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Abstract

Pseudo-Boolean constraints are omnipresent in practical applications, and thus a sig-
nificant effort has been devoted to the development of good SAT encoding techniques for
them. Some of these encodings first construct a Binary Decision Diagram (BDD) for the
constraint, and then encode the BDD into a propositional formula. These BDD-based ap-
proaches have some important advantages, such as not being dependent on the size of the
coefficients, or being able to share the same BDD for representing many constraints. We
first focus on the size of the resulting BDDs, which was considered to be an open problem
in our research community. We report on previous work where it was proved that there
are Pseudo-Boolean constraints for which no polynomial BDD exists. We also give an al-
ternative and simpler proof assuming that NP is different from Co-NP. More interestingly,
here we also show how to overcome the possible exponential blowup of BDDs by coeffi-
cient decomposition. This allows us to give the first polynomial generalized arc-consistent
ROBDD-based encoding for Pseudo-Boolean constraints. Finally, we focus on practical
issues: we show how to efficiently construct such ROBDDs, how to encode them into
SAT with only 2 clauses per node, and present experimental results that confirm that our
approach is competitive with other encodings and state-of-the-art Pseudo-Boolean solvers.

1. Introduction

In this paperwe study Pseudo-Boolean constraints (PB constraints for short), that is, con-
straints of the form a1x1 + · · · + anxn # K, where the ai and K are integer coefficients,
the xi are Boolean (0/1) variables, and the relation operator # belongs to {<,>,≤,≥,=}.
We will assume that # is ≤ and the ai and K are positive since other cases can be easily
reduced to this one (see Eén & Sörensson, 2006).

Such a constraint (≤ with positive coefficients) is a Boolean function C : {0, 1}n → {0, 1}
that is monotonic decreasing in the sense that any solution for C remains a solution after
flipping inputs from 1 to 0. Therefore these constraints can be expressed by a set of
clauses with only negative literals. For example, each clause could simply define a (minimal)
subset of variables that cannot be simultaneously true. Note however that not every such
a monotonic function is a PB constraint. For example, the function expressed by the two
clauses x1 ∨ x2 and x3 ∨ x4 has no (single) equivalent PB constraint a1x1 + · · ·+ a4x4 ≤ K
(since without loss of generality a1 ≥ a2 and a3 ≥ a4, and then also x1 ∨ x3 is needed).
Hence, even among the monotonic Boolean functions, PB constraints are a rather restricted
class (see also Smaus, 2007).
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PB constraints are omnipresent in practical SAT applications, not just in typical 0-1
linear integer problems, but also as an ingredient in new SAT approaches to, e.g., cumula-
tive scheduling (Schutt, Feydy, Stuckey, & Wallace, 2009), logic synthesis (Aloul, Ramani,
Markov, & Sakallah, 2002) or verification (Bryant, Lahiri, & Seshia, 2002), so it is not
surprising that a significant number of SAT encodings for these constraints have been pro-
posed in the literature. Here we are interested in encoding a PB constraint C by a clause
set S (possibly with auxiliary variables) that is not only equisatisfiable, but also generalized
arc-consistent (GAC): given a partial assignment A, if xi is false in every extension of A
satisfying C, then unit propagating A on S sets xi to false.

To our knowledge, the only polynomial GAC encoding so far was given by Bailleux,
Boufkhad, and Roussel (2009). Some other existing encodings are based on building (forms
of) Binary Decision Diagrams (BDDs) and translating these into CNF. Although the ap-
proach of Bailleux et al. is not BDD-based, our main motivation to revisit BDD-based
encodings is the following:

Example 1. Let us consider two Pseudo-Boolean constraints: 3x1 + 2x2 + 4x3 ≤ 5 and
30001x1 + 19999x2 + 39998x3 ≤ 50007. Both are clearly equivalent: the Boolean function
they represent can be expressed, e.g., by the clauses x1∨x3 and x2∨x3. However, encodings
like the one of Bailleux et al. (2009) heavily depend on the concrete coefficients of each
constraint, and generate a significantly larger SAT encoding for the second one. Since,
given a variable ordering, ROBDDs are a canonical representation for Boolean functions
(Bryant, 1986), i.e., each Boolean function has a unique ROBDD, a ROBDD-based encoding
will treat both constraints equivalently.

Another reason for revisiting BDDs is that in practical problems numerous PB con-
straints exist that share variables among each other. Representing them all as a single
ROBDD has the potential of generating a much more compact SAT encoding that is more-
over likely to have better propagation properties.

As we have mentioned, BDD-based approaches have already been studied in the liter-
ature. A good example is the work of Eén and Sörensson (2006), where a GAC encoding
using six three-literals clauses per BDD node is given. However, when it comes to study
the BDD size, on page 9 they cite the work of Bailleux, Boufkhad, and Roussel (2006)
to say “It is proven that in general a PB-constraint can generate an exponentially sized
BDD”. In Section 7 we explain why the approach of Bailleux et al does not use ROBDDs,
and prove that the example they use to show the exponentiality of their method turns out
to have polynomial ROBDDs. Somewhat surprisingly, probably due to the different names
that PB constraints receive (0-1 integer linear constraints, linear threshold functions, weight
constraints, knapsack constraints), the work of Hosaka, Takenaga, and Yajima (1994) has
remained unknown to our research community. In that paper, it is proved that there are
PB constraints for which no polynomial-sized ROBDDs exist. For self-containedness of this
article, and to bring this interesting result to the knowledge of our research community, we
include this family of PB constraints and prove that, regardless of the variable ordering,
the corresponding ROBDD will always have exponential size.
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Main contributions and organization of this paper:

• Subsection 3.2: We reproduce the family of PB constraints proposed by Hosaka et al.
(1994), for which no polynomial-size ROBDD exist. For self-containedness, we give a
clearer alternative proof than in the original paper.

• Subsection 3.3: A very simple proof that, unless NP=co-NP, there are PB constraints
that admit no polynomial-size ROBDD, independently of the variable order.

• Subsection 4.1: A proof that PB constraints whose coefficients are powers of two do
admit polynomial-size ROBDDs.

• Subsections 4.2 and 4.3: A GAC and polynomial (size O(n3 log amax)) ROBDD-based
encoding for PB constraints.

• Section 5: An algorithm to construct ROBDDs for Pseudo-Boolean constraints in
polynomial time w.r.t. the size of the final ROBDD.

• Section 6: A GAC SAT encoding of BDDs for monotonic functions, a more general
class of Boolean functions than PB constraints. This encoding uses only one binary
and one ternary clause per node (the standard if-then-else encoding for BDDs used
in, e.g., Eén & Sörensson, 2006, requires six ternary clauses per node). Moreover, this
translation works for any BDD variable ordering.

• Section 7: A related work section, summarizing the most important ingredients of the
existing encodings of Pseudo-Boolean constraints into SAT.

• Section 8: An experimental evaluation comparing our approach with other encodings
and tools.

This article extends the shorter preliminary paper “BDDs for Pseudo-Boolean Con-
straints – Revisited” (Ab́ıo, Nieuwenhuis, Oliveras, & Rodŕıguez-Carbonell, 2011), which
was presented at the SAT 2011 conference. Extensions include: (i) proofs of all technical
results, (ii) multiple examples illustrating the various concepts and algorithms presented,
(iii) the PB constraint family by Hosaka et al. (1994) for which no polynomial ROBDD ex-
ists, (iv) an algorithm to efficiently construct ROBDDs for Pseudo-Boolean constraints, (v)
a detailed related work section, (vi) extensive experimental results comparing our encoding
to other approaches and (vii) a brief report of our experience trying to take advantage of
the sharing potential of BDDs.

2. Preliminaries

Let X = {x1, x2, . . .} be a fixed set of propositional variables. If x ∈ X then x and x are
positive and negative literals, respectively. The negation of a literal l, written l, denotes x
if l is x, and x if l is x. A clause is a disjunction of literals x1 ∨ . . . ∨ xp ∨ xp+1 ∨ . . . ∨ xn,
sometimes written as x1∧ . . . xp → xp+1∨ . . . xn. A CNF formula is a conjunction of clauses.

A (partial) assignment A is a set of literals such that {x, x} ⊆ A for no x, i.e., no
contradictory literals appear. A literal l is true in A if l ∈ A, is false in A if l ∈ A, and
is undefined in A otherwise. Sometimes we will write A as a set of pairs x = v, where v
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Figure 1: Construction of a BDD for 2x1 + 3x2 + 5x3 ≤ 6

is 1 if x is true in A and 0 if x is false in A. A clause C is true in A if at least one of
its literals is true in A. A formula F is true in A if all its clauses are true in A. In that
case, A is a model of F . Systems that decide whether a formula F has any model are called
SAT-solvers, and the main inference rule they implement is unit propagation: given a CNF
F and an assignment A, find a clause in F such that all its literals are false in A except
one, say l, which is undefined, add l to A and repeat the process until reaching a fixpoint.

Pseudo-Boolean constraints (PB constraints for short) are constraints of the form a1x1+
· · · + anxn # K, where the ai and K are integer coefficients, the xi are Boolean (0/1)
variables, and the relation operator # belongs to {<,>,≤,≥,=}. We will assume that #
is ≤ and the ai and K are positive, since other cases can be easily reduced to this one 1:
(i) changing into ≤ is straightforward if coefficients can be negative; (ii) replacing −ax by
a(1−x)−a; (iii) replacing (1−x) by x. Negated variables like x can be handled as positive
ones or, alternatively, replaced by a fresh x′ and adding the clauses x ∨ x′ and x ∨ x′. A
particular case of Pseudo-Boolean constraints is the one of cardinality constraints, in which
all coefficients ai are equal to 1.

Our main goal is to find CNF encodings for PB constraints. That is, given a PB-
constraint C, construct an equisatisfiable clause set (a CNF) S such that any model for
S restricted to the variables of C is a model of C and viceversa. Two extra properties
are sought: (i) consistency checking by unit propagation or simply consistency : whenever a
partial assignment A cannot be extended to a model for C, unit propagation on S and A
produces a contradiction (a literal l and its negation l); and (ii) generalized arc-consistency
or GAC (again by unit propagation): given an assignment A that can be extended to a
model of C, but such that A∪ {x} cannot, unit propagation on S and A produces x. More
concretely, we will use ROBDDs for finding such encodings. ROBDDs are introduced by
means of the following example.

Example 2. Figure 1 explains (one method for) the construction of a ROBDD for the PB
constraint 2x1 + 3x2 + 5x3 ≤ 6 and the ordering [x1, x2, x3]. The root node has as selector
variable x1. Its false child represents the PB constraint assuming x1 = 0 (i.e., 3x2+5x3 ≤ 6)
and its true child represents 2+3x2 +5x3 ≤ 6, that is, 3x2 +5x3 ≤ 4. The two children have
the next variable in the ordering (x2) as selector, and the process is repeated until we reach

1. An =-constraint can be split into a ≤-constraint and a ≥-constraint. Here we consider (generalized
arc-)consistency for the latter two isolatedly, not for the original =-constraint.
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the last variable in the sequence. Then, a constraint of the form 0 ≤ K is the True node
(1 in the figure) if K ≥ 0 is positive, and the False node (0) if K < 0. This construction
(leftmost in the figure), is known as an Ordered BDD. For obtaining a Reduced Ordered
BDD (ROBDD for short in the rest of the paper), two reductions are applied until fixpoint:
removing nodes with identical children (as done with the leftmost x3 node in the second BDD
of the figure), and merging isomorphic subtrees, as done for x3 in the third BDD. The fourth
final BDD is a fixpoint. For a given ordering, ROBDDs are a canonical representation of
Boolean functions: each Boolean function has a unique ROBDD. BDDs can be encoded into
CNF by introducing an auxiliary variable a for every node. If the selector variable of the
node is x and the auxiliary variables for the false and true child are f and t, respectively,
add the if-then-else clauses:

x ∧ f → a x ∧ t → a f ∧ t → a
x ∧ f → a x ∧ t → a f ∧ t → a

In what follows, the size of a BDD is its number of nodes. We will say that a BDD rep-
resents a PB constraint if they represent the same Boolean function. Given an assignment
A over the variables of a BDD, we define the path induced by A as the path that starts at
the root of the BDD and at each step, moves to the false (true) child of a node if and only
if its selector variable is false (true) in A.

3. Exponential ROBDDs for PB Constraints

In this section we study the size of ROBDDs for PB constraints. We start by defining the
notion of the interval of a PB constraint. Then, in Section 3.2 we consider two families of PB
constraints and study their ROBDD size: we first prove that the example given by Bailleux
et al. (2006) has polynomial ROBDDs, and then we reproduce the example of Hosaka et al.
(1994) that has exponential ROBDDs regardless of the variable ordering. Finally, we relate
the ROBDD size of a PB constraint with the well-known subset sum problem.

3.1 Intervals

Before formally defining the notion of interval of a PB constraint, let us first give some
intuitive explanation.

Example 3. Consider the constraint 2x1 + 3x2 + 5x3 ≤ 6. Since no combination of its
coefficients adds to 6, the constraint is equivalent to 2x1 + 3x2 + 5x3 < 6, and hence to
2x1+ 3x2 + 5x3≤5. This process cannot be repeated again since 5 can be obtained with the
existing coefficients.

Similarly, we could try to increase the right-hand side of the constraint. However, there
is a combination of the coefficients that adds to 7, which implies that the constraint is not
equivalent to 2x1 + 3x2 + 5x3 ≤ 7. All in all, we can state that the constraint is equivalent
to 2x1 + 3x2 + 5x3 ≤ K for any K ∈ [5, 6]. It is trivial to see that the set of valid K’s is
always an interval.

Definition 4. Let C be a constraint of the form a1x1 + · · ·+ anxn ≤ K. The interval of C
consists of all integers M such that a1x1 + · · ·+ anxn ≤M , seen as a Boolean function, is
equivalent to C.
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Similarly, given a ROBDD representing a PB constraint and a node ν with selector
variable xi,we will refer to the interval of ν as all the integers M such that the constraint
aixi + · · · anxn ≤M is represented (as a Boolean function) by the ROBDD rooted at ν.

In the following, unless stated otherwise, the ordering used in the ROBDD will be
[x1, x2, . . . , xn].

Proposition 5. If [β, γ] is the interval of a node ν with selector variable xi then:

1. There is an assignment {xj = vj}nj=i such that aivi + · · ·+ anvn = β.

2. There is an assignment {xj = vj}nj=i such that aivi + · · ·+ anvn = γ + 1.

3. There is an assignment {xj = vj}i−1
j=1 such that K−a1v1−a2v2−· · ·−ai−1vi−1 ∈ [β, γ]

4. Take h < β. There exists an assignment {xj = vj}nj=i such that aivi + · · ·+ anvn > h
and its path goes from ν to True.

5. Take h > γ. There exists an assignment {xj = vj}nj=i such that aivi + · · ·+ anvn ≤ h
and its path goes from ν to False.

6. The interval of the True node is [0,∞).

7. The interval of the False node is (−∞,−1]. Moreover, it is the only interval with
negative values.

Proof. 1. Since β − 1 does not belong to the interval of ν, the constraints

aixi + ai+1xi+1 + · · ·+ anxn ≤ β − 1
aixi + ai+1xi+1 + · · ·+ anxn ≤ β

are different. This means that there is a partial assignment satisfying the second one
but not the first one.

2. The proof is analogous to the previous one.

3. Take a partial assignment {x1 = v1, . . . , xi−1 = vi−1} whose path goes from the root
to ν. Therefore, by definition of the ROBDD, ν is the ROBDD of the constraint

aixi + ai+1xi+1 + · · ·+ anxn ≤ K − a1v1 − · · · − ai−1vi−1.

Therefore, by definition of the interval of ν,

K − a1v1 − a2v2 − · · · − ai−1vi−1 ∈ [β, γ].

4. Intuitively, this property states that, if h is not in the interval of ν, there is an
assignment that satisfies the ROBDD rooted at ν but not the constraint aixi + · · ·+
anxn ≤ h.

Since h does not belong to the interval of ν, the ROBDD of

C ′ : aixi + · · ·+ anxn ≤ h

is not ν. Therefore, there exists an assignment that either
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Figure 2: Intervals of the ROBDD for 2x1 + 3x2 + 5x3 ≤ 6

(i) goes from ν to False but satisfies C ′; or

(ii) goes to True but does not satisfy C ′.

We want to prove that the assignment satisfies (ii). Assume that it satisfies (i). Since
it goes from ν to False and β belongs to the interval of ν, it holds

aivi + · · ·+ anvn > β.

Since β > h, the assignment does not satisfy C ′, which is a contradiction. Therefore,
the assignment satisfies (ii).

5. Take the assignment of the second point of this proposition. Since γ + 1 does not
belong to the interval, the path of the assignment goes from ν to False. Moreover,
aivi + · · ·+ anvn = γ + 1 ≤ h.

6. The True node is the ROBDD of the tautology. Therefore, it represents the PB
constraint 0 ≤ h for h ∈ [0,∞).

7. The False node is the ROBDD of the contradiction. Therefore, represents the PB
constraint 0 ≤ h for h ∈ (−∞,−1]. Moreover, aixi + · · · + anxn < 0 is also a
contradiction, hence that constraint is also represented by the False node. Therefore,
there is no other node with an interval with negative values.

We now prove that, given a ROBDD for a PB constraint, one can easily compute the
intervals for every node bottom-up. We first start with a motivating example.

Example 6. Let us consider again the constraint 2x1 + 3x2 + 5x3 ≤ 6. Assume that all
variables appear in every path from the root to the leaves (otherwise, add extra nodes as in the
rightmost BDD of Figure 2). Assume now that we have computed the intervals for the two
children of the root (rightmost BDD in Figure 2). This means that the false child of the root
is the BDD for 3x2+5x3 ≤ [5, 7] and the true child the BDD for 3x2+5x3 ≤ [3, 4]. Assuming
x1 to be false, the false child would also represent the constraint 2x1 +3x2 +5x3 ≤ [5, 7], and
assuming x1 to be true, the true child would represent the constraint 2x1 +3x2 +5x3 ≤ [5, 6].
Taking the intersection of the two intervals, we can infer that the root node represents
2x1 + 3x2 + 5x3 ≤ [5, 6].
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More formally, the interval of every node can be computed as follows:

Proposition 7. Let a1x1 +a2x2 + · · ·+anxn ≤ K be a constraint, and let B be its ROBDD
with the order [x1, . . . , xn]. Consider a node ν with selector variable xi, false child νf (with
selector variable xf and interval [βf , γf ]) and true child νt (with selector variable xt and
interval [βt, γt]), as shown in Figure 3. The interval of ν is [β, γ], with:

β = max{βf + ai+1 + · · ·+ af−1, βt + ai + ai+1 + · · ·+ at−1},
γ = min{γf , γt + ai}.

10

xi

xf

[β, γ]

[βf , γf ]

. . .

[βt, γt]
xt

Figure 3: The interval of a node can be computed from its children’s intervals.

Before moving to the proof, we want to note that if in every path from the root to the
leaves of the ROBDD all variables were present, the definition of β would be much simpler
(β = max{βf , βt + ai}). The other coefficients are necessary to account for the variables
that have been removed due to the ROBDD reduction process.

Proof. Let us assume that [β, γ] is not the interval of ν. One of the following statements
should hold:

1. There exists h ∈ [β, γ] that does not belong to the interval of ν.

2. There exists h < β belonging to the interval of ν.

3. There exists h > γ belonging to the interval of ν.

We will now prove that none of these cases can hold.

1. Let us define

C ′ : aixi + · · ·+ anxn ≤ h.

If h does not belong to the interval, there exists an assignment {xj = vj}nj=i that
either satisfies C ′ and its path goes from ν to False or it does not satisfy C ′ and its
path goes to True. Assume that the assignment satisfies C ′ and its path goes from ν
to False (the other case is similar). There are two possibilities:

• The assignment satisfies vi = 0. Since h ≥ β, it holds

h− ai+1vi+1 − · · · − af−1vf−1 ≥ β − ai+1vi+1 − · · · − af−1vf−1

≥ β − ai+1 − · · · − af−1 ≥ βf .
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On the other hand, since h ≤ γ,

h− ai+1vi+1 − · · · − af−1vf−1 ≤ h ≤ γ ≤ γf .

Therefore, h− ai+1vi+1 − · · · − af−1vf−1 belongs to the interval of νf . Since the
assignment {xf = vf , . . . , xn = vn} goes from νf to False, we have:

afvf + · · ·+ anvn > h− ai+1vi+1 − · · · − af−1vf−1

ai+1vi+1 + · · ·+ afvf + · · · anvn > h

Hence, adding aivi to the sum one can see that the assignment does not satisfy
C ′, which is a contradiction.

• The case vi = 1 gives a similar contradiction.

2. By definition of β, either h < βf + ai+1 + · · · + af−1 or h < βt + ai + ai+1 + · · · +
at−1. We will only consider the first case, since the other one is similar. Therefore,
h−ai+1−· · ·−af−1 < βf . Due to point 4 of Proposition 5, there exists an assignment
{xf = vf , . . . xn = vn} such that

afvf + · · · anvn > h− ai+1 − · · · − af−1

and its path goes from νf to True. Hence, the assignment

{xi = 0, xi+1 = 1, . . . , xf−1 = 1, xf = vf , . . . , xn = vn}

does not satisfy the constraint aixi + · · ·+anxn ≤ h and its path goes from ν to True.
By definition of interval, h cannot belong to the interval of ν.

3. This case is very similar to the previous one.

This proposition gives a natural way of computing all intervals of a ROBDD in a bottom-
up fashion. The procedure is initialized by computing the intervals of the terminal nodes
as detailed in Proposition 5, points 6 and 7.

Example 8. Let us consider again the constraint 2x1 + 3x2 + 5x3 ≤ 6. Its ROBDD is
shown in the left-hand side of Figure 2, together with its intervals. For their computation,
we first compute the intervals of the True and False nodes, which are [0,∞) and (−∞,−1]
in virtue of Proposition 5. Then, we can compute the interval of the node having x3 as
selector variable with the previous proposition’s formula: β3 = max{0,−∞ + 5} = 0, γ3 =
min{∞,−1 + 5} = 4. Therefore, its interval is [0, 4].

In the next step, we compute the interval for the node with selector variable x2: β2 =
max{0 + 5, 0 + 3} = 5, γ2 = min{∞, 4 + 3} = 7. Thus, it its interval is [5, 7]. Finally, we
can compute the root’s interval: β1 = max{5, 0 + 2 + 3} = 5, γ1 = min{7, 4 + 2} = 6, that
is, [5, 6].
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Ab́ıo, Nieuwenhuis, Oliveras, Rodŕıguez-Carbonell, & Mayer-Eichberger

3.2 Some Families of PB Constraints and their ROBDD Size

We start by revisiting the family of PB constraints given by Bailleux et al. (2006), where
it is proved that, for their concrete variable ordering, their non-reduced BDDs grow ex-
ponentially for this family. Here we prove that ROBDDs are polynomial for this fam-
ily, and that this is even independent of the variable ordering. The family is defined
by considering a, b and n positive integers such that

∑n
i=1 b

i < a. The coefficients are
ωi = a + bi and the right-hand side of the constraint is K = a · n/2. We will first prove
that the constraint C : ω1x1 + · · · + ωnxn ≤ K is equivalent to the cardinality constraint
C ′ : x1 + · · ·+ xn ≤ n/2− 1. For simplicity, we assume that n is even.

• Take an assignment satisfying C ′. In this case, there are at most n/2− 1 variables xi
assigned to true, and the assignment also satisfies C since:

ω1x1 + · · ·+ ωnxn ≤
n∑

i=n/2+2

ωi = (n/2− 1)a+
n∑

i=n/2+2

bi < K − a+
n∑

i=1

bi < K.

• Consider now an assignment not satisfying C ′. In this case, there are at least n/2
true variables in the assignment and it does not satisfy C either:

ω1x1 + · · ·+ ωnxn ≥
n/2∑
i=1

ωi = (n/2) · a+

n/2∑
i=1

bi > (n/2) · a = K.

Since the two constraints are equivalent and ROBDDs are canonical, the ROBDD rep-
resentation of C and C ′ are the same. But the ROBDD of C ′ is known to be of quadratic
size because it is a cardinality constraint (see, for instance, Bailleux et al., 2006).

In the following, we present a family of PB constraints that only admit exponential
ROBDDs. This example was first given by Hosaka et al. (1994), but a clearer alternative
proof is given next. First of all, we prove a lemma that, under certain technical conditions,
gives a lower bound on the number of nodes of the ROBDD for a PB constraint.

Lemma 9. Let a1x1 + · · · + anxn ≤ K be a PB constraint, and let i be an integer with
1 ≤ i ≤ n. Assume that every assignment {x1 = v1, x2 = v2, . . . , xi = vi} admits an
extension {x1 = v1, . . . , xn = vn} such that a1v1 + · · · + anvn = K. Let M be the number
of different results we can obtain adding some subset of the coefficients a1, a2, . . . , ai, i.e.,

M = |{
i∑

j=1

ajbj : bj ∈ {0, 1}}|. Then, the ROBDD size with ordering [x1, x2, . . . , xn] is at

least M .

Proof. Let us consider a PB constraint that satisfies the conditions of the lemma. We will
prove that its ROBDD has at least M distinct nodes by showing that any two assignments
of the form {x1 = v1, . . . , xi = vi} and {x1 = v′1, . . . , xi = v′i} with a1v1 + · · · + aivi 6=
a1v
′
1 + · · ·+ aiv

′
i lead to different nodes in the ROBDD.

Assume that it is not true: there are two assignments {x1 = v1, . . . , xi = vi} and
{x1 = v′1, . . . , xi = v′i} with a1v1 + · · · + aivi < a1v

′
1 + · · · + aiv

′
i such that their paths end

at the same node. Take the extended assignment A = {x1 = v1, . . . , xn = vn} such that
a1v1 + · · · anvn = K. Since A satisfies the PB constraint, the path it defines ends at the
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true node. However, the assignment A′ = {x1 = v′1, . . . , xi = v′i, xi+1 = vi+1, . . . , xn = vn}
does not satisfy the constraint, since

a1v
′
1 + · · · aiv′i + ai+1vi+1 + · · · anvn > a1v1 + · · ·+ anvn = K.

However, the nodes defined by {x1 = v1, . . . , xi = vi} and {x1 = v′1, . . . , xi = v′i} were the
same, so the path defined by A′ must also end at the true node, which is a contradiction.

We can now show a family of PB constraints that only admits exponential ROBDDs.

Theorem 10. Let n be a positive integer, and let us define ai,j = 2j−1 + 22n+i−1 for all
1 ≤ i, j ≤ 2n; and K = (24n − 1)n. Then, the PB constraint

2n∑
i=1

2n∑
j=1

ai,jxi,j ≤ K

has at least 2n nodes in any variable ordering.

Proof. It is convenient to describe the coefficients in binary notation:
2n︷ ︸︸ ︷ 2n︷ ︸︸ ︷

a1,1 = 0 0 · · · 0 1 0 0 · · · 0 1
a1,2 = 0 0 · · · 0 1 0 0 · · · 1 0

· · · . .
.

a1,2n−1 = 0 0 · · · 0 1 0 1 · · · 0 0
a1,2n = 0 0 · · · 0 1 1 0 · · · 0 0

a2,1 = 0 0 · · · 1 0 0 0 · · · 0 1
a2,2 = 0 0 · · · 1 0 0 0 · · · 1 0

· · · . .
.

a2,2n−1 = 0 0 · · · 1 0 0 1 · · · 0 0
a2,2n = 0 0 · · · 1 0 1 0 · · · 0 0

· · · . .
.

a2n,2n = 1 0 · · · 0 0 1 0 · · · 0 0

K/n = 1 1 · · · 1 1 1 1 · · · 1 1

First of all, one can see that the sum of all the a’s is 2K.
Let us take an arbitrary bijection

F = (F1, F2) : {1, 2, . . . , 4n2} → {1, 2, . . . , 2n} × {1, 2, . . . , 2n},

and consider the ordering defined by it: [xF (1), xF (2), . . . , xF (4n2)], where xF (k) = xF1(k),F2(k)

for every k. We want to prove that the ROBDD of the PB constraint with this ordering
has at least 2n nodes.

The proof will consist in showing that the hypotheses of Lemma 9 hold. That is, first
we show that for any variable ordering, we can find an integer s such that any assignment
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to the first s variables can be extended to a full assignment that adds K. Then, we prove
that there are at least 2n different values we can add with the first s coefficients, as required
by Lemma 9.

Let us define bk with 1 ≤ k ≤ 2n as the position of the k-th different value of the tuple
(F1(1), F1(2), . . . , F1(4n2)). More formally,

bk =

1 if k = 1,

min
{
r : F1(r) 6∈ {F1(b1), F1(b2), . . . , F1(bk−1)}

}
if k > 1.

Analogously, let us define c1, . . . , c2n as

ck =

1 if k = 1,

min
{
s : F2(s) 6∈ {F2(c1), F2(c2), . . . , F2(ck−1)}

}
if k > 1.

Let us denote by ir = F1(br) and js = F2(cs) for all 1 ≤ r, s ≤ 2n. Notice that
{i1, i2, . . . , i2n} and {j1, j2, . . . , j2n} are permutations of {1, 2, . . . , 2n}. Assume that bn ≥ cn
(the other case is analogous), and take an arbitrary assignment {xF (1) = vF (1), xF (2) =
vF (2), . . . , xF (cn) = vF (cn)}. We want to extend it to a complete assignment such that

4n2∑
k=1

aF (k)vF (k) = K.

Figure 4 represents the initial assignment. All the values are in the top-left square since
the assignment is undefined for all xir,js with r > n or s > n. Extending the assignment so
that the sum is K amounts to completing the table in such a way that there are exactly n
ones in every column and row.

The assignment can be completed in the following way: first, complete the top left
square in any way, for instance, adding zeros to every non-defined cell. Then, copy that
square to the bottom-right square and, finally, add the complementary square to the other
two squares (i.e., write 0 instead of 1 and 1 instead of 0). Figure 5 shows the extended
assignment for that example.

More formally, the assignment is completed as follows:

vir,js =


0 if r, s ≤ n and vir,js was undefined,

¬vir−n,js if r > n and s ≤ n,
¬vir,js−n if s > n and r ≤ n,
vir−n,js−n if r, s > n,

where ¬0 = 1 and ¬1 = 0.
Now, let us prove that it satisfies the requirements, i.e., the coefficients corresponding

to true variables in the assignment add exactly K. Let us fix r, s ≤ n. Denote by i = ir,
j = js, i

′ = ir+n and j′ = js+n.

• If vi,j = 0, by definition vi′,j = vi,j′ = 1 and vi′,j′ = 0. Therefore,

ai,jvi,j + ai′,jvi′,j + ai,j′vi,j′ + ai′,j′vi′,j′ = ai′,j + ai,j′

= 22n+i′−1 + 2j−1 + 22n+i−1 + 2j
′−1

=
ai,j + ai′,j + ai,j′ + ai′,j′

2
.

454



A New Look at BDDs for Pseudo-Boolean Constraints

i1 i2 . . . in in+1 in+2 . . . i2n

j1 1 1

j2 0

. . . 1 0

jn 1

jn+1

jn+2

. . .

j2n

Figure 4: An arbitrary assignment. There is a 0, 1 or nothing at position (ir, js) depending
on whether xir,js is false, true or unassigned.
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i1 i2 . . . in in+1 in+2 . . . i2n

j1 1 1 0 0 0 0 1 1

j2 0 0 0 0 1 1 1 1

. . . 0 1 0 0 1 0 1 1

jn 0 0 1 0 1 1 0 1

jn+1 0 0 1 1 1 1 0 0

jn+2 1 1 1 1 0 0 0 0

. . . 1 0 1 1 0 1 0 0

j2n 1 1 0 1 0 0 1 0

Figure 5: Extended assignment. There are exactly n ones in every column and row.

• Analogously, if vi,j = 1,

ai,jvi,j + ai′,jvi′,j + ai,j′vi,j′ + ai′,j′vi′,j′ =
ai,j + ai′,j + ai,j′ + ai′,j′

2
.

Therefore,
4n2∑
k=1

aF (k)vF (k) =
1

2

4n2∑
k=1

aF (k) = K.

By Lemma 9, the number of nodes of the ROBDD is at least the number of different
results we can obtain by adding some subset of the coefficients aF (1), aF (2), . . . , aF (cn). Con-
sider the set aF (c1), aF (c2), . . . , aF (cn). We will now see that all its different subsets add
different values, and hence the ROBDD size is at least 2n.

The sum of a subset of {aF (c1), aF (c2), . . . , aF (cn)} is

S = aF (c1)v1 + aF (c2)v2 + · · ·+ aF (cn)vn, vr ∈ {0, 1}.

Let us look at the 2n last bits of S in binary notation: all the digits are 0 except for
the positions F2(c1), F2(c2), . . . , F2(cn), which are v1, v2, . . . , vn. Therefore, if two subsets
add the same, the 2n last digits of the sum are the same. This means that the values of
(v1, . . . , vn) are the same, and thus they are the same subset.
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3.3 Relation between the Subset Sum Problem and the ROBDD Size

In this section, we study the relationship between the ROBDD size for a PB constraint and
the subset sum problem. This allows us to, assuming that NP and co-NP are different,
give a much simpler proof that there exist PB constraints that do not admit polynomial
ROBDDs.

Lemma 9 and the exponential ROBDD example of Theorem 10 suggest that there is
a relationship between the size of ROBDDs and the number of ways we can obtain K by
adding some of the coefficients of the PB. It seems that if K can be obtained in a lot of
different ways, the ROBDD will be large.

In this section we explore another relationship between the problem of adding K with
a subset of the coefficients and the size of the ROBDDs. In a sense, we give a proof that
the converse of the last paragraph is not true: if NP and co-NP are different, there are
exponentially-sized ROBDDs of PB constraints with no subsets of their coefficients adding
K. Let us start by defining one version of the well-known subset sum problem.

Definition 11. Given a set of positive integers S = {a1, . . . , an} and an integer K, the
subset sum problem of (K,S) consists in determining whether there exists a subset of
{a1, . . . , an} that sums to exactly K.

It is well-known that the subset sum problem is NP-complete when K ∼ 2n, but there
are polynomial algorithms in n when K is also a polynomial in n. For a given subset
sum problem (K,S) with S = {a1, . . . , an}, we can construct its associated PB constraint
a1x1 + · · ·+anxn ≤ K. In the previous section we have seen one PB constraint family whose
coefficients can add K in an exponential number of ways, thus generating an exponential
ROBDD. Now, assuming that NP and co-NP are different, we will see that there exists a
PB constraint family with exponential ROBDDs in any ordering such that their coefficients
cannot add K. First, we show how ROBDDs can act as unsatisfiability certificates for the
subset sum problem.

Theorem 12. Let (K,S) be an UNSAT subset sum problem. Then, if a ROBDD for its
associated PB constraint has polynomial size, it can act as a polynomial unsatisfiability
certificate for (K,S).

Proof. We only need to show how, in polynomial time, we can check whether the ROBDD
is an unsatisfiability certificate for (K,S). For that, we note that the subset sum problem
is UNSAT if and only if the PB constraints

a1x1 + · · ·+ anxn ≤ K, a1x1 + · · ·+ anxn ≤ K − 1

are equivalent, and this happens if and only if their ROBDDs are the same. Therefore, we
have to show, in polynomial time, that the given ROBDD represents both constraints. It
can be done, for instance, by building the ROBDD (using Algorithm 1 of Section 5) and
comparing the ROBDDs.

The key point now is that, if we assume NP to be different from co-NP, there exists a
family of UNSAT subset sum problems with no polynomial-sized unsatisfiability certificate.
Hence, the family consisting of the associated PB constraints does not admit polynomial
ROBDDs.
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Hence, PB constraints associated with difficult-to-certify UNSAT subset sum problems
will produce exponential ROBDDs. However, subset sum is NP-complete if K ∼ 2n. In
PB constraints from industrial problems usually K ∼ nr for some r, so we could expect
non-exponential ROBDDs for these constraints.

4. Avoiding Exponential ROBDDs

In this section we introduce our positive results. We restrict ourselves to a particular class
of PB constraints, where all coefficients are powers of two. As we will show below, these
constraints admit polynomial ROBDDs. Moreover, any PB constraint can be reduced to
this class by means of coefficient decomposition.

Example 13. Let us take the PB constraint 9x1 + 8x2 + 3x3 ≤ 10. Considering the binary
representation of the coefficients, this constraint can be rewritten into (23x3,1 + 20x0,1) +
(23x3,2) + (21x1,3 + 20x0,3) ≤ 10 if we add the binary clauses expressing that xi,r = xr for
appropriate i and r.

4.1 Power-of-two PB Constraints Do Have Polynomial-size ROBDDs

Let us consider a PB constraint of the form:

C : 20 · δ0,1 · x0,1 + 20 · δ0,2 · x0,2 + · · · + 20 · δ0,n · x0,n +
21 · δ1,1 · x1,1 + 21 · δ1,2 · x1,2 + · · · + 21 · δ1,n · x1,n +

. . . +
2m · δm,1 · xm,1 + 2m · δm,2 · xm,2 + · · · + 2m · δm,n · xm,n ≤ K,

where δi,r ∈ {0, 1} for all i and r. Notice that every PB constraint whose coefficients are
powers of 2 can be expressed in this way. Let us consider its ROBDD representation with
the ordering [x0,1, x0,2, . . . , x0,n, x1,1, . . . , xm,n].

Lemma 14. Let [β, γ] be the interval of a node with selector variable xi,r. Then 2i divides
β and 0 ≤ β < (n+ r − 1) · 2i.

Proof. By Proposition 5.1, β can be expressed as a sum of coefficients all of which are
multiples of 2i, and hence β itself is a multiple of 2i. By Proposition 5.7, the only node
whose interval contains negative values is the False node, and hence β ≥ 0. Now, using
Proposition 5.3, there must be an assignment to the variables {x0,1, . . . , xi,r−1} such that
20δ0,1x0,1 + · · ·+ 2iδi,r−1xi,r−1 belongs to the interval. Therefore:

β ≤ 20δ0,1x0,1 + · · ·+ 2iδi,r−1xi,r−1 ≤ 20 + 20 + · · ·+ 2i

= n20 + n21 + · · ·+ n2i−1 + (r − 1) · 2i = n(2i − 1) + 2i(r − 1)

< 2i(n+ r − 1)

Corollary 15. The number of nodes with selector variable xi,r is bounded by n+ r− 1. In
particular, the size of the ROBDD belongs to O(n2m).
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Proof. Let ν1, ν2, . . . , νt be all the nodes with selector variable xi,r. Let [βj , γj ] the interval
of νj . Note that such intervals are pair-wise disjoint since a non-empty intersection would
imply that there exists a constraint represented by two different ROBDDs. Hence we can
assume, without loss of generality, that β1 < β2 < · · · < βt. Due to Lemma 14, we know
that βj − βj−1 ≥ 2i. Hence 2i(n+ r− 1) > βt ≥ βt−1 + 2i ≥ · · · ≥ β1 + 2i(t− 1) ≥ 2i(t− 1)
and we can conclude that t < n+ r.

4.2 A Consistent Encoding for PB Constraints

Let us now take an arbitrary PB constraint C : a1x1 + · · · anxn ≤ K and assume that aM
is the largest coefficient. For m = log aM , we can rewrite C splitting the coefficients into
powers of two as shown in Example 13:

C̃ : 20 · δ0,1 · x0,1 + 20 · δ0,2 · x0,2 + · · · + 20 · δ0,n · x0,n +
21 · δ1,1 · x1,1 + 21 · δ1,2 · x1,2 + · · · + 21 · δ1,n · x1,n +

. . . +
2m · δm,1 · xm,1 + 2m · δm,2 · xm,2 + · · · + 2m · δm,n · xm,n ≤ K,

where δm,r δm−1,r · · · δ0,r is the binary representation of ar. Notice that C and C̃ represent
the same constraint if we add clauses expressing that xi,r = xr for appropriate i and r. This
process is called coefficient decomposition of the PB constraint. A similar idea was given
by Bartzis and Bultan (2003).

The important remark is that, using a consistent SAT encoding of the ROBDD for C̃
(e.g. the one given in Eén & Sörensson, 2006, or the one presented in Section 6) and adding
clauses expressing that xi,r = xr for appropriate i and r, we obtain a consistent encoding
for the original constraint C using O(n2 log aM ) auxiliary variables and clauses.

This is not difficult to see. Take an assignment A over the variables of C which cannot
be extended to a model of C. This is because the coefficients corresponding to the variables
true in A add more than K. Using the clauses for xi,r = xr, unit propagation will produce
an assignment to the xi,r’s that cannot be extended to a model of C̃. Since the encoding
for C̃ is consistent, a false clause will be found. Conversely, if we consider an assignment A
over the variables of C that can be extended to a model of C, this assignment can clearly
be extended to a model for C̃ and the clauses expressing xi,r = xr. Hence, unit propagation
on those clauses and the encoding of C̃ will not detect a false clause.

Example 16. Consider the PB constraint C : 2x1 + 3x2 + 5x3 ≤ 6. For obtaining the
consistent encoding we have presented, we first rewrite C by splitting the coefficients into
powers of two:

C ′ : 1x0,2 + 1x0,3 + 2x1,1 + 2x1,2 + 4x2,3 ≤ 6.

Next, we encode C ′ into a ROBDD and finally encode the ROBDD into SAT and add clauses
for enforcing the relations xi,j = xj. Or, instead of that, we can replace xi,j by xj into the
ROBDD, and encode the result into SAT. Figure 6 shows the decision diagram after the
replacement.

4.3 A Generalized Arc-consistent Encoding for PB Constraints

Unfortunately, the previous approach does not result in a GAC encoding. The intuitive
idea can be seen in the following example:
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x2

x3

x1 x1

x2

x3

01

1

1

1
1

1
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0

0

0

0

0

Figure 6: Decision Diagram of 2x1 + 3x2 + 5x3 ≤ 6 after decomposing the coefficients into
powers of two.

Example 17. Let us consider the constraint 3x1 + 4x2 ≤ 6. After splitting the coefficients
into powers of two, we obtain C ′ : x0,1 + 2x1,1 + 4x2,2 ≤ 6. If we set x2,2 to true, C ′ implies
that either x0,1 or x1,1 have to be false, but the encoding cannot exploit the fact that both
variables will receive the same truth value and hence both should be propagated. Adding
clauses stating that x0,1 = x1,1 does not help in this sense.

In order to overcome this limitation, we follow the method presented by Bessiere, Kat-
sirelos, Narodytska, and Walsh (2009) and Bailleux et al. (2009). Let C : a1x1+· · ·+anxn ≤
K be an arbitrary PB constraint. We denote as Ci the constraint a1x1 + · · ·+ ai · 1 + · · ·+
anxn ≤ K, i.e., the constraint assuming xi to be true. For every i with 1 ≤ i ≤ n, we
encode Ci as in Section 4.2 and, in addition, we add the binary clause ri ∨ xi, where ri is
the root of the ROBDD for Ci. This clause helps us to preserve GAC: given an assignment
A such that A ∪ {xi} cannot be extended to a model of C, literal ri will be propagated
using A (because the encoding for Ci is consistent). Hence the added clause will allow us
to propagate xi.

Example 18. Consider again the PB constraint C : 2x1 + 3x2 + 5x3 ≤ 6. Let us define the
constraints C1 : 3x2 + 5x3 ≤ 4, C2 : 2x1 + 5x3 ≤ 3 and C3 : 2x1 + 3x2 ≤ 1. Now, we encode
these constraints into ROBDDs as in the previous section, with coefficient decomposition.
Figure 7 shows the resulting ROBDDs. Finally, we need to encode them into SAT consis-
tently, and then add the clauses ri ∨ xi, assuming that the variable associated with the root
of the ROBDD for Ci is ri.

This encoding is GAC: take for instance the assignment A = {x1 = 1}. Constraint C3 is
not satisfied. Hence, by consistency, r3 is propagated. Therefore, clause r3 ∨ x3 propagates
x3, as wanted. The propagation with other assignments is similar.

All in all, the suggested encoding is GAC and uses O(n3 log(aM )) clauses and auxiliary
variables, where aM is the largest coefficient.
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Figure 7: ROBDDs2 of C1, C2 and C3 with coefficient decomposition.

5. An Algorithm for Constructing ROBDDs for Pseudo-Boolean
Constraints

Let us fix a Pseudo-Boolean constraint a1x1 + · · · + anxn ≤ K and a variable ordering
[x1, x2, . . . , xn]. The goal of this section is to prove that one can construct the ROBDD of
this constraint using this ordering in polynomial time with respect to the ROBDD size and
n.

This algorithm builds standard ROBDDs, but it can be used to build ROBDDs with
coefficient decomposition: we just need to first split the coefficients and, secondly, apply
the algorithm. Forthcoming Example 21 shows in detail the overall process. A very similar
version of this algorithm was described by Mayer-Eichberger (2008).

The key point of the algorithm will be to label each node of the ROBDD with its
interval. In the following, for every i ∈ {1, 2, . . . , n + 1}, we will use a set Li consisting
of pairs ([β, γ],B), where B is the ROBDD of the constraint aixi + · · · + anxn ≤ K ′ for
every K ′ ∈ [β, γ] (i.e., [β, γ] is the interval of B). All these sets will be kept in a tuple
L = (L1, L2, . . . , Ln+1).

Note that by definition of the ROBDD’s intervals, if ([β1, γ1],B1) and ([β2, γ2],B2) belong
to Li then either [β1, γ1] = [β2, γ2] or [β1, γ1]∩ [β2, γ2] = ∅. Moreover, the first case holds if
and only if B1 = B2. Therefore, Li can be represented with a binary search tree-like data
structure, where insertions and searches can be done in logarithmic time. The function
search(K,Li) searches whether there exists a pair ([β, γ],B) ∈ Li with K ∈ [β, γ]. Such a
tuple is returned if it exists, otherwise an empty interval is returned in the first component
of the pair. Similarly, we will also use function insert(([β, γ],B), Li) for insertions. The
overall algorithm is detailed in Algorithm 1 and Algorithm 2:

Theorem 19. Algorithm 1 runs in O(nm logm) time (where m is the size of the ROBDD)
and is correct in the following sense:

2. Actually, the diagram after replacing the variables xi,j by xj is not a ROBDD. However, we will denote
them as ROBDDs for simplicity.
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Algorithm 1 Construction of ROBDD algorithm

Require: Constraint C : a1x1 + . . .+ anxn ≤ K ′
Ensure: returns B the ROBDD of C.
1: for all i such that 1 ≤ i ≤ n+ 1 do

2: Li ←
{ Ä

(−∞,−1], False
ä
,
Ä
[ai + ai+1 + · · ·+ an,∞), T rue

ä }
3: end for
4: L ← (L1, . . . , Ln+1).
5: ([β, γ],B)← BDDConstruction(1, a1x1 + . . .+ anxn ≤ K ′,L).
6: return B.

Algorithm 2 Procedure BDDConstruction

Require: integer i ∈ {1, 2, . . . , n+ 1}, constraint C : aixi + . . .+ anxn ≤ K ′ and set L
Ensure: returns [β, γ] interval of C and B its ROBDD
1: ([β, γ],B)← search(K ′, Li).
2: if [β, γ] 6= ∅ then
3: return ([β, γ],B)
4: else
5: ([βF , γF ],BF ) := BDDConstruction(i+ 1, ai+1xi+1 + . . .+ anxn ≤ K ′,L).
6: ([βT , γT ],BT ) := BDDConstruction(i+ 1, ai+1xi+1 + . . .+ anxn ≤ K ′ − ai,L).
7: if [βT , γT ] = [βF , γF ] then
8: B ← BT
9: [β, γ]← [βT + ai, γT ]

10: else
11: B ← ite(xi,BT ,BF ) // root xi, true branch BT and false branch BF .
12: [β, γ]← [βF , γF ] ∩ [βT + ai, γT + ai]
13: end if
14: insert(([β, γ],B), Li)
15: return ([β, γ],B)
16: end if
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1. K ′ belongs to the interval returned by BDDConstruction(aixi+ · · ·+anxn ≤ K ′,L).

2. The tuple ([β, γ],B) returned by BDDConstruction consist of a BDD B and its
interval [β, γ].

3. If BDDConstruction returns ([β, γ],B), then the BDD B is reduced.

Proof. Let us first start with the three correctness statements:

1. If K ′ is found in Li at line 1 of Algorithm 2 the statement is obviously true. Otherwise
let us reason by induction on i. The base case is when i = n + 1, and since Ln+1

contains the intervals (−∞,−1] and [0,∞], the search call at line 1 will succeed and
hence the result holds. For i < n + 1 we can assume, by induction hypothesis, that
K ′ ∈ [βF , γF ] and K ′−ai ∈ [βT , γT ]. If the two intervals coincide the result is obvious,
otherwise it is also easy to see that K ′ ∈ [βF , γF ] ∩ [βT + ai, γT + ai].

2. Let us prove that in every moment all the tuples of L are correct, i.e., they contain
BDDs with their correct interval. Since the returned value is always an element of
some Li, this proves the statement.

By Proposition 5.6 and 5.7, initial tuples of L are correct. We have to prove that if
all the previously inserted intervals are correct, the current interval is also correct. It
follows in virtue of Proposition 7.

3. Let us prove that all the tuples of L contain only reduced BDDs. As before, all the
initial BDDs in L are reduced. Let B be a BDD computed by the algorithm, with
children BT and BF . By induction hypothesis, they are reduced, so B is reduced if
and only if its two children are not equal. The algorithm creates a node only if its
children’s intervals are different. Therefore, BT and BF do not represent the same
Boolean constraint, so they are different BDDs.

Regarding runtime, since the cost of search and insertion in Li is logarithmic in its size, the
cost of the algorithm is O(logm) times the number of calls to BDDConstruction. Hence,
it only remains to show that there are at most O(nm) calls.

Every call (but the first one) to BDDConstruction is done when we are exploring an
edge of the ROBDD. Notice that no edge is explored twice, since the edges are only explored
from the parent node and whenever we reach an explored node there are no recursive calls
to BDDConstruction. On the other hand, for every edge of the ROBDD we make 2k− 1
calls, where k is the length of the edge (if the nodes joined by the edge have variables xi
and xj we say that its length is |i− j|). Since the ROBDD has O(m) edges and their length
is O(n), the number of calls is O(nm).

Let us illustrate the algorithm with an example:

Example 20. Take the constraint C : 2x1 + 3x2 + 5x3 ≤ 6, and let us apply the algorithm
to obtain the ROBDD in the ordering [x1, x2, x3]. Figure 8 represents the recursive calls to
BDDConstruction and the returned parameters (the ROBDD and the interval).
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[5, 6]

1. BDDConstruction(1, 2x1 + 3x2 + 5x3 ≤ 6, L)

[5, 7]

2. BDDConstruction(2, 3x2 + 5x3 ≤ 6, L)

[2, 4]

7. BDDConstruction(2, 3x2 + 5x3 ≤ 4, L)

[5,∞)

3. BDDConstruction(3, 5x3 ≤ 6, L)
[0, 4][0, 4][0, 4]

4. BDDConstruction(3, 5x3 ≤ 3, L) 8. BDDConstruction(3, 5x3 ≤ 4, L) 9. BDDConstruction(3, 5x3 ≤ 1, L)

[0,∞)

5. BDDConstruction(4, 0 ≤ 3, L)

(−∞,−1]

6. BDDConstruction(4, 0 ≤ −2, L)

Figure 8: Recursive calls to BDDConstruction, with the returned values.
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• In calls number 3, 5, 6, 8 and 9, the search function returns true and the interval and
the ROBDD are returned without any other computation.

• In call number 7, the two recursive calls return the same interval (and, therefore, the
same ROBDD). Hence, that ROBDD is returned.

• In call number 1 the two recursive calls return two different ROBDDs, so it adds a
node to join the two ROBDDs into another one, which is returned. The same happens
in calls number 2 and 4.

The overall process with coefficient decomposition would work as in the following ex-
ample:

Example 21. Let us take the constraint C : 2x1 + 3x2 + 5x3 ≤ 6. If we want to build the
ROBDD with coefficient decomposition using Algorithm 1, we proceed as follows:

1. Split the coefficients and obtain C ′ : 1y1 + 1y2 + 2y3 + 2y4 + 4y5 ≤ 6, where x1 = y3,
x2 = y1 = y4 and x3 = y2 = y5.

2. Apply the algorithm to C ′ and obtain a ROBDD B′.

3. Replace y1 for x2, y2 for x3, etc. in the nodes of B′.

6. SAT Encodings of BDDs for Monotonic Functions

In this section we consider a BDD representing a monotonic function F and we want to
encode it into SAT. As expected, we want the encoding to be as small as possible and GAC.

The encoding explained here is valid with any type of BDDs, so, in particular, it is valid
with ROBDDs. The main differences with the Minisat+ encoding (Eén & Sörensson, 2006)
is the number of clauses generated (6 ternary clauses per node versus one binary and one
ternary clauses per node) and that our encoding is GAC with any variable ordering.

As usual, the encoding introduces an auxiliary variable for every node. Let ν be a node
with selector variable x and auxiliary variable n. Let f be the variable of its false child and
t be the variable of its true child. Only two clauses per node are needed:

f → n t ∧ x→ n.

Furthermore, we add a unit clause with the variable of the True node and another one with
the negation of the variable of the False node.

Theorem 22. The encoding is consistent in the following sense: a partial assignment A
cannot be extended to a model of F if and only if r is propagated by unit propagation, where
r is the root of the BDD.

Proof. We prove the theorem by induction on the number of variables of the BDD. If the
BDD has no variables, then the BDD is either the True node or the False node and the
result is trivial.

Assume that the result is true for BDDs with less than k variables, and let F be a
function whose BDD has k variables. Let r be the root node, x1 its selector variable and
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Ab́ıo, Nieuwenhuis, Oliveras, Rodŕıguez-Carbonell, & Mayer-Eichberger

f, t respectively its false and true children (note that we abuse the notation and identify
nodes with their auxiliary variable). We denote by F1 the function F|x1=1 (i.e., F after
setting x1 to true) and by F0 the function F|x1=0.

• Let A be a partial assignment that cannot be extended to a model of F .

– Assume x1 ∈ A. Since A cannot be extended, the assignment A \ {x1} cannot
be extended to a model of F1. By definition of the BDD, the function F1 has t
as a BDD. By induction hypothesis, t is propagated, and since x1 ∈ A, r is also
propagated.

– Assume x1 6∈ A. Then, the assignment A \ {x1} cannot be extended to a model
of F0. Since F0 has f as a BDD, by induction hypothesis f is propagated, and
hence r also is.

• Let A be a partial assignment, and assume r has been propagated. Then, either f
has also been propagated or t has been propagated and x1 ∈ A (note that x1 has not
been propagated because it only appears in one clause which is already true).

– Assume that f has been propagated. Since f is the BDD of F0, by induction
hypothesis the assignment A \ {x1, x1} cannot be extended to a model of F0.
Since the function is monotonic, neither can A \ {x1, x1} be extended to a model
of F . Therefore, A cannot be extended to a model of F .

– Assume that t has been propagated and x1 ∈ A. Since t is the BDD of F1, by
induction hypothesis A \ {x1} cannot be extended to a model of F1, so neither
can A be extended to a model of F .

For obtaining a GAC encoding, we only have to add a unit clause.

Theorem 23. If we add a unit clause forcing the variable of the root node to be true, the
previous encoding becomes generalized arc-consistent.

Proof. We will prove it by induction on the variables of the BDD. The case with zero
variables is trivial, so let us prove the induction case.

As before, let r be the root node, with x1 its selector variable and n its auxiliary variable,
and f, t its false and true children. We denote by F0 and F1 the functions F|x1=0 and F|x1=1.

Let A be a partial assignment that can be extended to a model of F . Assume that
A ∪ {xi} cannot be extended. We want to prove that xi will be propagated.

• Let us assume that x1 ∈ A. In this case, t is propagated due to the clause t∧ x1 → n
and the unit clause n. Since x1 ∈ A and A∪{xi} cannot be extended to a model of F ,
A \ {x1}∪ {xi} neither can be extended to an assignment satisfying F1. By induction
hypothesis, since t is the BDD of the function F1, xi is propagated.

• Let us assume that x1 6∈ A and xi 6= x1. Since F is monotonic, A ∪ {xi} cannot be
extended to a model of F if and only if it cannot be extended to a model of F0. Notice
that f is propagated thanks to the clause f → n and the unit clause n. By induction
hypothesis, the method is GAC for F0, so xi is propagated.
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• Finally, assume that x1 6∈ A and xi = x1. Since A ∪ {x1} cannot be extended to a
model of F , A cannot be extended to a model of F1. By Theorem 22, t is propagated
and, due to t ∧ x1 → n and n, also is x1.

We finish this section with an example illustrating how the suggested encoding of BDDs
into SAT can be used in the different PB encoding methods we have presented in this paper.

Example 24. Consider the constraint C : 2x1 + 3x2 + 5x3 ≤ 6. We will encode this con-
straint into SAT with three methods: with the usual ROBDD encoding; with the consistent
approach of ROBDDs and splitting of the coefficients, explained in Section 4.2; and with
the GAC approach of ROBDDs and splitting of the coefficients explained in Section 4.3.

1. BDD-1: this method builds the ROBDD for C and then encodes it into SAT. Hence we
start by building the ROBDD of C, which can be seen in the last picture of Figure 1.
Now, we need to encode it into SAT. Let y1, y2 and y3 be fresh variables corresponding
to the nodes of the ROBDD of C having respectively x1, x2 and x3 as selector variable.

For node y1, we have to add the clauses y2 → y1 and x1 ∧ y3 → y1.

For y2, we have to add the clauses > → y2 and x2∧ y3 → y2, where > is the tautology
symbol.

For y3, we have to add the clauses > → y3 and x3 ∧ ⊥ → y3, where ⊥ is the contra-
diction symbol.

Moreover, we have to add the unit clauses >, ⊥ and y1. All in all, after removing the
units and tautologies, the clauses obtained are y1, y2, x1 ∨ y3, x2 ∨ y3 and x3 ∨ y3.

2. BDD-2: we build the ROBDD of C with coefficient decomposition as in Example 21.
Figure 6 shows the resulting ROBDD. We introduce variables y1, y2, . . . , y6 for every
node of the ROBDD. More precisely, the first x2 node (starting top-down) receives
variable y1, the next x2 node gets y5. The first x3 receives y2 and the other one y6.
Finally the leftmost x1 node gets variable y3 and the other one y4. We have to add the
following clauses: y2 → y1, y4∧x2 → y1, y3 → y2, y4∧x3 → y2, > → y3, y5∧x1 → y3,
y5 → y4, y6 ∧ x1 → y4, > → y5, y6 ∧ x2 → y5, > → y6, ⊥ ∧ x3 → y6, and the unit
clauses >, ⊥ and y1.

After removing the units from the clauses and tautologies, we obtain y1, y2, y3, y4∨x2,
y4 ∨ x3, y5 ∨ x1, y5 ∨ y4, y6 ∨ x1 ∨ y4, y6 ∨ x2 ∨ y5 and x3 ∨ y6.

Notice that this encoding is consistent: if we have the assignment A = {x2, x3}, then
y4 is propagated by the clause y4∨x2, which in turn propagates y5 due to clause y5∨y4

and finally y6 is propagated by the clause y6 ∨ x2 ∨ y5. A contradiction is found with
clause x3 ∨ y6.

However, the encoding is not GAC: the partial assignment A = {x1} can only propa-
gate y5. However, x3 should also be propagated.

3. BDD-3: let C1, C2 and C3 be the constraints setting respectively x1, x2 and x3 to true.
Figure 7 shows the ROBDDs of these constraints. We have to encode these ROBDDs
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as usual, as in BDD-2, but replacing the unit clause r of the root by r → xi. In this
case the variables associated with the roots of C1, C2 and C3 will be y1, z1 and w1

respectively.

After removing the units and tautologies, clauses from C1 are y1∨x1, y2∨y1, y4∨x2∨y1,
y3 ∨ y2, y4 ∨ x3 ∨ y2, y4 ∨ x2 ∨ y3 and x3 ∨ y4.

Clauses from C2 are z1 ∨ x2 and x3 ∨ z1.

Finally, clauses from C3 are w1 ∨ x3, w2 ∨ w1, x1 ∨ w1 and x2 ∨ w2.

This encoding is GAC. Take, for instance, the assignment A = {x1}. In this case, w1

is propagated in virtue of x1 ∨ w1 and x3 is propagated by clause w1 ∨ x3.

7. Related Work

Due to the ubiquity of Pseudo-Boolean constraints and the success of SAT solvers, the prob-
lem of encoding those constraints into SAT has been thoroughly studied in the literature.
In the following we review the most important contributions, paying special attention to the
basic idea on which they are based, the encoding size, and the propagation properties the
encodings fulfill. To ease the presentation, in the remaining of this section we will always
assume that the constraint we want to encode is a1x1 + . . . + anxn ≤ k, with maximum
coefficient amax.

The first encoding to mention is the one proposed by Warners (1998). In a nutshell, the
encoding uses several adders for numbers in binary representation. First of all, the left hand
side of the constraint is split into two halves, each of which is recursively treated to compute
the corresponding partial sum. After that, the two partial sums are added and the final
result is compared with k . The encoding uses O(n log(amax)) clauses and variables and
is neither consistent nor GAC. This is not surprising, since adders for numbers in binary
make extensive use of xors, which do not have good propagation properties.

Bailleux et al. (2006) introduced an encoding “very close to those using a BDD and
translating it into clauses”. In order to understand the differences between their construc-
tion and BDDs let us introduce it in detail. First of all, the coefficients are ordered from
small to large. Then, the root is labeled with variable Dn,k, expressing that the sum of
the first n terms is no more than k. Its two children are Dn−1,k and Dn−1,k−an , which
correspond to setting xn to false and true, respectively. The process is repeated until nodes
corresponding to trivial constraints are reached, which are encoded as true or false. For
each node Di,b with children Di−1,b and Di−1,b−ai , the following four clauses are added:

Di−1,b−ai → Di,b Di−1,b → Di,b

Di−1,b−ai ∧ xi → Di,b Di−1,b ∧ xi → Di,b

Example 25. The encoding proposed by Bailleux et al. (2006) on 2x1 + · · ·+ 2x10 + 5x11 +
6x12 ≤ 10 is illustrated in Figure 9. Node D10,5 represents 2x1 + 2x2 + · · · + 2x10 ≤ 5,
whereas node D10,4 represents 2x1 + 2x2 + · · · 2x10 ≤ 4. The method fails to identify that
these two PB constraints are equivalent and hence subtrees B and C will not be merged,
yielding a much larger representation than with ROBDDs.

468



A New Look at BDDs for Pseudo-Boolean Constraints

D12,10

D11,10 D11,4

D10,10 D10,5 D10,4
D10,−1

≡ false

00

0

11

1

A B C

Figure 9: Tree-like construction of Bailleux et al. (2006) for 2x1+· · ·+2x10+5x11+6x12≤10

The resulting encoding is GAC, but an example of a PB constraint family is given for which
their kind of non-reduced BDDs, with their concrete variable ordering is exponentially large.
However, as we have shown in Section 3.2, ROBDDs for this family are polynomial.

Several important new contributions were presented in the paper by the MiniSAT
team (Eén & Sörensson, 2006). The paper describes three encodings, all of which are
implemented in the MiniSAT+ tool. The first one is a standard ROBDD construction for
Pseudo-Boolean constraints. This is done in two steps: first, they suggest a simple dynamic
programming algorithm for constructing a non-reduced BDD, which is later reduced. The
result is a ROBDD, but the first step may take exponential time even if the final ROBDD
is polynomial. Once the ROBDD is constructed, they suggest to encode it into SAT using
6 ternary clauses per node. The paper showed that, given a concrete variable ordering, the
encoding is GAC. Regarding the ROBDD size, the authors cite the work of Bailleux et al.
(2006) to state the BDDs are exponential in the worst case. As we have seen before, the
citation is not correct because Bailleux et al do not construct ROBDDs.

The second method is similar to the one of Warners (1998) in the sense that the con-
struction relies on a network of adders. First of all coefficients are decomposed into binary
representation. For each bit i, a bucket is created with all variables whose coefficient has bit
i set to one. The i-th bit of the left-hand side of the constraint is computed using a series of
full adders and half adders. Finally, the resulting sum is lexicographically compared to k.
The resulting encoding is neither consistent nor GAC and uses a number of adders linear
in the sum of the number of digits of the coefficients.

The last method they suggest is the use of sorting networks. Numbers are expressed in
unary representation and coefficients are decomposed using a mixed radix representation.
The smaller the number in this representation, the smaller the encoding. In this setting,
sorting networks are used to play the same role of adders, but with better propagation
properties. If N is smaller than the sum of the digits of all coefficients in base 2, the size
of the encoding is O(N log2N). Whereas this encoding is not GAC for arbitrary Pseudo-
Boolean constraints, generalized arc-consistency is obtained for cardinality constraints.
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Encoding Reference Clauses Consist. GAC

Warners (Warners, 1998) O(n log amax) NO NO
Non-reduced BDD (Bailleux et al., 2006) Exponential YES YES
ROBDD (Eén & Sörensson, 2006) Exponential (6 per node) YES YES
Adders (Eén & Sörensson, 2006) O(

∑
log ai) NO NO

Sorting Networks (Eén & Sörensson, 2006) O((
∑

log ai) log2(
∑

log ai) YES NO
Watch Dog (WD) (Bailleux et al., 2009) O(n2 log n log amax) YES NO
Gen. Arc-cons. WD (Bailleux et al., 2009) O(n3 log n log amax) YES YES

Table 1: Summary comparing the different encodings.

The first polynomial and GAC encoding for Pseudo-Boolean constraints, called Watch-
Dog, was introduced by Bailleux et al. (2009). It uses O(n2 log n log amax) variables and
O(n3 log n log amax) clauses. Again, numbers are expressed in unary representation and
totalizers are used to play the role of sorting networks. In order to make the comparison
with the right hand side trivial, the left-hand side and k are incremented until k becomes
a power of two. Then, all coefficients are decomposed in binary representation and each
bit is added independently, taking into account the corresponding carry. In the same pa-
per, another encoding which is only consistent and uses O(n log n log amax) variables and
O(n2 log n log amax) clauses is also presented.

Finally, it is worth mentioning the work of Bartzis and Bultan (2003). The authors
deal with the more general case in which the variables xi are not Boolean, but bounded
integers 0 ≤ xi < 2b. They suggest a BDD-based approach very similar in flavor to our
method of Section 4, but instead of decomposing the coefficients as we do, they decompose
the variables xi in binary representation. The BDD ordering starts with the first bit of
x1, then the first bit of the x2, etc... After that, the second bit is treated in a similar
fashion, and so on. The resulting BDD has O(n · b ·∑ ai) nodes and nothing is mentioned
about propagation properties. For the case of Pseudo-Boolean constraints, i.e. b = 1, their
approach amounts to standard BDDs.

Table 1 summarizes the different encodings of PB constraints into SAT.

8. Experimental Results

The goal of this section is to assess the practical interest of the encodings we have presented
in the paper. Our aim is to evaluate to which extent BDD-based encodings are interesting
from the practical point of view. For us, this means to study whether they are competitive
with existing techniques, whether they show good behavior in general or are only interesting
for very specific types of problems, or whether they produce smaller encodings.

For that purpose, first of all, we compare our encodings with other SAT encodings in
terms of encoding time, number of clauses and number of variables. After that, we also
consider total runtime (that is, encoding time plus solving time) of these encodings and we
compare it with the runtime of state-of-the-art Pseudo-Boolean solvers. Finally, we briefly
report on some experiments with sharing, that is, trying to encode several Pseudo-Boolean
constraints in a single ROBDD.
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All experiments were performed on a 2Ghz Linux Quad-Core AMD with a time limit of
1800 seconds per benchmark. The benchmarks used for these experiments were obtained
from the Pseudo-Boolean Competition 2011 (http://www.cril.univ-artois.fr/PB11/),
category no optimization, small integers, linear constraints (DEC-SMALLINT-LIN). For
compactness and clarity, we have grouped benchmarks that come from the same source into
families. However, individual results can be found at http://www.lsi.upc.edu/~iabio/

BDDs/results.ods.

8.1 The Bergmann-Hommel Test

In order to summarize the experiments and make it easier to extract conclusions, ev-
ery experiment is accompanied with a Bergmann-Hommel non-parametric hypothesis test
(Bergmann & Hommel, 1988) of the results with a confidence level of 0.1.

The Bergmann-Hommel test is a way of comparing the results of n different methods
over multiple independent data sets. It gives us two interesting pieces of information. First
of all, it sorts the methods by giving them a real number between 1 and n, such that the
lower the number the better the method. Moreover, it indicates, for each pair of methods,
whether one method significantly improves upon the other. As an example, Figure 10 is the
output of a Bergmann-Hommel test. BDD-1 is the best method but there is not significant
difference between this method and BDD-2 (this is illustrated by a thick line connecting
the methods). On the other hand, the Bergmann-Hommel test indicates that BDD-1 is
significantly better than Adder, since there is no thick line connecting BDD-1 and Adder.
The same can be said for BDD-1 and WD-1, BDD-1 and BDD-3, BDD-1 and WD-2, BDD-2
and Adder, etc.

We will now give a quick overview of how a Bergmann-Hommel test is computed. The
remaining of this section can be skipped if the reader is not interested in the details of the
test. On the other hand, for more detailed information, we refer the reader to the work
of Bergmann and Hommel (1988).

Let us assume we have n methods and m data sets, and let Ci,j be the result (time,
number of variables or any other value) of the i-th method in the j-th benchmark. For
every data set, we assign a number to every method: the best method in that data set has
a 1, the second has a 2, and so on. Then, for every method, we compute the average of
these values in the different data sets. The obtained value is denoted by Ri and is called
the average rank of the i-th method. A method with smaller average rank is better than a
method with a bigger one.

These average ranks make it possible to rank the different methods. However, we are
also interested in detecting whether the differences between the methods are significant or
not: this is computed in the second part of the test. Before that, we need some previous
definitions.

Given i, j ∈ N = {1, 2, . . . , n}, we denote by pi,j the p-value3 of zi,j =
Ri−Rj√

n(n−1)/(6m)
with

respect a normal distribution N(0, 1). A partition of N = {1, 2, . . . , n} is a collection of sets
P = {P1, P2, . . . , Pr} such that (i) the Pi’s are subsets of N , (ii) P1 ∪P2 ∪ · · · ∪Pr = N and

3. The p-value of z with respect to a normal distribution N(0, 1) is the probability p[ |Z| > |z| ], where the
random variable Z ∼ N(0, 1).
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(iii) Pi ∩ Pj = ∅ for every i 6= j. Given P a partition of N , we define

L(P ) =
r∑

i=1

|Pi|(|Pi| − 1)

2

and p(P ) as the minimum pi,j such that i and j belong to the same subset Pk ∈ P .
The Bergmann-Hommel test ensures (with a significance level of α) that the methods i

and j are not significantly different if and only if there is a partition P with p(P ) > αL(P )
such that i and j belong to the same subset Pk ∈ P . Hence, it is a time-consuming test
since the number of partitions can be very large.

In our case, the data sets are the families of benchmarks. We have to use the families
instead of the benchmarks because the data sets must be independent.

8.2 Encodings into SAT

We start by comparing different methods for encoding Pseudo-Boolean constraints into
SAT. We have focused on the time spent by the encoding, the number of auxiliary variables
used and the number of clauses. Moreover, for each benchmark family, we also report the
number of PB-constraints that were encoded into SAT.

The encodings we have included in the experimental evaluation are: the adder encod-
ing as presented by Eén and Sörensson (2006) (Adder), the consistent WatchDog encoding
of Bailleux et al. (2009) (WD-1), its GAC version (WD-2), the encoding into ROBDDs with-
out coefficient decomposition, using Algorithm 1 and the encoding from Section 6 (BDD-
1); the encoding into ROBDDs after coefficient decomposition as explained in Section 4.2
(BDD-2), with Algorithm 1 and the encoding from Section 6; and the GAC approach from
Section 4.3 (BDD-3 ), also with Algorithm 1 and the encoding from Section 6. Notice that
BDD-1 method is very similar to the ROBDDs presented by Eén and Sörensson (2006).
However, since Algorithm 1 produces every node only once, BDD-1 should be faster. Also,
the encoding of Section 6 only creates two clauses per BDD node, as opposed to six clauses
as suggested by Eén and Sörensson.

Table 2 shows the number of problems that the different methods could encode without
timing out. The first column corresponds to the family of problems. The second column
shows the number of problems in this family. The third and fourth columns contain the av-
erage number of SAT and Pseudo-Boolean constraints in the problem. For the experiments,
we considered a constraint to be SAT if it is a clause or has at most 3 variables. Small PB
constraints do not benefit from the above encodings and hence for these constraints a naive
encoding into SAT was always used. The remaining columns correspond to the number of
encoded problems without timing out. Time limit was set to 1800 seconds per benchmark.

Table 3 shows the time spent to encode the benchmarks by the different methods. As
before, the first columns correspond to the family of problems, the number of problems in
this family and the average number of SAT and Pseudo-Boolean constraints in the prob-
lems. The remaining columns correspond to the average encoding time (in seconds) per
benchmarks of each method. Timeouts are counted as 1800 seconds in the average compu-
tation.

Table 4 shows the average number of auxiliary variables required for encoding the PB
constraints (SAT constraints are not counted). The meaning of the first 4 columns is
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Family Pr SAT PB Adder WD-1 WD-2 BDD-1 BDD-2 BDD-3
lopes 200 502,671 592,715 188 188 118 197 197 188
army 12 192 451 12 12 12 12 12 12
blast 8 6,510 1,253 8 8 8 8 8 8
cache 9 181,100 4,507 9 9 9 9 9 9
chnl 21 0 125 21 21 21 21 21 21
dbstv30 5 326,200 2,701 5 5 0 5 5 0
dbstv40 5 985,200 4,801 5 5 0 5 5 0
dbstv50 5 2,552,000 7501 5 5 0 5 5 0
dlx 3 20,907 857 3 3 3 3 3 3
elf 5 46,446 1,399 5 5 5 5 5 5
fpga 36 0 687 36 36 36 36 36 36
j30 17 13,685 270 17 17 17 17 17 17
j60 18 30,832 309 18 18 18 18 18 18
j90 17 50,553 337 17 17 8 17 17 11
j120 28 104,147 516 28 28 11 28 28 18
neos 4 1,451 3,831 4 4 4 4 4 4
ooo 19 95,217 4,487 19 19 19 19 19 19
pig-crd 20 0 113 20 20 18 20 20 20
pig-cl 20 161,150 58 20 20 20 20 20 20
ppp 6 29,846 1,023 6 6 6 6 6 6
robin 6 0 761 6 6 2 6 6 6
13queen 100 8 93 100 100 100 100 100 100
11tsp11 100 2,662 45 100 100 100 100 100 100
vdw 5 8,978 267,840 5 5 5 5 5 5

TOTAL 669 657 657 540 666 666 626

Table 2: Number of problems encoded (without timing out) by the different methods.

6 5 4 3 2 1

WD−2

BDD−3

WD−1 Adder

BDD−2

BDD−1

Figure 10: Statistical comparison of the results of Table 3, time spent by the different
methods in encoding.

the same as before, and the others contain the average number of auxiliary variables (in
thousands) of the benchmarks that did not time out.

Finally, Table 5 contains the average number (in thousands) of clauses needed to encode
the problem. As before, we have only considered the benchmarks that have not timed out,
and clauses due to the encoding of SAT constraints are not counted.

Figures 10, 11 and 12 represent the Bergmann-Hommel tests of these tables. They
show that BDD-1, BDD-2 and Adders are the best methods in terms of time, variables and
clauses. It is worth mentioning that BDD-1 and BDD-2 are faster and use significantly less
clauses than Adder. However, Adders uses significantly less auxiliary variables than BDD-2.
Notice that BDD-1 is GAC, BDD-2 is only consistent and Adder is not consistent, so at
least theoretically BDD-1 clauses have more unit propagation power than BDD-2 clauses,
and BDD-2 clauses are better than Adder clauses. Hence, BDD-1 is the best method using
these criteria and BDD-2 is better than Adder. Regarding the other methods, it seems clear
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Family Pr SAT PB Adder WD-1 WD-2 BDD-1 BDD-2 BDD-3
lopes 200 502,671 592,715 335.23 292.14 996.07 165.75 163.66 316.35
army 12 192 451 0.37 0.43 39.98 0.19 0.19 10.26
blast 8 6,510 1,253 3.89 2.45 40.41 2.20 1.89 23.15
cache 9 181,100 4,507 23.08 18.74 81.65 16.19 15.74 47.78
chnl 21 0 125 0.54 1.05 87.08 0.13 0.13 2.68
dbstv30 5 326,200 2,701 57.77 97.21 — 45.85 83.09 —
dbstv40 5 985,200 4,801 211.51 210.25 — 105.62 165.96 —
dbstv50 5 2,552,000 7,501 547.30 552.99 — 272.02 468.51 —
dlx 3 20,907 857 3.73 3.05 8.41 2.76 2.75 6.19
elf 5 46,446 1,399 7.37 6.53 21.68 5.19 5.90 13.42
fpga 36 0 687 1.90 2.46 69.90 0.30 0.30 3.75
j30 17 13,685 270 3.64 4.62 81.03 3.13 3.67 42.44
j60 18 30,832 309 6.85 10.69 466.07 8.19 8.77 252.69
j90 17 50,553 337 14.81 31.02 1,277.28 28.20 27.76 1,155.18
j120 28 104,147 516 19.25 47.62 1,305.55 21.68 25.50 967.10
neos 4 1,451 3,832 10.43 12.65 257.97 3.46 5.32 77.04
ooo 19 95,217 4,487 13.48 9.67 71.20 7.76 7.88 26.35
pig-crd 20 0 113 0.97 3.29 517.51 0.22 0.21 9.52
pig-cl 20 161,150 58 7.73 8.78 284.15 7.35 7.31 10.79
ppp 6 29,846 1,024 6.13 5.09 33.26 3.17 3.23 9.83
robin 6 0 761 12.03 67.41 1,315.96 2.94 2.82 301.11
13queen 100 8 93 0.19 0.45 100.29 0.14 0.17 18.48
11tsp11 100 2,662 45 0.46 0.51 24.42 0.30 0.33 6.30
vdw 5 8,978 267,840 170.33 109.42 441.21 47.15 46.32 125.91

Average 110.57 99.79 510.40 55.90 57.66 223.41

Table 3: Average time spent on the encoding by the different methods.

Family Pr SAT PB Adder WD-1 WD-2 BDD-1 BDD-2 BDD-3
lopes 200 502,671 592,715 1,744.05 3,566.11 5,478.81 2,393.97 2,394 7,734.65
army 12 192 451 4.63 10.96 245.49 6.36 6.36 479.83
blast 8 6,510 1,253 27.77 62.22 1,394.5 36.74 39.67 761.29
cache 9 181,100 4,507 145.66 339.18 2,393.97 201.18 210.83 1,503.19
chnl 21 0 125 8.39 24.55 1,007.9 6.76 6.76 184.59
dbstv30 5 326,200 2,701 219.82 709.73 — 441.86 1,695.87 —
dbstv40 5 985,200 4,801 2,468.45 6,564.44 — 4,282.16 7,225.63 —
dbstv50 5 2,552,000 7,501 6,135.13 16,365.39 — 11,111.06 19,723.37 —
dlx 3 20,907 857 10.4 21.62 247.79 12.40 13.89 126.81
elf 5 46,446 1,399 20.37 42.78 571.38 24.62 28.13 306.76
fpga 36 0 687 21.15 53.96 1,074.03 13.27 13.27 242.03
j30 17 13,685 270 18.15 50.8 1,190.59 44.96 59.82 1,153.51
j60 18 30,832 309 37.03 112.35 4,775.72 157.92 180.05 7,285.69
j90 17 50,553 337 65.4 217.01 6,543.52 553.8 553.76 19,793.49
j120 28 104,147 516 159.43 540 5,713.75 612.13 806.08 22,246.82
neos 4 1,451 3,832 73.74 185.59 3,542.94 79.33 122.53 2,003.95
ooo 19 95,217 4,487 118.15 273.54 2,248.34 162.25 168.61 1,315.77
pig-crd 20 0 113 15.26 50.75 2,966.58 11.93 11.93 632.33
pig-cl 20 161,150 58 7.68 25.25 1,984.06 4.01 4.01 310.03
ppp 6 29,846 1,024 57.13 141.49 623.58 81.57 82.86 382.67
robin 6 0 761 171.67 628.45 3,634.13 158.55 158.55 16,565.75
13queen 100 8 93 2.2 6.17 461.54 5.63 7.08 791.43
11tsp11 100 2,662 45 3.37 8.83 170.59 5.71 6.51 221.21
vdw 5 8,978 267,840 1,895.39 3,356.94 12,818.51 1,391.65 1,391.65 5,875.58

Average 591.35 1,266.23 1,876.33 892.62 998.44 3,807.34

Table 4: Average number of auxiliary variables (in thousands) used.
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Family Pr SAT PB Adder WD-1 WD-2 BDD-1 BDD-2 BDD-3
lopes 200 502,671 592,715 10,643.63 7,471.89 22,082.47 3,049.06 3,049.02 9,746.32
army 12 192 451 26.09 34.5 2,155.7 10.87 10.87 924.93
blast 8 6,510 1,253 184.95 102.07 2,108.48 70.9 65.46 1,264.83
cache 9 181,100 4,507 980.51 550.68 3,651.91 272.27 275.26 2,418.77
chnl 21 0 125 56.82 116.97 4,936.16 11.23 11.23 285.67
dbstv30 5 326,200 2,701 1,497.41 3,367.75 — 857.39 3,282.22 —
dbstv40 5 985,200 4,801 17,184.62 16,916.6 — 5,526.6 11,259.29 —
dbstv50 5 2,552,000 7,501 42,797.38 44,310.83 — 14,400.14 31,279.2 —
dlx 3 20,907 857 65.25 35.68 377.76 23.04 22.59 208.92
elf 5 46,446 1,399 129.05 71.28 881.02 46.3 46.07 507.46
fpga 36 0 687 139.45 175.66 3,615.21 15.65 15.65 278.37
j30 17 13,685 270 121.56 164.78 3,889.58 89.53 116.04 2,244.021
j60 18 30,832 309 253.16 494.83 22,843.05 311.15 351.01 14,355.2
j90 17 50,553 337 450.49 1,286.17 34,136.7 1,106.22 1,095.12 39,112.08
j120 28 104,147 516 1,102.86 3,803.28 26,205.19 1,186.55 1,570.73 44,068.97
neos 4 1,451 3,832 471.47 594.72 12,410.1 139.26 220.45 3,681.26
ooo 19 95,217 4,487 793.36 442.47 3,378.16 219.41 227.61 2,126.42
pig-crd 20 0 113 104.68 367.03 20,711.11 19.86 19.86 958.65
pig-cl 20 161,150 58 52.41 180.33 14,641.26 4.07 4.07 314.05
ppp 6 29,846 1,024 392.6 271.66 1,804.29 100.89 103.24 654.48
robin 6 0 761 1,185.92 6,916.35 19,694.86 281.42 281.42 28,875.61
13queen 100 8 93 14.73 38.91 5,068.35 10.84 13.73 1,573.89
11tsp11 100 2,662 45 23.31 25.35 1,335.6 7.76 9.35 433.59
vdw 5 8,978 267,840 10,885.96 6,564.14 24,274.21 1,662.73 1,662.73 7,262.88
Average 3,675.7 2,970.54 8,297.1 1,174.38 1,380.41 5,843.53

Table 5: Average number of clauses (in thousands) used.

6 5 4 3 2 1

WD−2

BDD−3

WD−1 BDD−2

BDD−1

Adder

Figure 11: Statistical comparison of the results of Table 4, number of auxiliary variables
used by the different encodings.
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WD−1 Adder
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BDD−1

Figure 12: Statistical comparison of the results of Table 5, number of clauses used by the
different methods.
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Family Adder WD-1 WD-2 BDD-1 BDD-2 BDD-3 bsolo MiniSAT SAT4J Wbo borg SMT VBS
lopes 42 54 40 56 57 61 39 66 23 63 37 43 77
army 9 12 7 10 11 5 6 6 6 6 10 5 12
blast 8 8 8 8 8 8 8 8 8 8 8 8 8
cache 9 9 9 9 9 9 7 8 6 6 6 9 9
chnl 3 3 2 5 5 3 21 3 1 3 21 0 21
dbstv30 5 5 0 5 5 0 5 5 5 5 5 5 5
dbstv40 0 5 0 5 5 0 5 5 5 5 5 5 5
dbstv50 0 5 0 5 5 0 5 5 5 5 5 5 5
dlx 3 3 3 3 3 3 3 3 3 3 3 3 3
elf 5 5 5 5 5 5 5 5 5 5 5 5 5
fpga 25 36 36 36 36 36 36 33 36 36 36 36 36
j30 17 17 17 17 17 17 17 17 17 17 17 17 17
j60 17 17 17 17 17 17 17 17 17 17 17 17 17
j90 17 17 7 17 17 8 17 17 17 17 17 17 17
j120 14 16 9 16 16 11 13 12 16 16 16 16 17
neos 2 2 2 2 2 2 2 2 2 2 2 2 2
ooo 15 19 16 18 19 17 14 15 14 15 14 17 19
pig-crd 2 2 2 2 2 1 19 2 2 2 20 0 20
pig-cl 2 1 2 1 1 2 3 2 2 2 5 0 5
ppp 4 3 4 3 4 4 4 4 4 3 5 4 6
robin 3 3 2 3 3 6 3 3 4 3 3 4 6
13queen 100 100 100 100 100 100 100 100 100 100 100 100 100
11tsp11 100 100 96 100 100 75 72 90 93 100 100 100 100
vdw 1 1 1 1 1 1 1 1 1 1 1 1 2

TOTAL 403 443 385 444 448 391 422 429 392 440 458 419 514

Table 6: Number of problems solved by different methods.

that encoding n different constraints in order to obtain GAC, as it is done in WD-2 and
BDD-3, is not a good idea in terms of variables and clauses.

8.3 SAT vs. PB

In this section we compare the state-of-the-art solvers for Pseudo-Boolean problems and
some encodings into SAT. For the SAT approach, once the encoding has been done, the
SAT formula is given to the SAT Solver Lingeling (Biere, 2010) version 276. We have
considered the same SAT encodings as in the previous section. Regarding Pseudo-Boolean
solvers, we have considered MiniSAT+ (Eén & Sörensson, 2006) and the best non-parallel
solvers in the No optimization, small integers, linear constraints category of the Pseudo-
Boolean Competition: borg (Silverthorn & Miikkulainen, 2010) version pb-dec-11.04.03,
bsolo (Manquinho & Silva, 2006) version 3.2, wbo (Manquinho, Martins, & Lynce, 2010)
version 1.4 and SAT4J (Berre & Parrain, 2010) version 2.2.1. We have also included the
SMT Solver Barcelogic (Bofill, Nieuwenhuis, Oliveras, Rodŕıguez-Carbonell, & Rubio, 2008)
for PB constraints, which couples a SAT solver with a theory solver for PB constraints.

Table 6 shows the number of instances solved by each method. Table 7 shows the average
time spent by all these methods. For the SAT encodings, times include both the encoding
and SAT solving time. As before, a time limit of 1800 seconds per benchmark was set, and
for the average computation, a timeout is counted as 1800 seconds. Both tables include a
column VBS (Virtual Best Solver), which represents the best solver in every instance. This
gives an idea of which speedup we could obtain with a portfolio approach.

Figure 13 shows the result of the Bergmann-Hommel test: SMT is the best method,
whereas Adder, BDD-3 and WD-2 are the worst ones. There are no significant difference
between the other methods. The main conclusion we can infer is that BDD encodings are
definitely a competitive method. Also, there is no technique that outperforms the others
in all benchmark families, and hence portfolio strategies would make a lot of sense in this
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Family Adder WD-1 WD-2 BDD-1 BDD-2 BDD-3 bsolo MiniSAT SAT4J Wbo borg SMT VBS
lopes 1,515 1,420 1,561 1,408 1,401 1,435 1,509 1,344 1,661 1,364 1,555 1,464 1,249
army 660 139 1,141 543 469 1,298 1,028 913 1,127 1,084 438 1,066 86
blast 6.12 2.56 46.78 2.42 1.99 27.63 0.12 0.51 0.84 0.08 2.13 0.03 0.03
cache 253 123 396 75.49 115 375 653 395 670 606 636 266 63.95
chnl 1,543 1,543 1,716 1,508 1,508 1,681 0.55 1,551 1,751 1,673 3.78 — 0.47
dbstv30 1,049 128 — 91.66 192 — 59.28 32.6 99.81 1.54 9.87 1.28 1.28
dbstv40 — 366 — 198 324 — 187 72.25 9.74 5.69 45.33 4.44 4.44
dbstv50 — 935 — 629 792 — 200 430 21.22 16.13 121 11.36 11.36
dlx 7.06 4.88 25.72 4.29 4.34 19.58 3.47 1.29 1.6 0.55 3.15 0.17 0.17
elf 13.87 10.14 44.09 7.97 9 30.03 28.58 2.97 2.31 1.42 11.61 0.69 0.69
fpga 586 5.27 113 0.92 0.92 37.64 0.27 242 1.47 5.17 3.04 0.1 0.07
j30 16.7 7.79 116 5.94 8.42 77.88 6.53 4.6 14.57 0.53 1.93 0.28 0.28
j60 137 114 551 113 116 398 110 115 105 101 104 101 101
j90 24.18 36.63 1,303 39.72 39.46 1,233 0.9 3.96 1.42 0.41 3.32 0.15 0.15
j120 978 854 1,364 839 851 1,262 967 1,031 849 839 841 814 756
neos 1,023 936 1,405 910 915 1,073 1,106 1,276 1,038 901 976 925 901
ooo 479 190 493 151 176 488 645 453 575 486 512 259 126
pig-crd 1,620 1,620 1,680 1,620 1,620 1,725 114 1,626 1,749 1,685 3.92 — 1.92
pig-cl 1,624 1,715 1,693 1,718 1,718 1,721 1,658 1,623 1,705 1,742 1,369 — 1,367
ppp 631 1,001 656 906 858 646 605 919 602 901 390 601 210
robin 938 921 1,353 913 913 719 936 971 778 920 963 605 444
13queen 47.52 1.64 264 4.63 4.51 643 54.82 238 18.92 5.9 20.35 1.92 1.28
11tsp11 28.36 8.29 428.6 23.86 18.32 731 855 369 503 229 27.64 1.81 1.51
vdw 1,645 1,568 1,545 1,493 1,493 1,612 1,478 1,448 1,596 1,441 1,450 1,441 1,186

Av. 783 669 958 667 667 1,003 764 772 849 710 613 696 475

Table 7: Time spent by different methods on solving the problem (in seconds).

12 11 10 9 8 7 6 5 4 3 2 1

WD−2

BDD−3

Adder

SAT4J

MiniSAT

bsolo WD−1

BDD−2

BDD−1

borg

Wbo

SMT

Figure 13: Statistical comparison of the results of Table 7, runtime of the different methods.
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area, as witnessed by the performance of Borg, which implements such an approach. Finally,
we also want to mention that the possible exponential explosion of BDDs rarely occurs in
practice and hence, coefficient decomposition does not seem to pay off in practical situations.

Regarding the Best Virtual Solver, SMT contributes to 52% of the problems. In 25% of
the cases the best solution was given by a specific PB solver. Among them, Wbo contributes
with 10% of the problems and bsolo with 8%. Finally, encoding methods give the best
solution in the 23% of the cases: 14% of the times due to Watchdog methods and 8% of the
times due to BDD-based methods.

8.4 Sharing

One of the possible advantages of using ROBDDs to encode Pseudo-Boolean constraints is
that ROBDDs allow one to encode a set of constraints, and not just one. It would seem
natural to think that if two constraints are similar enough, the two individual ROBDDs
would be similar in structure, and merging them into a single one would result in a ROBDD
whose size is smaller than the sum of the two individual ROBDDs. However, the main
difficulty is to decide which constraints should be encoded together, since a bad choice could
result in a ROBDD whose size is larger than the sum of the ROBDDs for the individual
constraints.

We performed initial experiments where the criteria of similarity between constraints
only took into account which variables appeared in the constraints. We first fixed an
integer k and chose the constraint with the largest set of variables. After that, we looked
for a constraint such that all but k variables appeared in the first constraint. The next step
was to look for another constraint such that all but k variables appeared in any of the two
previous constraints and so on, until reaching a fixpoint. Finally, all selected constraints
were encoded together.

We tried this experiment on all benchmarks with different values of k and it rarely gave
any advantage. However, we still believe that there could be a way of encoding different
constraints into a single ROBDD, but different criteria for selecting the constraints should
be studied. We see this as a possible line of future research.

9. Conclusions and Future Work

Both theoretical and practical contributions have been made. Regarding the theoretical
part, we have negatively answered the question of whether all PB constraints admit poly-
nomial BDDs by citing the work of Hosaka et al. (1994) which, to the best of our knowledge,
is largely unknown in our research community. Moreover, we have given a simpler proof
assuming that NP is different from co-NP, which relates the subset sum problem and the
ROBDDs’ size of PB constraints.

At the practical level, we have introduced a ROBDD-based polynomial and generalized
arc-consistent encoding of PB constraints and developed a BDD-based generalized arc-
consistent encoding of monotonic functions that only uses two clauses per BDD node. We
have also presented an algorithm to efficiently construct all these ROBDDs and proved
that the overall method is competitive in practice with state-of-the-art encodings and tools.
As future work at the practical level, we plan to study which type of Pseudo-Boolean

478



A New Look at BDDs for Pseudo-Boolean Constraints

constraints are likely to produce smaller ROBDDs if encoded together rather than being
encoded individually.
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