xd

1‖x2(α),x3(β)] and the current
assignment is{x1,x2,x3}. The propagation of x2 and x3 does not add new literals to Q, so it becomes
Q = [xd

1,x2(α),x3(β)‖]
If x4 is decided, UP will add a new consequencex̄5. After the propagation, we have Q=

[xd
1,x2(α),x3(β),xd

4, x̄5(γ)‖]. The current assignment is{x1,x2,x3,x4, x̄5}. Note that no more literals
can be propagated and a complete assignment has been found. Note as well that Q contains two
decision levels: the first one is formed by literals x1, x2 and x3 while the second one is formed by
literals x4 andx̄5.

3.1.1 LAZY DATA STRUCTURES.

As mentioned, the aim of UP is to detect all units and all conflicting clauses. Taking into account
that this process typically takes up to 80% of the total runtime of a SAT solver, it is important to
design efficient data structures.

The first attempt was the use ofadjacency lists. For each literal, one keeps the list of all clauses
in which the literal appears. Then, upon the addition of a literal l to the assignment, only clauses
containingl̄ have to be traversed. The main drawback of further refinements to detect efficiently
when a clause has become unit, such as keepingcountersindicating the number of unassigned
literals of a clause, is that they involved a considerable amount of work upon backtracking.

The method used by MINI SAT is thetwo-watched literal schemeintroduced by Moskewicz et al.
(2001). Its basic idea is that a clause cannot be unit or conflicting if (i) it has one satisfied literal or
(ii) it has two unassigned literals.

The algorithm keeps two special literals for each clause, called thewatched literals, initially
two unassigned literals, and tries to maintain the invariant that always one satisfied literal or two
unassigned literals are watched.

The invariant may be broken only if one of the two watched literals becomes falsified. In this
case, the clause is traversed looking for another non-falseliteral to watch in order to restore the
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invariant. If one such literal cannot be found, the clause isdeclared to be true, unit or conflicting de-
pending on the value of the other watched literal. Hence, when a literall is added to the assignment,
the clauses that may have become falsified or unit (line 14 in Algorithm 2) are only those clauses
wherel̄ is watched.

The main advantage of such an approach is that no work on the clauses has to be done upon
backtracking. However, the main drawback is that the only way to know how many literals are
unassigned for a given clause is by traversing all its literals. Note that this information is used by
other techniques such as theTwo-sided Jeroslowbranching heuristic (See Section 3.3).

3.1.2 RESOLUTION REFUTATION TREES.

If UP detects a conflict, an unsatisfiable subset of clausesF ′ can be determined using the infor-
mation provided byQ. SinceF ′ is unsatisfiable, the empty clause2 can be derived fromF ′ via
resolution. Such resolution process is called arefutation. A refutation for an unsatisfiable clause set
F ′ is a resolution refutation tree(or simply arefutation tree) if every clause is used exactly once
during the resolution process.

A refutation treeϒ can be built from the propagation queueQas follows: letC0 be the conflicting
clause. TraverseQ in a LIFO (Last In First Out) fashion until a clashing clauseD0 is found. Then
resolution is applied betweenC0 andD0, obtaining resolventC1. Next, the traversal ofQ continues
until a clauseD1 that clashes withC1 is found, giving resolventC2 and we iterate the process until
the resolvent we obtain is the empty clause2. The importance of refutation trees will become
relevant in Section 6.

Example 2 ConsiderF = {(x̄1)α,(x1 ∨ x4)β,(x1 ∨ x2)γ,(x1 ∨ x3∨ x̄4)δ,(x1 ∨ x̄2∨ x̄3)ε,(x1 ∨ x̄5)ϕ}.
If we apply unit propagation the unit clauseα is enqueued producing Q= [‖x̄1(α)]. Thenx̄1 is
propagated and Q becomes[x̄1(α)‖x4(β),x2(γ), x̄5(ϕ)]. After that, literal x4 is propagated causing
clauseδ to become unit and Q becomes[x̄1(α),x4(β)‖x2(γ), x̄5(ϕ),x3(δ)]. After that, literal x2
is propagated and clauseε is found to be conflicting. Figure 1.a shows the state of Q after the
propagation.

Now we build the refutation tree. Starting from the tail of Q the first clause clashing with the
conflicting clauseε is δ. Resolution betweenε andδ generates the resolvent x1∨ x̄2∨ x̄4. The first
clause clashing with x2 is γ, producing resolvent x1∨ x̄4. The next clause clashing with x4 is β and
resolution generates x1. Finally, we resolve with clauseα and we obtain2.Figure 1.b shows the
resulting refutation tree.

3.2 Learning and Backjumping

Learning and backjumping are best illustrated with an example (see Silva & Sakallah, 1996; Zhang
et al., 2001, for a precise description):

Example 3 Consider the formula{(x̄1∨x2)α,(x̄3∨x4)β,(x̄5∨ x̄6)γ,(x̄2∨ x̄5∨x6)δ} and the partial
assignment{x1,x2,x3,x4,x5, x̄6} that leads to a conflict over clauseδ. Suppose that the current
propagation queue is Q= [xd

1,x2(α),xd
3,x4(β),xd

5, x̄6(γ)‖].
In the example it is easy to see that decision xd

1 is incompatible with decision xd
5. Such incom-

patibility can be represented with clause(x̄1∨ x̄5). Similarly, consequence x2 is incompatible with
decision xd5 and it can be represented with the clause(x̄2∨ x̄5).
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x3(δ)

x5(ϕ)

x2(γ)

x4(β)

x̄1(α)

(x1∨ x̄2∨ x̄3)ε (x1∨x3∨ x̄4)δ

x1∨ x̄2∨ x̄4 (x1∨x2)γ

x1∨ x̄4 (x1∨x4)β

x1 (x̄1)α

2

F = {(x̄1)α,(x1∨x4)β,(x1∨x2)γ,(x1∨x3∨ x̄4)δ,(x1∨ x̄2∨ x̄3)ε,(x1∨ x̄5)ϕ}

a) b)

Figure 1: Graphical representation of the propagation queue Q and a refutation treeϒ of example
2. On the top, the original formulaF . On the left, the propagationQ after step 1. Arrows
indicate the order in which resolving clauses are selected.On the right, the resolution tree
computed in step 2.

Clause learning implements different techniques that are used todiscoversuch implicit incom-
patibilities and adds them to the formula. Learned clauses can accelerate the subsequent search,
since they can increase the potential of future UP executions. However, it has been observed that
unrestricted clause learning can be impractical in some cases (recorded clauses consume memory
and repeated recording may lead to its exhaustion). For thisreason, current SAT solvers incorporate
different clause deletion policies in order to remove some of the learned clauses.

Learned clausescan also be used to backjump if their presence would have allowed a unit prop-
agation at an earlier decision level. In this case, we say that the clause isassertingand backjumping
can proceed by going back to that level and adding the unit propagated literal. Among the several
automated ways of generating asserting clauses, MINI SAT uses the so-calledFirst Unique Implica-
tion Point(1UIP) (Zhang et al., 2001).

3.3 Branching Heuristic

Branching occurs in the functionSelectLiteral (Algorithm 1). When there are no more literals
to propagate, this function chooses one variable from all the unassigned ones and assigns it a value.
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The importance of the branching heuristic is well known, since different branching heuristic may
produce different-sized search trees.

Early branching heuristics include theBohm’s Heuristic(Buro & Büning, 1993), theMaxi-
mum Ocurrences on Minimum sized clauses(MOM) (Freeman, 1995) and theTwo sided-Jeroslow
Wang Heuristic(Jeroslow & Wang, 1990). Those heuristics try to choose the literal such that its
assignment will generate the largest number of implications or that satisfy most clauses. All these
heuristics arestate dependent, that is, they use information about the state of the clausesgiven the
current assignment. In most of them, such information is thenumber of unassigned literals for each
clause. Hence, they were implemented jointly with data structures based on adjacency lists since
they keep such information. For instance, the Two sided-Jeroslow Wang Heuristic computes for
each literall of F the following function:

J(l) = ∑
C∈F

s.t. l∈C

2−|C|

and selects the literall that maximizes functionJ(l).
As solvers become more efficient, updating metrics of state-dependent heuristics dominates the

execution time. Hence MINI SAT uses a slight modification of a state-independent heuristicfirst
proposed by Moskewicz et al. (2001). Such heuristic, calledVariable State Independent Decaying
Sum(VSIDS), selects the literal that appears more frequently over allclauses, but giving priority to
recently learned clauses. The advantage of this heuristic is that metrics only have to be updated when
clauses are learned. Since this only occurs occasionally, its computation has very low overhead. The
VSIDS heuristic suits perfectly with lazy data structures such as the two-watched literal scheme.

4. (Weighted) Max-SAT

A weightedclause is a pair(C,w), whereC is a clause andw is an integer representing the cost
of its falsification, also called itsweight. If a problem contains clauses thatmustbe satisfied, we
call such clausesmandatoryor hard and associate with them a special weight>. Non-mandatory
clauses are also calledsoft. A weighted formulain conjunctive normal form(WCNF) is a set of
weighted clauses. Amodelis a complete assignment that satisfies all mandatory clauses. Thecost
of an assignmentis the sum of weights of the clauses that it falsifies. Given a WCNF formulaF ,
WeightedMax-SAT is the problem of finding a model ofF of minimum cost. This cost will be
called theoptimal cost ofF . Note that if a formula contains only mandatory clauses, weighted
Max-SAT is equivalent to classical SAT. If all the clauses have weight 1, we have the so-called
(unweighted) Max-SAT problem. In the following, we will assume weighted Max-SAT.

We say that a weighted formulaF ′ is a relaxationof a weighted formulaF (notedF ′ v F ) if
the optimal cost ofF ′ is less than or equal to the optimal cost inF (non-models are considered to
have cost infinity). We say that two weighted formulasF ′ andF areequivalent(notedF ′ ≡ F ) if
F ′ v F andF v F ′.

Max-SAT simplification rules transforms a formulaF into an equivalent, but presumably sim-
pler formulaF ′. All SAT simplification rules (e.g. unit propagation, tautology removal,...) can be
directly applied to Max-SAT if restricted to mandatory clauses. However, several specific Max-SAT
simplification rules exist (Larrosa et al., 2007). For instance, if a formula contains clauses(C,u)
and(C,v), they can be replaced by(C,u+v). If it contains a clause(C,0), it may be removed. If it
contains a unit(l ,>), it can be simplified by removing all (including soft) clauses containingl and
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removing l̄ from all the clauses (including soft clauses) where it appears. The application of this
rule until quiescence is the natural extension ofunit propagationto Max-SAT.

The empty clause may appear in a weighted formula. If its weight is >, it is clear that the
formula does not have any model. If its weight isw < >, the cost of any assignment will include
that weight, sow is an obvious lower bound of the formula optimal cost. Weighted empty clauses
and their interpretation in terms of lower bounds will become relevant in Section 6.

As shown by Larrosa et al. (2007), the notion of resolution can be extended to weighted formulas
as follows1 ,

{(x∨A,u),(x̄∨B,w)} ≡























(A∨B,m),
(x∨A,u−m),
(x̄∨B,w−m),
(x∨A∨ B̄,m),
(x̄∨ Ā∨B,m)























whereA andB are arbitrary disjunctions of literals andm= min{u,w}.
(x∨A,u) and(x̄∨B,w) are called theprior clashing clauses, (A∨B,m) is called theresolvent,

(x∨A,u−m) and(x̄∨B,w−m) are called theposterior clashing clauses, and(x∨A∨ B̄,m) and
(x̄∨ Ā∨B,m) are called thecompensation clauses. The effect of Max-SAT resolution, as in classical
resolution, is to infer (namely, make explicit) a connection betweenA andB. However, there is an
important difference between classical resolution and Max-SAT resolution. While the former yields
theadditionof a new clause, Max-RES is a transformation rule. Namely, itrequires thereplacement
of the left-hand clauses by the right-hand clauses. The reason is that some cost of the prior clashing
clauses must be substracted in order tocompensatethe new inferred information. Consequently,
Max-RES is better understood as amovementof knowledge in the formula.

The resolution rule for Max-SAT preserves equivalence (≡). The last two compensation clauses
may lose the clausal form, so the following rule (Larrosa et al., 2007) may be needed to recover it:

CNF(A∨ l ∨B,u) =

{

A∨ l̄ : |B| = 0
{(A∨ l̄ ∨B,u)}∪CNF(A∨ B̄,u) : |B| > 0

Example 4 If we apply weighted resolution to the following clauses{(x1∨x2,3),(x̄1∨x2∨x3,4)}
we obtain{(x2∨x2∨x3,3),(x1∨x2,3−3),(x̄1∨x2∨x3,4−3),(x1∨x2∨(x2∨x3),3),(x̄1∨ x̄2∨x2∨
x3,3)}. The first clause can be simplified. The second clause can be omitted because it weight is
zero. The fifth clause can be omitted because it is a tautology. The fourth element is not a clause
because it is not a simple disjunction. Hence, we applyCNF rule to it and we obtain two new
clausesCNF(x1∨x2∨ (x2∨x3),3) = {(x1∨x2∨ x̄2∨x3,3),(x1∨x2∨ x̄3,3)}. Note that the first new
clause is a tautology. Therefore, we obtain the equivalent formula{(x2∨x3,3),(x̄1∨x2∨x3,1),(x1∨
x2∨ x̄3,3)}.

5. Overview ofM INI MAX SAT

M INI MAX SAT is a weighted Max-SAT solver built on top of MINI SAT+ (Eén & Sörensson, 2006).
Any other DPLL-based SAT solver could have been used, but MINI SAT+ was particularly well-
suited because of its short and open-source code. Besides, it can deal with pseudo-boolean con-
straints.

1. If A is the empty clause then̄A represents a tautology. For the special weight>, we have the relations>−m= >
and>−> = > (Larrosa et al., 2007)
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Algorithm 3: M INI MAX SAT basic structure.
Function Search() : integer

17 ub := LocalSearch();lb := 0 ;
18 InitQueue(Q) ;
19 Loop
20 Propagate() ;
21 if Hard Conflictthen

AnalyzeConflict() ;
if Top Level Hard Conflictthen return ub ;
else

LearnClause() ;
Backjump() ;

22 else ifSoft Conflictthen
ChronologicalBactrack() ;
if End of Searchthen return ub ;

23 else ifall variables assignedthen
ub := lb ;

24 if ub= 0 then return ub ;
25 ChronologicalBactrack() ;

if End of Searchthen return ub ;

26 else
l := SelectLiteral() ;
Enqueue(Q, l ) ;

Given a WCNF formula (possibly containing hard and soft clauses), MINI MAX SAT returns the
cost of the optimal model (or> if there is no model). This is achieved by means of a branch-and-
bound search, as it is usually done to solve optimization problems.

Like M INI SAT, the tree of assignments is traversed in a depth-first manner. At each search point,
the algorithm tries to simplify the current formula and, ideally, detect a conflict, which would mean
that the current partial assignment cannot be successfullyextended. MINI MAX SAT distinguishes
two types of conflicts: hard and soft.Hard conflicts indicate that there is no model extending the
current partial assignment (namely, all the mandatory clauses cannot be simultaneously satisfied).
Hard conflicts are detected taking only into account hard clauses and using the methods of MINI SAT.
When a hard conflict occurs, MINI MAX SAT learns a hard clause and backjumps as MINI SAT would
do. Soft conflicts indicate that the current partial assignment cannot be extended to an optimal
assignment. In order to identify soft conflicts, the algorithm maintains two values during the search:

• The cost of the best model found so far, which is an upper boundubof the optimal solution.

• An underestimation of the best cost that can be achieved extending the current partial assign-
ment into a model, which is a lower boundlb of the current subproblem.

A soft conflict is detected whenlb≥ ub, because it means that the current assignment cannot lead to
an optimal model. When a soft conflict is detected, the algorithm backtracks chronologically. Note
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Algorithm 4: MiniMaxSat propagation.
Function MS-UP() : conflict

while (Q contains non-propagated literals) do
27 l := GetFirstNonPropagatedLit(Q); MarkAsPropagated(l ) ;
28 lb := lb+V(l̄)) ;
29 if lb ≥ ub then return Soft Conflict;
30 foreach Hard clause(C∨ l̄ ,>) that becomes unit or falsifieddo
31 if (C∨ l̄ ,>) becomes unit(q,>) then Enqueue(Q,q) ;
32 else if(C∨ l̄ ,>) becomes falsifiedthen return Hard Conflict;

33 foreach Soft clause(C∨ l̄ ,u) that becomes unitdo
34 if (C∨ l̄ ,u) becomes a unit(q,u) thenV(q) := V(q)+u ;

return None;

Function Propagate() : conflict
35 c := MS-UP( ) ;
36 if c = Hard or Soft Conflictthen return c ;
37 improveLB( ) ;
38 if lb ≥ ub then return Soft Conflict;
39 return None;

that one could also backjump by computing a clause expressing the reasons that led tolb ≥ ub.
However, in the presence of lots of soft clauses, this approach ends up creating too many long
clauses which affect negatively to the efficience of the solver and hence we decided to perform
simple chronological backtracking.

We also want to remark that any soft clause(C,w) with w≥ ub must be satisfied in an optimal
assignment. Therefore, in the following we assume that suchsoft clauses are automatically trans-
formed into hard clauses previous to search. Other than those ones, no other soft clause is promoted
into a hard one during the search.

An algorithmic description of MINI MAX SAT is presented inAlgorithm 3. Before starting the
search, a good initial upper bound is obtained with a local search method (line 17) which may yield
the identification of some new hard clauses. In our current implementation we use UBCSAT (Tomp-
kins & Hoos, 2004) with default parameters. The selected local search algorithm isIROTS(Iterated
Robust Tabu Search) (Smyth, Hoos, & Stützle, 2003). Besides, the lower bound is initialized to
zero. Next, the queueQ is initialized with all unit hard clauses in the resulting formula (line 18).
The main loop starts in line 19 and each iteration is in chargeof propagating all pending literals
(line 20) and, if no conflict is detected, attempting the extension of the current partial assignment
(line 26). Pending literals inQ are propagated in functionPropagate (line 20), which may re-
turn a hard or soft conflict. If a hard conflict is encountered (line 21) the conflict is analyzed, a
new hard clause is learned and backjumping is performed. This is done as introduced in Section 3.
If a soft conflict is encountered (line 22) chronological backtracking is performed. If no conflict is
found (line 26), a literal is heuristically selected and added toQ for propagation in the next iteration.
However, if the current assignment is complete (line 23), the upper bound is updated. Search stops
if a zero-cost solution is found, since it cannot be further improved (line 24). Else, chronological
backtracking is performed (line 25). Note that backjumpingleads to termination if a top level hard
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conflict is found, while chronological backtracking leads to termination if the two values for the first
assigned variable have been tried.

Algorithm 4describes the propagation process (functionPropagate). It uses an arrayV(l)
which accumulates the weight of all soft clauses that have become unit overl ; namely, original
clauses(A∨ l ,w) such that the current assignment falsifiesA. If no such clauses exists, we assume
V(l) = 0. First of all, it performs a Max-SAT-adapted form of unit propagation (MS-UP, line 35).
MS-UP iterates over the non-propagated literalsl in Q (line 27). Firstly, addingl to the assignment
may make a set of soft clauses falsified. Since the cost of all such clauses is kept inV(l̄), we
add it to the lower bound (line 28). If the lower bound increment identifies a soft conflict, it is
returned (line 29). Then, if a hard clause becomes unit, the corresponding literal is added toQ
for future propagation (line 31). Finally, if a soft clause becomes a unit clause(q,u) (line 33), its
weightu is added toV(q) (line 34). If during this process a hard conflict is detected,the function
returns it (lines 32,36). Else, the algorithm attempts to detect a soft conflict with a call to procedure
improveLB (line 37), and it returns the soft conflict if it is found (line38). In the next section a
detailed description ofimproveLB can be found. Finally, if no conflict is detected, the function
returnsNone(line 39).

6. Lower Bounding in M INI MAX SAT

In the following, we consider an arbitrary search state of MINI MAX SAT before the call to the
procedureimproveLB. For the purpose of this section, such a search state can be characterized
by the current assignment. The current assignment determines thecurrent subformulawhich is the
original formulaconditionedby the current assignment: If a clause contains a literal that is part of
the current assignment, it is removed. Besides, all the literals whose negation appear in the current
assignment are removed from the clauses where they appear.

The value oflb maintained by MINI MAX SAT is precisely the aggregation of costs of all the
clauses that have become empty due to the current assignment. Similarly, we recall that the value
V(l) is the aggregation of costs of all the clauses that have become unit overl due to the current
assignment. Thus, the current subformula contains(2, lb) and(l ,V(l)) for everyl .

M INI MAX SAT computes its lower bound by deriving new soft empty clauses(2,w) through
a resolution process. Such clauses are added to the already existing clause(2, lb) producing an
increment of the lower bound.

As a first step,improveLB replaces each occurrence of(l ,u) and(l̄ ,w) by (l ,u−m),(l̄ ,w−
m),(2,m) (with m= min{u,w}), which amounts to applying a restricted version of Max-SATres-
olution known as Unit Neighborhood Resolution (UNR) (Larrosa et al., 2007).

It produces an immediate increment of the lower bound (i.e., the weight of the empty clause at
line 43) as it is illustrated in the following example,

Example 5 Consider the current state is{(2,3),(x1,1),(x2,1),(x̄1,2),(x̄2,2),(x1 ∨ x2,3)}. UNR
would resolve on clauses(x1,1) and(x̄1,2) replacing them by(x̄1,1) and(2,1) (all other compen-
sation clauses are removed because their weight is zero or they are tautologies). The two empty
clauses can be grouped into(2,3+ 1 = 4). UNR would also resolve on clauses(x2,1) and(x̄2,2)
replacing them by(x̄2,1) and(2,1). The two empty clauses can be grouped into(2,4+1 = 5). So,
the new equivalent formula is{(2,5),(x̄1,1),(x̄2,1),(x1∨x2,3)} with a higher lower bound of 5.
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Algorithm 5: Lower Bounding in MINI MAX SAT

Function SUP() : conflict
40 InitQueue(Q) ;

while (Q contains non-propagated literals) do
l := GetFirstNonPropagatedLit(Q); MarkAsPropagated(l ) ;

41 foreach (Hard or Soft) Clause C∨ l̄ that becomes unit or falsifieddo
if C∨ l̄ becomes a unit qthen Enqueue(Q,q) ;
else ifC∨ l̄ becomes falsifiedthen return conflict ;

return None;

Procedure improveLB() : lb
42 foreach (l ,v),(l̄ ,w) ∈ F do
43 replace them by(l ,v−m),(l̄ ,w−m),(2,m) with m := min(v,w) ;

44 while SUP() = con f lict do
45 ϒ := BuildTree() ;
46 m := minimum weight among clauses inϒ;
47 if Conditionthen ApplyResolution(ϒ, m ) ;
48 elselb := lb+m; remove weightm from clauses inϒ;

As a second stepimproveLB executes asimulation of unit propagation(SUP, line 44) in
which soft clauses are treated as if they were hard. First,SUP adds toQ all unit soft clauses (line
40). Then, the new literals inQ are propagated. When new (hard or soft) clauses become unit,
they are inserted inQ (line 41). If SUP yields a conflict, it means that there is a subset of (soft or
hard) clauses that cannot be simultaneously satisfied. We showed in Section 3 thatQ can be used
to identify such subset and build a refutation treeϒ. ImproveLB computes such a tree (line 45).
If we take into account again the weights of the clauses and apply Max-SAT resolution (Section 4)
as dictated byϒ, one can see that it will produce a new clause(2,m), wherem is the minimum
weight among all the clauses in the tree (line 46). It means that the extension of the current partial
assignment to the unassigned variables will have a cost of atleastm.

It is important to remark that at each step in the Max-SAT resolution process we do not consider
the minimum of the weight of the two clauses, but rather the minimum of all the clauses in the
resolution tree. This is whym is passed as a parameter in line 47.

The result of the resolution process is the replacement of all the clauses in the leaves ofϒ by
(2,m) and the corresponding compensation clauses (functionApplyResolution in line 47),
thus obtaining an equivalent formula with a lower bound increment ofm. We call this procedure
resolution-basedlower bounding.

Example 6 Consider the formulaF = {(x̄1,2)α,(x1∨ x4,1)β,(x1∨ x2,>)γ,(x1 ∨ x3∨ x̄4,2)δ,(x1∨
x̄2∨ x̄3,3)ε,(x1∨ x̄5,1)ϕ}

Step 1. Apply SUP. Initially, the unit clauseα is enqueued producingQ = [‖x̄1(α)]. Then
x̄1 is propagated andQ becomes[x̄1(α)‖x4(β),x2(γ), x̄5(ϕ)]. Literal x4 is propagated and clauseδ
becomes unit, producingQ = [x̄1(α),x4(β)‖x2(γ), x̄5(ϕ),x3(δ)]. After that, literalx2 is propagated
and clauseε is found to be conflicting. Figure 2.a shows the state ofQ after the propagation.
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F = {(x̄1,2)α,(x1∨x4,2)β,(x1∨x2,>)γ,(x1∨x3∨ x̄4,2)δ,(x1∨ x̄2∨ x̄3,3)ε,(x1∨ x̄5,1)ϕ}

F
′′ = {(x1∨x2,>),(x1∨ x̄2∨ x̄3,1),(x1∨ x̄5,1),(2,2)}

F ′ = {(x1∨x2,>),(x1∨ x̄5,1),(2,2),(x1∨ x̄2∨ x̄3,1),(x1∨ x̄2∨ x̄3∨x4,2),(x1∨x2∨x3∨ x̄4,2)}
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(x1∨ x̄2∨ x̄3,1)
δ
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Figure 2: Graphical representation of MINI MAX SAT lower bounding. On the top, the original
current formulaF . On the left, the propagationQ after step 1. In the middle, the structure
of the refutation tree computed by the simulation of UP in step 2. On the right, the
effect of actually executing the Max-SAT resolution (step 3). The resulting formulaF ′

appears bellow. If substraction-based lower bounding is performed, step 3 is replaced by
a substraction of weights, producing formulaF ′′.

Step 2.Build the simulated refutation tree.Starting from the tail ofQ the first clause clashing
with the conflicting clauseε is δ. Resolution betweenε andδ generates the resolventx1∨ x̄2∨ x̄4.
The first clause clashing withx2 is γ, producing resolventx1 ∨ x̄4. The next clause clashing with
x4 is β and resolution generatesx1. Finally, we resolve with clauseα and we obtain2.Figure 2.b
shows the resulting resolution tree.

Step 3.Apply Max-SAT resolution.We apply Max-SAT resolution as indicated by the refutation
tree computed in Step 2. Figure 2.c graphically shows the result of the process. Leaf clauses are
the original (weighted) clauses involved in the resolution. Each internal node indicates a resolution
step. The resolvents appear in the junction of the edges. Beside each resolvent, inside a box, there
are the compensation clauses that must be added to the formula to preserve equivalence. Since
clauses that are used in resolution must be removed, the resulting formulaF ′ consists of the root of
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the tree ((2,2)),all compensation clauses and all clauses not used in the refutation tree. That is, the
resulting formula isF ′ = {(x1∨x2,>),(x1∨ x̄5,1),(2,2),(x1∨ x̄2∨ x̄3,1),(x1∨ x̄2∨ x̄3∨x4,2),(x1∨
x2∨x3∨ x̄4,2)}. The soundness of Max-SAT resolution guarantees thatF ≡ F ′.

Remark 1 All the transformations applied by theresolution-based lower boundingcan be passed
on to descendent nodes because the changes preserve equivalence. Nevertheless, transformations
have to be restored when backtracking takes place.

An alternative to problem transformation through resolution is to identify the lower bound in-
crementm and then substract it from all the clauses that would have participated in the resolution
tree. This procedure is similar to the lower bound computed by Li et al. (2005) and we call it
substraction-based(line 48) lower bounding.

Example 7 Consider formulaF from the previous example. Steps 1 and 2 are identical. However,
substraction-based lower bounding would replace Step 3 by Step 3’ that substracts weight 2 from
the clauses that appear in the refutation tree and then adds(2,2) to the formula. The result is
F ′′ = {(x1∨x2,>),(x1∨ x̄2∨ x̄3,1),(x1∨ x̄5,1),(2,2)}. Note thatF ′′ v F .

Remark 2 All the substractions applied by thesubstraction-based lower boundinghave to be re-
stored before moving to a descendent node because they do notpreserve equivalence.

After the increment of the lower bound with either technique, procedureSUP can be executed
again, which may yield new lower bound increments. The process is repeated untilSUP does not
detect any conflict.

When comparing the two previous approaches, we observe thatresolution-based lower bounding
has a larger overhead, because resolution steps need to be actually computed and their consequences
must be added to the current formula and removed upon backtracking. However, the effort invested
in the transformation may be well amortized because the increment obtained in the lower bound
becomes part of the current formula, so it does not have to bediscoveredagain and again by all
the descendent nodes of the search. On the other hand, substraction-based lower bounding has a
smaller overhead because resolution needs not to be actually computed. This also facilitates the
context restoration upon backtracking.

M INI MAX SAT incorporates the two alternatives and chooses to apply one or the other heuris-
tically (lines 47,48) depending on a specificcondition(line 47). We observed that resolution-based
lower bounding seems to be more effective if resolution is only applied to low arity clauses. As a
consequence, after the identification of the resolution tree, MINI MAX SAT applies resolution-based
lower bounding only if the largest resolvent in the resolution tree has arity strictly less than 4. Oth-
erwise, it applies substraction-based lower bounding. SeeSection 8 for more details.

7. Additional Features ofM INI MAX SAT

In this section we overview other important features of MINI MAX SAT, namely the use of the two-
watched literal scheme, its branching heuristic, the use ofsoft probing and how MINI MAX SAT

deals with pseudo-boolean functions.
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7.1 Two-Watched Literals

M INI MAX SAT uses thetwo-watched literal schemealso on soft clauses. Recall that one of the main
advantages of this technique, when applied to pure SAT problems, is that when backtracking takes
place, no work has to be done on the clauses. Unfortunately, in the case of soft clauses some restora-
tion needs to be done. When a soft clause becomes unit over literal l in functionMS-UP, its weight
is added toV(l) and the clause is eliminated (or marked as eliminated) to avoid reusing it in the
lower bounding procedure. These changes, as well as any addition to lb, have to be restored when
backtracking is performed. However, note that during the executions ofSUP (simulation of unit
propagation) all clauses are considered as hard. In this case the two-watched literal scheme works
exactly as in a SAT solver with both hard and soft clauses. When an inconsistency is detected by
SUP or it stops because there are no more literals to propagate, the initial state has to be recovered.
In that situation restoring the initial state is completelyoverhead free.

7.2 Branching Heuristic

M INI MAX SAT incorporates two alternative branching heuristics. The first one is the VSIDS heuris-
tic (Moskewicz et al., 2001) disregarding soft clauses (that is, MINI SAT ’ S default). This heuristic is
likely to be good in structured problems in which learning and backjumping play a significant role,
as well as in problems in which it is difficult to find models (namely, the satisfaction component of
the problem is more difficult than the optimization component). Since this heuristic disregards soft
clauses, it is likely to be ineffective in problems where it is easy to find models and the difficulty
is to find the optimal one and prove its optimality. In the extreme case, where problems only con-
tain soft clauses (every complete assignment is a model) theVSIDS heuristic is blind and therefore
completely useless.

To overcome this limitation of VSIDS, MINI MAX SAT also incorporates theWeighted Jeroslow
heuristic (Heras & Larrosa, 2006). It is the extension of theSAT Jeroslow heuristic described in
Section 3. Given a weighted formulaF, for each literall of F the following function is defined:

J(l) = ∑
(C,w)∈F
s.t. l∈C

2−|C| ·w

where mandatory clauses are assumed to have a weight equal tothe upper boundub. The heuristic
selects the literal with the highest value ofJ(l). Its main disadvantage is that metrics need to be
updated at each visited node. In combination with the two-watched literal this updating becomes
expensive and does not seem to pay off in general. Thus, in ourcurrent implementation of the
heuristic, theJ(l) values are computed only at the root node and used throughoutall the solving
process. We found in our experiments that this heuristic is agood alternative in problems where
the difficulty lies on the optimization part (e.g. problems with many models). MINI MAX SAT

automatically changes from VSIDS to weighted Jeroslow if the problem does not contain any literal
l such that there are some hard clauses withl and some other hard clauses withl̄ .

In both heuristics, if there is some literall such thatV(l)+ lb ≥ ub at some node of the search
tree, then̄l is the selected literal andl is never assigned.

16



M INI MAX SAT: AN EFFICIENT WEIGHTED MAX -SAT SOLVER

7.3 Soft Probing

Probingis a well-known SAT technique that allows the formulation ofhypothetical scenarios (Lynce
& Silva, 2003). The idea is to temporarily assume thatl is a hard unit clause and then execute unit
propagation. If UP yields a conflict, we know that any model extending the current assignment must
contain l̄ . The process is iterated over all the literals until quiescence. Exhaustive experiments in
the SAT context indicate that it is too expensive to probe during the search (Le Berre, 2001; Lynce
& Silva, 2003), so it is normally done as a pre-process in order to reduce the initial number of
branching points.

We can easily extend this idea to Max-SAT. In that context, besides thediscoveryof unit hard
clauses, it may be used to make explicit weighted unit clauses. We call itsoft probing. As in SAT, the
idea is to temporarily assume thatl is a unit clause and thensimulateunit propagation (i.e., execute
SUP()). Then, we build the resolution treeϒ from the propagation queueQ. If all the clauses inϒ
are hard, we know that̄l must be added to the assignment. Else, we can reproduceϒ applying Max-
SAT resolution with the weighted clauses and derive a unit clause(l̄ ,m) wherem is the minimum
weight among the clauses inϒ. Having unit soft clauses upfront makes the future executions of
improveLB much more effective in the subsequent search. Besides, if wederive both(l ,u) and
(l̄ ,w), we can generate via unit neighborhood resolution (see Example 5) an initial non-trivial lower
bound ofmin{u,w}. We tested soft probing during the search and as a preprocessing in several
benchmarks. We observed empirically that soft probing as a preprocessing was the best option as it
is in SAT.

Example 8 Consider formulaF = {(x1 ∨ x2,1)α,(x1 ∨ x3,1)β,(x̄2 ∨ x̄3,1)γ}. If we assume ¯x1 by
adding it toQ and then executeSUP a conflict is reached. We obtainQ = [x̄d

1,x2(α),x3(β)] and
we detect thatγ is a conflicting clause. The clauses involved in the refutation tree areγ, β, andα.
Resolving clausesγ andβ results in{(x1∨x2,1)α,(x1∨ x̄2,1),(x1∨x2∨x3,1),(x̄1∨ x̄2∨ x̄3,1)}. The
resolution of the previous resolvent andα produces the (equivalent) formulaF ′ = {(x1,1),(x1 ∨
x2∨x3,1),(x̄1∨ x̄2∨ x̄3,1)}.

7.4 Pseudo-boolean Functions

A pseudo-boolean optimization problem(PBO) (Barth, 1995; Sheini & Sakallah, 2006; Eén &
Sörensson, 2006) has the form:

minimize∑n
j=1c j ·x j

subject to∑n
j=1ai j l j ≥ bi , i = 1. . .m

wherex j ∈ {0,1}, l j is eitherx j or 1−x j , andc j , ai j andbi are non-negative integers.

If M INI MAX SAT is provided with a PBO instance, it translates it into a Max-SAT formula as fol-
lows: each pseudo boolean constraint is translated into a set of hard clausesusing MINI SAT+ (Eén
& Sörensson, 2006) (the algorithm heuristically decides the most appropriate translation choosing
amongadders, sortersor BDDs). The objective function is translated into a set ofsoft unit clauses.
Each summandc j ·x j becomes a new soft unit clause(x̄ j ,c j). After the translation MINI MAX SAT

is executed as usual.
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8. Empirical Results

In this section we present the benchmarks and the solvers used in our empirical evaluation. Then,
we report the experiments performed in order to adjust the parameters of MINI MAX SAT. Finally, a
comparison with other solvers is presented.

8.1 Benchmarks and Encodings

Having a good set of problems is fundamental to show the effectiveness of new solvers. In the
following, we present several problems and we explain how toencode them as Weighted Max-SAT.

8.1.1 MAX -K-SAT

A k-SAT CNF formula is a CNF formula in which all clauses have size k. We generated random
unsatisfiable 2-SAT and 3-SAT formulas with theCnfgengenerator2 and solved the corresponding
MAX-SAT problem. In the benchmarks, we fixed the number of variables and varied the number of
clauses, which can be repeated.

8.1.2 MAX -CUT

Given a graphG = (V,E), a cut is defined by a subset of verticesU ⊆ V. The size of a cut is
the number of edges(vi ,v j) such thatvi ∈ U andv j ∈ V −U . The Max-cutproblem consists on
finding a cut of maximum size. It can be encoded as Max-SAT associating one variablexi to each
graph vertex. Valuetrue (respectively,false) indicates that vertexvi belongs toU (respectively, to
V −U ). For each edge(vi ,v j), there are two soft clauses(xi ∨ x j ,1),(x̄i ∨ x̄ j ,1). Given a complete
assignment, the number of violated clauses is|E|−SwhereS is the size of the cut associated to the
assignment. In our experiments we considered Max-Cut instances extracted from random graphs of
60 nodes with varying number of edges.

8.1.3 MAX -ONE

Given a satisfiable CNF formula,max-oneis the problem of finding a model with a maximum
number of variables set to true. This problem can be encoded as Max-SAT by considering the
clauses in the original formula as mandatory and adding a weighted unary clause(xi ,1) for each
variable in the formula. Note that solving this problem is much harder than solving the usual SAT
problem, because the search cannot stop as soon as a model is found. The optimal model must be
found and its optimality must be proved. We considered the max-one problem over two types of
CNF formula: random 3-SAT instances of 120 variables (generated withCnfgen), and structured
satisfiable instances coming from the 2002 SAT Competition3.

8.1.4 MINIMUM VERTEX COVERING AND MAX -CLIQUE

Given a graphG = (V,E), a vertex coveringis a setU ⊆V such that for every edge(vi ,v j) either
vi ∈ U or v j ∈ U . The size of a vertex covering is|U |. The minimum vertex coveringproblem
consists in finding a covering of minimal size. It can be naturally formulated as (weighted) Max-
SAT. We associate one variablexi to each graph vertexvi . Valuetrue (respectively,false) indicates

2. A. van Gelder ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances
3. http://www.satcompetition.org/2002/
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that vertexvi belongs toU (respectively, toV −U ). There is a binary hard(xi ∨x j ,>) for each edge
(vi ,v j). It specifies that one or both of these two vertices have to be in the covering because there
is an edge connecting them. There is a unary clause(x̄i ,1) for each variablexi , in order to specify
that it is preferred not to add vertices toU . There is a simple way to transform minimum vertex
coverings into max-cliques and vice-versa (Fahle, 2002).

In our experiments, we considered maximum clique instancesextracted from random graphs
with 150 nodes and varying number of edges. We also considered the 66 Max-Clique instances
from the DIMACS challenge4.

8.1.5 COMBINATORIAL AUCTIONS

A combinatorial auctionis defined by a set of goodsG and a set of bidders that bid for indivisible
subsets of goods. Each bidi is defined by the subset of requested goodsGi ⊆ G and the amount of
money offered. The bid-taker, who wants to maximize its revenue, must decide which bids are to be
accepted. Note that if two bids request the same good, they cannot be jointly accepted (Sandholm,
1999). In its Max-SAT encoding, there is one variablexi associated to each bid. There are unit
clauses(xi ,ui) indicating that if bidi is not accepted there is a loss of profitui . Besides, for each
pair i, j of conflicting bids, there is a mandatory clause(x̄i ∨ x̄ j ,>).

In our experiments, we used the CATS generator (K. Leyton-Brown & Shoham, 2000) that
allows to generate random instances inspired from real-world scenarios. In particular, we generated
instances from theRegions, PathsandSchedulingdistributions. The number of goods was fixed to
60 and we increased the number of bids. By increasing the number of bids, instances become more
constrained (namely, there are more conflicting pairs of bids) and harder to solve.

8.1.6 MISCELLANEOUS

We also considered the following sets of instances widely used in the literature:

• The unsatisfiable instances of the 2nd DIMACS Implementation Challenge5 considered by
de Givry, Larrosa, Meseguer, and Schiex (2003) and Li et al. (2005): random 3-SAT instances
(aim and dubois), pigeon hole problem (hole) and coloring problems (pret). Observe that all
these instances are modelled as unweighted Max-SAT (i.e. all clauses have weight 1).

• Max-CSPrandom instances generated using the protocol specified by Larrosa and Schiex
(2003) and de Givry, Heras, Larrosa, and Zytnicki (2005). Wedistinguish 4 different sets of
problems:Dense Loose(DL), Dense Tight(DT), Sparse Loose(SL) andSparse Tight(ST).
Tight instances have about 20 variables while loose instances have about 40 variables. Each
set contains 10 instances with 3 values and 10 instances with4 values per variable.

• Planning (Cooper, Cussat-Blanc, de Roquemaurel, & Régnier, 2006) and graph coloring6

structured instances taken from aWeighted Constraint Satisfaction Problem(WCSP) reposi-
tory 7.

4. ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique
5. http://mat.gsia.cmu.edu/challenge.html
6. http://mat.gsia.cmu.edu/COLORING02/benchmarks
7. http://mulcyber.toulouse.inra.fr/plugins/scmcvs/cvsweb.php/benchs/?cvsroot=toolbar
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• Problems taken from the 2006 pseudo-boolean evaluation8: logic synthesis, misc(garden),
routing, MPI (Minimum Prime Implicant), MPS (miplib). These instances are encoded to
Max-SAT as specified in the previous section.

Note that Max-CSP, Planning and graph coloring instances are encoded into Max-SAT using the
direct encoding(Walsh, 2000).

8.2 Alternative Solvers

We compare MINI MAX SAT with several optimizers from different communities. We restricted our
comparison to freely available solvers. We considered the following ones:

• MAXSATZ (Li et al., 2006; Li, Manyà, & Planes, 2007). Unweighted Max-SAT solver. It was
the best unweighted Max-SAT solver in the 2006 Max-SAT Evaluation.

• MAX -DPLL (Heras & Larrosa, 2006; Larrosa et al., 2007). Weighted Max-SAT solver. It is
part of the TOOLBAR package. It was the best solver for weighted Max-SAT and the second
best solver for unweighted Max-SAT in the 2006 Max-SAT Evaluation.

• TOOLBAR (Larrosa, 2002; Larrosa & Schiex, 2003; de Givry et al., 2003, 2005). It is a
state-of-the-art Weighted CSP solver.

• PUEBLO 1.5 (Sheini & Sakallah, 2006). It is a pseudo-boolean solver. It ranked first on
several categories of the 2005 Pseudo Boolean Evaluation.

• M INISAT+ (Eén & Sörensson, 2006). It is a pseudo-boolean solver that translates the prob-
lems into SAT and solves them with MiniSat. It ranked first on several categories of the 2005
Pseudo Boolean Evaluation.

Those instances taken from the pseudo-boolean evaluation were given in their original format to
PUEBLO and MINISAT+. All other instances were translated from Max-SAT to PBO bypartitioning
the set of clauses into three sets:H contains the mandatory clauses(C,>), W contains the non-
unary weighted clauses(C,u < >) andU contains the unary weighted clauses(l ,u). For each
hard clause(Cj ,>) ∈ H there is a pseudo boolean constraintC′

j ≥ 1, whereC′
j is obtained from

Cj by replacing∨ by + and negated variables ¯x by 1− x. For each non-unary weighted clause
(Cj ,u j) ∈ W there is a pseudo boolean constraintC′

j + r j ≥ 1, whereC′
j is computed as before,

andr j is a new variable that, when set to 1, trivially satisfies the constraint. Finally, the objective
function to minimize is,

∑
(Cj ,uj )∈W

u j r j + ∑
(l j ,uj )∈U

u j l j

8.3 Experimental Results

We divide the experiments in two parts. The purpose of the first part is to evaluate the impact
of the different techniques of MINI MAX SAT and set the different parameters. Since some of the
techniques can be effective in some benchmarks and useless or even counterproductive in some oth-
ers (Brglez, Li, & Stallman, 2002), we aimed at finding a configuration such that MINI MAX SAT

8. http://www.cril.univ-artois.fr/PB06/

20



M INI MAX SAT: AN EFFICIENT WEIGHTED MAX -SAT SOLVER

performs reasonably well on all the instances. The purpose of the second part is to compare MIN-
IMAX SAT with alternative solvers. Since some of these solvers are specifically designed for some
type of problems, we do not expect that MINI MAX SAT will outperform them. We rather want to
show the robustness of MINI MAX SAT by showing that it is usually close in performance with the
best alternative for each type of problems.

Results are presented in plots and tables. Regarding tables, the first column contains the name
of the set of problems. The second column shows the number of instances. The remaining columns
report the performance of the different solvers. Each cell contains the averagecpu time that the
solver required to solve all instances. If some solver couldnot solve all the instances of a set, a
number inside brackets indicates the number of solved instances and the averagecpu time only
takes into account solved instances. If a cell contains a dash, it means that no instance could be
solved within the time limit. Regarding plots, note that thelegend goes in accordance with the
performance of the solvers. The time limit was set to 900 seconds for each instance.

Our solver, written in C++, was implemented on top of MINISAT+ (Eén & Sörensson, 2006).
Executions were made on a 3.2 Ghz Xeon computer with Linux. Inall the experiments with random
instances, samples had 30 instances and plots report meancpu time in seconds.

8.4 Setting the Parameters ofM INI MAX SAT

In the following we evaluate in order the importance of the following techniques inside MINI -
MAX SAT: lower bounding, soft probing, branching heuristics, learning and backjumping.

Starting from a basic version that guides search with the Jeroslow branching heuristic and has
the rest of techniques deactivated, we analyze them one by one. Each analysis studies one technique
and incorporates all the previously analyzed ones with the corresponding tuned parameters. In the
three first experiments we only consider little but challenging instances generated randomly in which
lower bounding plays a fundamental role to solve them. Finally, we consider structured instances in
which learning and backjumping is required to solve them.

8.4.1 LOWER BOUNDING

In this experiment we analyze the impact of resolution-based lower bounding versus substraction-
based lower bounding, as well as combined strategies. We considered the following combination
of the two techniques: when SUP detects an inconsistency andthe refutation tree is computed,
we look at the resolvent with maximum size. If its size is lessthan or equal to a parameterK,
then resolution-based lower bounding is applied, otherwise substraction-based lower bounding is
applied. We testedK = {0,1,2,3,4,5,∞}. Note thatK = 0 corresponds to pure substraction-based
lower bounding (and therefore is similar to the approach of Li et al., 2005), whileK = ∞ corresponds
to a pure resolution-based lower bounding.

The results are presented in Figure 3. As can be seen, the puresubstraction-based lower bound-
ing K = 0 is always the worst option. Better results are obtained asK increases. However, the
improvement stops (or nearly stops) whenK = 3. WhenK > 3 no significant improvement is no-
ticed. The plot omits theK = 4 andK = 5 case for clarity reasons. Since higher values ofK may
produce new clauses of higher size and this may cause overhead in some instances, we setK = 3
for the rest of the experiments.
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Figure 3: Performance of MINI MAX SAT with different mixed lower boundings (K = 0,1,2,3, inf).

8.4.2 SOFT PROBING

In our second experiment, we evaluate the impact of soft probing. In our preliminary experiments,
we observed that soft probing was too time consuming, so we decided to limit soft probing as
follows. Initially, we assign apropagation levelof 0 to the variable to probe. Then, each new literal
to propagate is assigned apropagation level L+ 1 if the literal that produces its propagation has
level L. We limited probing to propagate literals with a maximum propagation level ofM. We
finally restrictedM ≤ 2 since it gives the best results. Note that apropagation levelis not the same
as adecision level.

We compare three alternatives: probing at each node of the search (S), probing as a pre-process
before search (P) and no probing at all (N). The results, in Figure 4, indicates that probing during
search is the worst option for Max-2-SAT and Max-3-SAT whileit produces some improvement in
Max-CUT. Finally, probing as a preprocessing gives slightly improvement for Max-2-SAT and the
best results for Max-CUT. Note that soft probing as a preprocessing on Max-3-SAT has no effect
and is omitted from the plot (its results are similar to N). Given these results, we decided to include
soft probing only as a preprocessing.

8.4.3 JEROSLOW BRANCHING HEURISTIC

In the following experiment, we evaluate the importance of the weighted Jeroslow heuristic. Figure
5 shows the time difference between MINI MAX SAT with the Jeroslow heuristic as in the previous
two experiments (Jeroslow) and without heuristic (None). The results indicates that guiding search
with the Jeroslow heuristic gives important speed ups. Hence, we maintain the Jeroslow heuristic
for M INI MAX SAT.
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Figure 4: Performance of MINI MAX SAT without soft probing, with probing as preprocessing (P)
and with probing during the search (S).

8.4.4 LEARNING, BACKJUMPING AND VSIDS

In the final experiment, we evaluate the importance of learning and backjumping. For these exper-
iments we use structured instances, since it is well known that learning and backjumping are only
useful in this type of problems. Besides, we also evaluate the importance of the VSIDS heuristic
in combination with learning and backjumping. Recall that this heuristic was specially designed to
work in cooperation with learning, so it is meaningless to analyze its effect by itself.

Table 6 reports the results of this experiment. The third column reports results without learning
and backjumping but with the lower bounding, probing and theJeroslow heuristic (None). The
fourth column reports results adding learning and backjumping to the previous version (Learning).
The fifth column reports results adding learning, backjumping but changing the Jeroslow heuristic
by the VSIDS heuristic (VSIDS). The results show that MINI MAX SAT without learning and back-
jumping (None) is clearly the worst option. Significant improvements are obtained when learning
and backjumping (Learning) are added. Finally, adding the VSIDS heuristic (VSIDS) improve fur-
ther the results specially on the routing instances. Based on those results, we incorporated learning
and backjumping to MINI MAX SAT.

Regarding the branching heuristic, for problems in which literals appear in hard clauses with
both polarities it applies the VSIDS heuristic, otherwise the Jeroslow heuristic is computed in the
root of the search tree as stated in Section 7. This choice is done once and for all before starting the
search.
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Figure 5: Performance of MINI MAX SAT without Heuristic (None) and with the Jeroslow heuristic
computed in the root node of the search tree (Jeroslow).

Problem n. inst. None Learning VSIDS
Max-One 3col 40 − 29.06 15.41
Max-One cnt 3 13.57(1) 119.53 6.58
Max-One dp 6 16.11(4) 40.03 28.63

Max-One ezfact32 10 654.94(2) 0.70 0.77
Routing S3 5 22.26(4) 1.02 0.10
Routing S4 10 − 410.61(2) 91.09(9)

Figure 6: Structured instances.

8.5 Comparison with Other Boolean Optimizers

When reporting results, we will omit a solver if it cannot deal with the corresponding instances
for technical reasons (e.g. it cannot deal with weighted clauses) or it performs extremely bad in
comparison with the others.

Figure 7 contains plots with the results on different benchmarks. Plotsa andb reports results on
random unweighted Max-SAT instances. PUEBLO and MINISAT+ are orders of magnitude slower,
so they are not included in the graphics. On Max-2-SAT (plota), M INI MAX SAT lays between
MAX -DPLL and MAXSATZ, which is the best option. On Max-3-SAT (plotb) M INI MAX SAT

clearly outperforms MAX -DPLL and is very close to MAXSATZ, which is again the best. In both
Max-2-SAT and Max-3-SAT MAXSATZ is no more than 3 times faster than MINI MAX SAT.
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Plot c reports results on random Max-CUT instances. MINI MAX SAT performs slightly better
than MAXSATZ, which is the second alternative.

On random Max-One (plotd) M INI MAX SAT is the best solver by far. Almost all instances are
solved instantly while PUEBLO and MAX -DPLL require up to 10 seconds in the most difficult in-
stances. MINISAT+ performs very poorly. The results on structured Max-One instances are reported
in Figure 9. MINISAT+ seems to be the fastest in general. MINI MAX SAT is close in performance
to PUEBLO. Note, however, that in thedp instances, MINI MAX SAT is the only system solving all
instances.

Plotereports the results on Random Max-Clique instances. MINI MAX SAT is the best solver, up
to an order of magnitude faster than MAX -DPLL, the second best option. PUEBLO and MINISAT+
perform poorly again. Regarding the structured Dimacs instances, MINI MAX SAT is again the best
option. It solves 36 instances within the time limit, while MAX -DPLL,M INISAT+ and PUEBLO

solve 34, 22 and 18 respectively.
Plots f , g andh present the results on Combinatorial Auctions following different distributions.

On the paths distribution, MINI MAX SAT is the best solver, twice faster than MAX -DPLL, which
ranks second. On the regions distribution, MINI MAX SAT is the best solver while MAX -DPLL is
the second best solver requiring double time. On the paths and regions distributions, PUEBLO and
M INISAT+ perform very poorly. On the scheduling distribution, MINISAT+ is the best solver while
M INI MAX SAT and MAX -DPLL are about one order of magnitude slower.

Results regarding the unsatisfiable DIMACS instances are presented in Figure 8. Note that all
these instances have optimum cost 1. Hence, as soon as MINI MAX SAT find a solution of cost 1,
all the clauses are declared hard and learning and backjumping can be applied when hard conflicts
arise. The results indicate that MAXSATZ and MAX -DPLL do not solve any instance on some sets
(Pret150 and Aim200), while MINI MAX SAT solves all sets of instances with the best times in all
of them, except for the hole instances in which MAXSATZ is slightly faster. If we encode these
problems in the most advantageous way for PUEBLO and MINISAT+, that is, as decision problems
rather than optimization problems they solve all the instances with similar times to MINI MAX SAT.

On the planning instances (Fig. 10) PUEBLO is the best solver. MINI MAX SAT is the second best
solver, TOOLBAR is the third and the last one is MINISAT+. This is not surprising since TOOLBAR

does not perform learning over the hard constraints. Results regarding graph coloring instances are
presented in Fig. 10. As can be observed, MINI MAX SAT is able to solve one more instance than
TOOLBAR, while PUEBLO and MINISAT+ solve many less instances. On the Max-CSP problems
(Fig. 10) TOOLBAR solves all the instances instantly while PUEBLO is the worst option unable to
solve a lot of instances. MINI MAX SAT is clearly the second best solver and MINI SAT+ is the third
best performing solver. Note that both of them solve all the instances.

Results regarding the instances taken from the pseudo-boolean evaluation can be found in Figure
11. Note that this is the first time that a Max-SAT solver is tested on pseudo-boolean instances.
Results indicate that no solver consistently outperforms the other and that MINI MAX SAT is fairly
competitive with PUEBLO and MINISAT+.

¿From all these results we can conclude that MINI MAX SAT is a very robust Weighted Max-
SAT solver. It is very competitive for pure optimization problems and for problems with lots of
hard clauses and, sometimes, it is the best option.

As a final remark, note that MINI MAX SAT and almost all the previous benchmarks were sub-
mitted to theSecond Max-SAT Evaluation 2007, a co-located event of theTenth International Con-
ference on Theory and Applications of Satisfiability Testing. Hence, the interested reader can find a
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Figure 7: Plots of different benchmarks. Note that the orderin the legend goes in accordance with
the performance of the solvers.

more exhaustive comparison, including more instances and solvers, in the Second Max-SAT Eval-
uation 2007 web page9. The results of such evaluation showed that MINI MAX SAT was the best
performing solver in two of the four existing categories.

9. http://www.maxsat07.udl.es/
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Problem n. inst. M INI MAX SAT MAXSATZ MAX -DPLL
Dubois 13 0.02 148.18(7) 174.33(6)
Pret60 4 0.07 10.06 22.00
Pret150 4 0.01 − −

Hole 5 8.68 8.34 28.00
Aim50 8 0.00 0.01 0.00
Aim100 8 0.00 9.55 172.00
Aim200 8 0.00 − −

Figure 8: Unsatisfiable DIMACS instances.

Problem n. inst. M INI MAX SAT PUEBLO M INISAT+
3col80 10 0.15 0.10 0.02
3col100 10 2.25 1.73 0.12
3col120 10 20.49 14.52 0.74
3col140 10 38.33 83.17 1.61

cnt 3 6.59 0.13 0.12
dp 6 28.81 1.19(3) 1.21(4)

ezfact32 10 0.77 0.34 0.33

Figure 9: Structured Max-one instances.

Problem n. inst. Toolbar M INI MAX SAT PUEBLO M INISAT+
Planning 71 4.02 3.81 0.16 7.40

Graph Coloring 22 49.29(16) 4.16(17) 68.50(11) 0.57(11)
Max-CSP DL 20 0.08 0.20 349.08(13) 8.60
Max-CSP DT 20 0.00 0.01 − 2.40
Max-CSP SL 20 0.01 0.03 123.67 0.48
Max-CSP ST 20 0.00 0.01 − 1.29

Figure 10: Results for WCSP and Max-CSP instances.

9. Related Work

Some previous work has been done about incorporating SAT-techniques inside a Max-SAT solver.
Alsinet et al. (2005) presented a lazy data structure to detect when clauses become unit, but it re-
quires a static branching heuristic. Argelich and Manyà (2006a) test different versions of a branch
and bound procedure. One of these versions uses the two-watched literals, but it uses a very basic
lower bounding. We can conclude that none of these previous approaches is as general as our use of
the two-watched literals. As far as we know, the rest of Max-SAT solvers are based onadjacency
lists. Therefore, they are presumably inefficient for unit propagation (Lynce & Silva, 2005), par-
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Problem n. inst. M INI MAX SAT PUEBLO M INISAT+
misc 7 3.08(5) 8.51(5) 0.14(5)

Logic synthesis 17 82.55(2) 36.21(5) 253.93(5)
MPI 148 37.35(107) 32.04(101) 3.06(105)
MPS 16 22.65(5) 36.90(8) 8.50(8)

Routing 15 58.74(14) 5.96 13.09

Figure 11: Results for pseudo-boolean instances.

ticularly in the presence of long clauses. Argelich and Manyà (2006b) enhance a Max-SAT branch
and bound procedure with learning over hard constraints, but it is used in combination with sim-
ple lower bounding techniques. An improved version is presented by Argelich and Manya (2007)
with a more powerful lower bound, but it does not incorporatethe two-watched literal scheme,
backjumping, etc. To the best of our knowledge, no Max-SAT solver incorporates backjumping.
Note that MINI MAX SAT restricts backjumping to the occurrence of hard conflicts. Related works
on the integration of backjumping techniques into branch and bound include work by Zivan and
Meisels (2007) forWeighted CSP, Manquinho and Silva (2004) for pseudo-boolean optimization,
and Nieuwenhuis and Oliveras (2006) forSAT Modulo Theories.

Most Max-SAT solvers use variations of what we call substraction-based lower bounding. In
most cases, they search for special patterns of mutually inconsistent subsets of clauses (Shen &
Zhang, 2004; Xing & Zhang, 2005; Alsinet et al., 2005). For efficiency reasons, these patterns are
always restricted to small sets of small arity clauses (2 or 3clauses or arity less than 3). MINI -
MAX SAT uses a natural weighted extension of the approach proposed by Li et al. (2005). It was the
first one able to detect inconsistencies in arbitrarily large sets of arbitrarily large clauses.

The idea of what we call resolution-based lower bounding wasinspired from the WCSP domain
(Larrosa, 2002; Larrosa & Schiex, 2003; de Givry et al., 2003, 2005) and it was first proposed in
the Max-SAT context by Larrosa and Heras (2005) and further developed by Li et al. (2007), Heras
and Larrosa (2006), and Larrosa et al. (2007). In these works, only special patterns of fixed-size
resolution trees were executed. The use of simulated unit propagation allows MINI MAX SAT to
identify arbitrarily large resolution trees. In the following example, we present two inconsistent
subsets of clauses that are detected by MINI MAX SAT and transformed into an equivalent formula
while previous solvers cannot transform them since they arelimited to specific patterns:

• {(x1,w1),(x2,w2),(x3,w3),(x̄1∨ x̄2∨ x̄3,w4)}

• {(x1,w1),(x̄1∨x2,w2),(x̄1∨ x̄2∨x3,w3),(x̄1∨ x̄2∨ x̄3∨x4,w4),(x̄1∨ x̄2∨ x̄3∨ x̄4,w5)}

In the first case, MINI MAX SAT replaces the clauses by(2,m) with m= min{w1,w2,w3,w4}
and a set of compensation clauses. For the second case, MINI MAX SAT replaces it by(2,m) with
m= min{w1,w2,w3,w4,w5} and a set of compensation clauses. In both cases, the equivalence is
preserved. However, other solvers in the literature detectthose inconsistent subset of clauses but
cannot transform the problem into an equivalent one (Li et al., 2007) or simply cannot detect them
(Heras & Larrosa, 2006).

Our probing method to derive weighted unit clauses is related to the 2−RESand cycle rule
of Heras and Larrosa (2006) and Larrosa et al. (2007), to failed literals of Li et al. (2006), and
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to singleton consistency in CSP (Debruyne & Bessière, 1999). Again, the use of simulated unit
propagation allows MINI MAX SAT to identify arbitrarily large resolution trees.

10. Conclusions and Future Work

M INI MAX SAT is an efficient and very robust Max-SAT solver that can deal with hard and soft
clauses as well as pseudo-boolean functions. It incorporates the best available techniques for each
type of problems, so its performance is similar to the best specialized solver. Besides the develop-
ment of MINI MAX SAT combining, for the first time, known techniques from different fields, the
main original contribution of this paper is a novel lower bounding technique based on resolution.

M INI MAX SAT lower bounding combines in a very clean and elegant way most of the ap-
proaches that have been proposed in the last years, mainly based on unit-propagation-based lower
bounding and resolution-based problem transformation. Inthis paper we use the information pro-
vided by the propagation queue (i) to determine a subset of inconsistent clauses and (ii) to determine
a simple ordering in which resolution can be applied to increase the lower bound and generate an
equivalent formula. However, this is not necessarily the best ordering to do so. It is easy to see that
different orderings may generate resolvents and compensation clauses of different arities. If one
selects the ordering that generates the smallest resolvents and compensation clauses the resulting
formula may be presumably simpler. Future work concerns thestudy of such orderings, the devel-
opment of VSIDS-like heuristics for soft clauses and backjumping techniques for soft conflicts.
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