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Fig. 1. Highly accurate poses reconstructed from six 6-DoF trackers. On the left, a virtual reconstructed skeleton is rendered over the user. On the right, the
virtual skeleton on the screen mimics the user poses and has its end-effectors in the correct position.

Accurate and reliable human motion reconstruction is crucial for creating
natural interactions of full-body avatars in Virtual Reality (VR) and entertain-
ment applications. As the Metaverse and social applications gain popularity,
users are seeking cost-effective solutions to create full-body animations that
are comparable in quality to those produced by commercial motion capture
systems. In order to provide affordable solutions though, it is important
to minimize the number of sensors attached to the subject’s body. Unfor-
tunately, reconstructing the full-body pose from sparse data is a heavily
under-determined problem. Some studies that use IMU sensors face chal-
lenges in reconstructing the pose due to positional drift and ambiguity of the
poses. In recent years, some mainstream VR systems have released 6-degree-
of-freedom (6-DoF) tracking devices providing positional and rotational
information. Nevertheless, most solutions for reconstructing full-body poses
rely on traditional inverse kinematics (IK) solutions, which often produce
non-continuous and unnatural poses. In this paper, we introduce Sparse-
Poser, a novel deep learning-based solution for reconstructing a full-body
pose from a reduced set of six tracking devices. Our system incorporates a
convolutional-based autoencoder that synthesizes high-quality continuous
human poses by learning the human motion manifold from motion capture
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data. Then, we employ a learned IK component, made of multiple light-
weight feed-forward neural networks, to adjust the hands and feet towards
the corresponding trackers. We extensively evaluate our method on publicly
available motion capture datasets and with real-time live demos. We show
that our method outperforms state-of-the-art techniques using IMU sensors
or 6-DoF tracking devices, and can be used for users with different body
dimensions and proportions.
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1 INTRODUCTION
Real-time human motion reconstruction is essential in many Virtual
Reality (VR) and Augmented Reality (AR) applications in areas such
as entertainment, simulation, training, sports and education. With
the growing interest in having users collaborate in the Metaverse
and social applications, the need to have avatars that represent
those users is rapidly increasing. Having our own virtual avatar
can provide embodiment, but also seeing avatars representing other
users can enhance non-verbal communication and the overall sense
of presence. Therefore, it is essential to have high-quality animations
for avatars that can convey our movements accurately.
Currently, most of the established technologies for high-quality

motion capture (mocap), such as Vicon or Xsens, use optical markers
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or inertial measurement units (IMUs). Unfortunately, these systems
are cost-demanding, require specialized personnel, and need ex-
tended and complex calibration processes, thus, are most suitable
for large companies or research labs. As VR and AR technologies
become increasingly affordable to the general public, there needs
to be a similar trend for mocap systems. Ideally, consumer-grade
VR and AR should also offer affordable and accurate mocap, with
easy configuration and installation, to serve home users who want
inexpensive but reliable means for full-body interaction with appli-
cations for VR/AR, social interaction and entertainment.
Given the small number of input trackers in consumer-grade

VR/AR, most current solutions are limited to representing the user’s
upper body animated with Inverse Kinematics (IK) by employing
the Head-Mounted Display (HMD) and hand-held controllers as
end-effectors. The lack of full-body tracking, though, breaks the
immersion when users look at themselves or collaborate with other
participants [Debarba et al. 2020; Fribourg et al. 2020; Toothman
and Neff 2019]. Recent works address this issue by predicting the
full-body pose from three 6-DoF tracking devices (HMD + two hand-
held controllers) [Jiang et al. 2022a; Ponton et al. 2022b; Winkler
et al. 2022]. However, the absence of lower-body tracking makes
the problem highly under-determined, thus limiting the lower-body
motion to basic locomotion.
Other works [Huang et al. 2018; Jiang et al. 2022b; Yi et al. 2022,

2021] use a sparse set of IMUs (e.g., six) to reduce the cost of motion
capture systems such as Xsens (17 IMUs) while still being able to
represent a broader range of motion by placing some sensors on
the lower body. IMU-based approaches have become increasingly
popular due to their advantages in certain applications. One notable
advantage is that they do not require external devices, thereby allow-
ing for a capture volume that is not restricted by physical limitations
or environmental factors such as illumination or occlusions. Unfor-
tunately, standalone IMUs for full-body mocap are not included as
standard options in mainstream VR/AR systems. In addition, they
require careful initialization, rely on previous pose predictions and
suffer from positional drift. Incorrect pose prediction happens be-
cause IMUs may produce the same sensor output for very distinct
poses (e.g., standing still and sitting down), and thus, depend on the
previous pose being correct to compute the next pose. In the case
of VR, the positional drift problem can be very noticeable when the
self-avatar position moves away from the user or when accurate
end-effector placement is needed.
Some VR/AR systems can be used with additional rotational

and/or positional tracking devices, such as HTC VIVE Trackers.
One limitation of this technique is their reliance on external de-
vices. The most common solution to include full-body avatars is to
apply IK using these devices (along with the HMD and hand-held
controllers) as end-effectors [Oliva et al. 2022; Ponton et al. 2022a].
Having absolute positional information allows these methods to
improve pose synthesis and to place the avatar and its end-effectors
accurately. The drawback is that IK usually generates static, unnat-
ural, and time-incoherent human motion, often leading to popping
artifacts in some joints, such as the knees.

In this paper, we present SparsePoser, a novel data-driven method
for animating avatars using only six tracking devices with 6-DoF (see
Figure 1). SparsePoser works by encoding the information retrieved

from the sensors and the static representation of the user (i.e., the
skeleton), and decoding it to a full-body pose by reconstructing all
joints between the end-effectors. We also introduce a learned IK
step that can accurately re-position the end-effectors according to
the sensor’s information. The main contributions of our paper are:

• To the best of our knowledge, SparsePoser is the first deep
learning-based system to reconstruct full-body motion from
a sparse set of positional and rotational sensors such as those
found in recent consumer-grade VR/AR systems. Unlike ap-
proaches using three sensors to reconstruct the upper-body
pose and roughly guess the lower-body pose, SparsePoser
accurately recovers motion for the whole body.

• A deep learning-based architecture to synthesize human mo-
tion in real time consisting of: (a) a generator, which is a
convolutional-based autoencoder using skeletal-aware opera-
tions, inspired by Aberman et al. [2020], that learns the hu-
man motion features from sparse input and produces highly
smooth and realistic poses; and (b) a learned IK network that
adjusts the limbs of the human skeleton towards the end-
effectors’ positions and rotations.

• A VR-specific motion capture database created from hours of
users interacting and navigating in VR applications wearing
a HMD and Xsens. This is the first database that gathers the
kind of interaction movements and locomotion that are most
relevant to VR avatar animation.

We showcase the effectiveness of SparsePoser by comparing it
to state-of-the-art techniques that use IMU sensors or 6-DoF track-
ers. The evaluation consists of a quantitative analysis using pub-
licly available datasets, and a qualitative analysis through real-time
demonstrations. Furthermore, we assess the various components of
our system, including the chosen pose representation, and examine
its ability to adapt to users of varying heights and body proportions.

2 RELATED WORK
The literature on human motion reconstruction is extensive and
encompasses a wide range of research. This section briefly reviews
methods that utilize sparse sensor signals from IMUs and VR track-
ing devices. We first discuss the general problem of full-body recon-
struction from low-dimensional input and, subsequently, delve into
the specific problem of learning-based IK methods.

2.1 Full-body Motion Reconstruction from Sparse Input
Using a reduced set of IMUs placed on a user’s body to reconstruct
human motion has been extensively investigated in past years. One
of the advantages of IMUs is that they do not require external sen-
sors or cameras and thus, can be used in any lighting condition or
environment, and do not suffer from occlusion problems. Compared
to commercial IMU-based motion capture suits [Xsens 2000], recent
methods are less intrusive and easier to set up due to the use of a
lower number of sensors.

Early work on kinematic models with six IMUs, e.g., von Marcard
et al. [2017], propose an optimization-based offline method that
reconstructs full-body poses. Further works, such as DIP [Huang
et al. 2018] and TransPose [Yi et al. 2021], use deep learning-based
models, like recurrent neural networks (RNN), that learn from large
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motion capture datasets and can reconstruct poses in real time with
higher accuracy. As IMUs provide no positional information, it is
challenging to correctly estimate the global positions or translations
of the user in the virtual environment. DIP concentrated on the gen-
eration of poses while fixing the character’s position. TransPose uses
RNN with a supporting-foot-based method to predict global trans-
lations. Transformer-based models [Vaswani et al. 2017], initially
proposed for natural language processing, have been extensively
used in many domains with sequential inputs. In that manner, Jiang
et al. [2022b] introduce a conditional Transformer decoder model
that reconstructs full-body pose and can correct the drift by pre-
dicting stationary body points with soft-IK constraints, stabilizing
the generated root velocity and joint angles. Apart from kinematic
models, physics-based methods have also been used for motion
reconstruction with IMUs. Yi et al. [2022] propose a framework that
combines an RNN-based kinematic module with a physics-based
optimizer to generate physically plausible motions from a sparse
set of IMUs.

Overall, one significant drawback of IMU-based techniques is that
after prolonged usage, the rotational and translation information
reconstructed tends to drift due to the double integration needed to
retrieve positions from accelerations. This issue leads to inaccurate
global translation of the character and accumulated positional and
rotational errors on the body pose. In order to minimize drift, recent
work by Yi et al. [2023] leverages the use of a monocular camera to
locate the human within the reconstructed scene through simulta-
neous localization and mapping (SLAM). We opt to use commercial
VR hardware that combines both IMUs and photosensors, to provide
precise position and orientation of each tracked object while not
suffering from drift over time.

As commercial VR devices become widely available, some works
reconstruct full-body poses from only the Head-Mounted Display
(HMD) and two hand-held controllers. Data-driven methods have
proven to be able to reconstruct high-quality and continuous poses
for certain applications. Dittadi et al. [2021] use a variational au-
toencoder to reconstruct full-body poses from three-tracking points,
but without estimating global translations. Winkler et al. [2022]
propose a reinforcement learning framework that, together with a
physics simulator, generates natural and physically plausible move-
ments. Jiang et al. [2022a] present a Transformer-based encoder to
estimate the full-body poses and global rotations in real time. Ali-
akbarian et al. [2022] harness the advantages of generative models
to introduce a conditional flow-based model capable of generating
plausible full-body poses from sparse input. Other methods [Ahuja
et al. 2021; Ponton et al. 2022b] explore the idea of searching in a
motion dataset, similar to Motion Matching [Clavet 2016], to find a
sequence of full-body poses that match the current pose and user
input, hence ensuring the quality of the motion. However, using
only three tracking points provides limited full-body information,
especially for the lower body where almost no information can
be recovered, resulting in motion with foot-sliding problems, and
contact-point violations. Therefore, these methods can only be used
in certain applications with limited lower-body motion, such as
locomotion.
Another common approach is to add additional trackers to the

user to reduce ambiguity. With one additional tracker on the user’s

pelvis, Yang et al. [2021] propose an RNN-based model with Gated
Recurrent Units (GRUs) that utilizes velocity data to accurately pre-
dict low-body movements, including global translation and orienta-
tion. Nonetheless, their upper-body poses are solved by an IK solver,
thus, providing lower-quality upper-body poses. Adding trackers
on the pelvis and feet, IK solvers are being explored to generate full-
body poses [Oliva et al. 2022; Ponton et al. 2022a; RootMotion 2017;
Zeng et al. 2022]. However, as these methods mostly optimize the
pose to reach the end-effectors, the generatedmotion sequences may
lack temporal coherency and produce unnatural non-human-like
poses. When used in VR, such problems can negatively impact the
Sense of Embodiment [Fribourg et al. 2020; Gonçalves et al. 2022].
To overcome these issues, our method uses a two-stage approach
that combines a convolutional-based model with skeleton-aware
operations and a learned IK model, achieving smooth high-quality
poses while maximizing the end-effector accuracy.

2.2 Learned Inverse Kinematics
In robotics and computer animation, it is common to enforce an
Inverse Kinematics (IK) solver to determine the positions and orien-
tations of the intermediate joints in a kinematic chain when the po-
sitions and orientations of the end-effectors (leaf joints) are known.
Aristidou et al. [2018] comprehensively reviews the most popular
IK approaches for reconstructing human motion, such as analytical
and numerical IK solvers. Furthermore, a combination of IK solvers
can be utilized to solve the pose of a human-like character from
the end-effectors. For instance, RootMotion’s Final IK [RootMotion
2017] uses a combination of analytical and heuristic solvers to solve
the pose of different body parts. However, traditional IK solvers
typically present scalability limitations for multi-chain characters,
and a trade-off between computational efficiency and naturalness
of the generated poses, as noted by Caserman et al. [2019].
Traditional IK solvers are primarily focused on optimizing the

alignment of end-effectors with their corresponding leaf joints. How-
ever, they often struggle to generate natural human-like poses.
To overcome this limitation, some studies combine data-driven
methods, which can learn poses from high-quality motion capture
data, with traditional IK to achieve accurate end-effector placement.
For example, Jiang et al. [2022a] employ an IK module in their
Transformer-based pipeline, to adjust the shoulder and elbow posi-
tions, and to avoid deviations between the predicted hand positions
and the tracked VR controllers. Ponton et al. [2022b] use an IK algo-
rithm to solve the pose of the arms after a Motion Matching module
produces a full-body pose. Similarly, Yang et al. [2021] uses a deep
learning-based method for solving the lower body and an IK solver
for the upper body. While these solutions represent a good compro-
mise between pose quality and end-effector accuracy, incorporating
the last IK step may override the pose generated by the data-driven
solution, and thus, it may incorporate all the issues typically found
in traditional IK solutions.
As motion data becomes more widely available, data-driven IK

solutions have consistently attracted attention in robotics and com-
puter animation. In robotics, learned IK methods employ neural net-
works, such as light-weighted feed-forward networks [Bensadoun
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et al. 2022; Bócsi et al. 2011; Csiszar et al. 2017; Duka 2014], genera-
tive adversarial networks [Ren and Ben-Tzvi 2020] and conditional
normalizing flow networks [Ames et al. 2022], to learn a fixed so-
lution or explore the space of possible solutions for a given target
end-effector. These methods accelerate the IK computation but are
limited to specific kinematic chains; typically robotic arms with a
low number of degrees of freedom when compared with a human
body.
In computer animation, previous work focus on using machine

learning models for reconstructing full-body poses. Grochow et al.
[2004] and Wu et al. [2011] present an IK system based on scaled
Gaussian processes to model a probability distribution over the
space of poses, and use different training data to generate various
styles. Huang et al. [2017] utilizes a multi-variate Gaussian model as
soft constraints for a Jacobian-based IK solver to obtain a sequence
of coherent nature poses in real time. All these methods can gen-
erate natural poses, but at the expense of being less efficient than
conventional IK solvers. Moreover, the use of Gaussian processes
severely limits the size of the training set, and thus, the method fails
to generate natural poses when the desired pose deviates signifi-
cantly from the training poses. In our work, we utilize the recent
advancements in deep learning-based models, which can be trained
with a large number of poses, to overcome these limitations.

Recently, Victor et al. [2021] introduce an IK solver that is based
on an autoencoder structure, which aligns hand joints to the target
position from a starting pose. However, their model has some limi-
tations as it modifies the entire skeleton each time an end-effector is
altered, resulting in the emergence of foot-sliding artifacts and a lack
of temporal coherence. Furthermore, it only predicts joint positions,
making it skeleton-dependent and lowering the skeletal degrees of
freedom. In contrast, the goal of our learned IK component is to
enhance the high-quality pose synthesized by the generator by lever-
aging the strengths of our convolutional-based generator, while, at
the same time, addressing the issues of foot-sliding and increasing
end-effector accuracy.

Zhou et al. [2020] introduced the network IKNet consisting of one
fully-connected network that computes joint rotations from joint
positions and bone orientations of the hand. Their approach does not
learn to modify the pose; instead, it converts a hand pose provided
by the joint positions into joint rotations. In contrast, our learned
IK, given an initial body pose and target end-effectors (hands and
feet), modifies each limb independently to better reach the targets.
In addition, it learns to deal with the more complex articulation of
full bodies.

3 OVERVIEW
This paper presents a deep learning-based framework for animating
human avatars from a sparse set of input sensors. A visual diagram
of SparsePoser is shown in Figure 2. First, we retrieve the positions
and rotations from six sensors placed on the head, hands, feet and
pelvis (the root in our case) of the user. Then, these are transformed
into a root-centered dual quaternion-based pose representation [An-
dreou et al. 2022], which allows the network to implicitly under-
stand the structure of the skeleton and synthesize accurate poses. A
convolutional-based autoencoder extracts the main features from

the sensors and reconstructs the user poses for a set of contiguous
frames. This initial stage utilizes skeleton-aware operations, similar
to [Aberman et al. 2020], to maintain consistency and generate accu-
rate human postures. Subsequently, we integrate a learned IK solver
that has been trained to adjust the positions of the end-effectors to
attain the targeted points. Once trained, our method can be applied
to different-sized users using standard commercial VR systems that
provide rotational and positional information, such as HTC VIVE
Trackers.

4 BACKGROUND
This section provides the fundamental concepts essential to un-
derstanding the proposed method. Specifically, we introduce dual
quaternions, which serve as the pose representation utilized in
Section 5.1 as presented by Andreou et al. [2022], as well as the
skeleton-aware operations introduced by Aberman et al. [2020]
which we use as a component of our network architecture.

Dual Quaternions. A dual quaternion q ∈ R8 can be represented
as two quaternions qr ∈ R4 and qd ∈ R4 in the form q = qr + 𝜖qd,
where qr and qd are the real and dual part, respectively, and 𝜖 is the
dual unit. A dual quaternion q is unit if q ⊗ q∗ = 1, where q∗ its the
conjugate of q.
Let qr = cos \2 + û sin \2 be a quaternion representing a rotation

\ about the unit vector û, and t = (𝑡1, 𝑡2, 𝑡3) be a translation and
its corresponding pure quaternion qt = 0 + t. We can compactly
represent a rigid displacement [Jia 2013; Kavan et al. 2007] with a
unit dual quaternion as follows:

q = qr +
𝜖

2
qt ⊗ qr (1)

= cos
\

2
+ û sin

\

2
+ 𝜖
2

(
− sin

\

2
(t · û) + cos

\

2
t + sin

\

2
t × û

)
(2)

where ⊗ denotes the quaternion multiplication. From a unit dual
quaternion q = qr + 𝜖qd, we can easily extract the rotation (the
quaternion qr) and the translation t = 2qd ⊗ qr∗

Skeleton-aware operations. Both the static and the dynamic au-
toencoders in Figure 2 use skeleton-aware operations that explicitly
account for the hierarchical bone structure and joint adjacency.
Given a skeleton with 𝐽 joints encoded as a list J = ( 𝑗0, 𝑗1, . . . , 𝑗 𝐽 ),
we can represent their hierarchical structure with a list of the same
size containing the index of each joint’s parent P = (𝑝0, 𝑝1, . . . , 𝑝 𝐽 ).
For each joint with index 𝑥 , we also store its neighbors N𝑥 =

{ 𝑗𝑦 | 𝑑𝑖𝑠𝑡 ( 𝑗𝑦, 𝑗𝑥 ) < 𝑑, 0 ≤ 𝑦 < 𝐽 }, i.e., the set of joints that, when
interpreting the skeleton as a graph, are at a distance less or equal to
𝑑 (e.g.,𝑑 = 2). A skeleton is pooled by collapsing pairs of consecutive
joints until solely leaf and root joints are left, and it is unpooled
by the opposite procedure, as shown in Figure 3. Thus, we have
different skeletal structures for each pooling 𝑖 . Suppose we repeat
this process 𝐵 times; we will have 𝐵 lists of joints (J0, J1, . . . , J𝐵)
with their corresponding parents (P0, P1, . . . , P𝐵) and neighbors
(N0,N1, . . . ,N𝐵).
The skeletal convolution is applied as a standard one-dimensional

convolution over the temporal channel at each pooling level 𝑖 , with
the difference that the learned weights W𝑖 ∈ R𝐼×𝐾×𝑘 (𝐼 is the
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Fig. 2. Network architecture of SparsePoser for reconstructing full-body pose from sparse data. First, the static structure of the skeleton S, the sparse input QS,
and the displacement D are extracted from the motion Q. A convolutional-based autoencoder (composed of the Static and Dynamic Encoders, 𝑠𝑒 and 𝑑𝑒 , and
the Decoder, 𝑑) learns to reconstruct user poses for a set of contiguous frames. Subsequently, a learned IK solver adjusts the positions of the end-effectors to
attain the target positions and rotations.

number of input channels, 𝐾 are the learned filters, and 𝑘 is the
kernel size) are multiplied by a mask M𝑖 ∈ R𝐼×𝐾×𝑘 defined as
follows:

M𝑖
𝑥,𝑦 =

{
(1, . . . , 1) ∈ R𝑘 if 𝑗𝑦 ∈ N𝑖

𝑥

(0, . . . , 0) ∈ R𝑘 otherwise
(3)

In Equation 3, we assume that each joint is mapped to one channel
for simplicity; however, each joint starts with eight channels, as
we use dual quaternions for pose representation, and the channels
are duplicated after the execution of each block in the Dynamic
Encoder, and halved in each block of the Decoder. This allows us
to capture higher-level features as the number of joints is reduced.
Therefore, the input channels are the number of joints multiplied by
the number of channels per joint. The learned filters are similarly
defined but use the number of channels per joint of the next block.
As seen in Equation 3, when a convolution is performed on a specific
joint, the mask only permits neighboring joints to be taken into
account. The skeletal linear operation can be seen as a particular
case of the skeletal convolution where 𝑘 = 1.
While our work draws inspiration from the motion retargeting

technique proposed by Aberman et al. [2020], our focus is on synthe-
sizing motion from sparse data. Our architecture differs significantly
in several key ways. Firstly, our generator is trained to learn the
main features of motion from sparse data and reconstruct poses
using unpooling operations and simplified loss functions. Secondly,
we introduce a novel learned IK network that produces accurate
end-effector positioning. Thirdly, we use dual quaternions for pose
representation, which significantly improves animation smoothness.
Finally, we propose a VR controller that enables our method to be

Initial SkeletonPrimal Skeleton

Fig. 3. Skeleton unpooling procedure used in the Decoder. A skeleton is
pooled by collapsing pairs of consecutive joints, as shown in red, and un-
pooled by the opposite procedure.

used with VR hardware, making it a more versatile tool for motion
synthesis.

5 METHOD
In this section, we describe the structure of the proposed network
for reconstructing full-body poses from a sparse set of trackers. We
present the inputs and pose representation, followed by the network
structure and the training procedure.

5.1 Input and Pose Representation
The input of our method is a set of motion sequences of length
𝑇 (number of poses) using a humanoid skeleton with 𝐽 joints. We
separate it into three components S, Q and D. The static component
S ∈ R𝐽 ×3, contains a set of offsets (3D vectors) representing the
local positions of the joints in the bind pose. Each joint is defined in
the local frame of its parent, thus creating a hierarchical skeleton
representation. In contrast, the dynamic component Q ∈ R𝑇× 𝐽 ×8
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contains the root space local rotations and translations of all joints
per frame, using dual quaternions as explained below. Finally, the
displacement component D ∈ R𝑇×3 stores the displacement be-
tween frames of the root joint, per all frames, as 3D vectors.
For the dynamic part, Q, we represent the local rotations and

translations using unit dual quaternions, as presented by Andreou
et al. [2022]. Dual quaternions provide a unified and compact repre-
sentation that encodes both rotational and translation information
in orthogonal quaternions, allowing the network to understand hu-
manmotion better. It is also ideal for independently structuring each
joint’s location and orientation by constructing them relative to the
root joint, making our predictions less vulnerable to accumulated
errors as we move along the kinematic chain.

5.2 Network Structure
The method is structured into two main parts, as represented in Fig-
ure 2. The first part is the generator, which has the structure of an au-
toencoder with skeleton-aware operations as building blocks [Aber-
man et al. 2020]. The autoencoder learns to reconstruct a full-body
pose from a low-dimensional input; it is able to understand the
human motion manifold and, thus, produce continuous and highly
realistic poses. The second part is a set of neural networks that ad-
justs the skeleton’s limbs toward their corresponding end-effectors.

Generator. The input of the generator consists of the three com-
ponents S, Q and D, which are used to synthesize a full-body pose.
It comprises the Static Encoder 𝑠𝑒 , the Dynamic Encoder 𝑑𝑒 and the
Decoder 𝑑 . Firstly, the Static Encoder, 𝑠𝑒 , uses the static component
S to produce a list of 𝐵 (𝐵 = 3 in our experiments) static learned
features S = (S0,S1, . . . ,S𝐵) for each pooling level:

S = 𝑠𝑒 (S) (4)

The Static Encoder comprises 𝐵 consecutive blocks made of Skeletal
Linear and Pool operators with a Leaky ReLU activation function.
Each static learned feature S𝑖 is extracted after the execution of
each block 𝑖 where 0 ≤ 𝑖 < 𝐵. The dynamic decoder later uses these
features.
Secondly, the Dynamic Encoder, 𝑑𝑒 , takes as input the displace-

mentD and a subsetQS ofQ containing only the sparse input (hands,
head, root and toes joints) to encode the primal skeleton P:

P = 𝑑𝑒

(
D,QS

)
(5)

The Dynamic Encoder uses 𝐵 consecutive blocks of Skeletal Convo-
lutions (with a stride of two) and Leaky ReLU activation functions.
We represent the primal skeleton as in Figure 3; however, it can be
thought of as six joints with multiple learned features each. Finally,
the decoder 𝑑 takes the primal skeleton as input and reconstructs
the full-body pose with Skeletal Unpooling, Temporal Upsampling,
and Skeletal Convolution (with a stride of one) operations:

Q̂G = 𝑑 (S,P) (6)

As we execute the skeletal convolutions with a stride of two in
the Dynamic Encoder, the temporal dimension is halved after each
block. Then, we use the Temporal Upsampling operation to linearly
upsample the frames by two, hence, restoring the initial length of

the animation. At the execution of each block 𝑖 , S𝑖 is added to the
convolution result to consider the static structure of the skeleton.
We found that enforcing the end-effectors’ position directly on

the pose synthesized by the generator using Forward Kinematics-
based (FK) losses [Pavllo et al. 2020, 2018] made the training process
more difficult, unstable, and unpredictable. Instead, by utilizing dual
quaternions in root space and the following Mean Squared Error
reconstruction loss we obtained the most favorable results:

L𝐷𝑄 = 𝑀𝑆𝐸

(
Q̂G,Q

)
(7)

Learned IK. The generator synthesizes high-quality and continu-
ous human poses. However, for certain use cases such as VR, precise
positioning of end-effectors may be necessary [Yun et al. 2023]. We
found that the generator’s convolutional-based architecture strug-
gles to preserve actual positions and rotations from the limited
input data QS, resulting in inaccuracies when positioning the end-
effectors even when FK-based losses [Pavllo et al. 2020, 2018] are
utilized, as shown in Section 7.2. To address this, we train a series
of feedforward neural networks, each specialized in a particular
body limb, to make slight adjustments to the limb’s pose. Figure 4
shows the differences between the pose synthesized by the genera-
tor before and after the learned IK stage. We employ IK networks
only for the arms and legs; we do not have a network for the head
end-effector as our skeleton only has two joints (neck and head)
and the generator already produces satisfactory results.

Each network takes as input the dynamic and static components
and the end-effector translation and rotation of the corresponding
limb. As a result, each network returns the modified pose for its
corresponding limb, for example, the left arm. All adjusted poses
are then combined and override the results given by the generator.
It is important to note that the learned IK solver never overrides
the spine. The results of the full approach is shown in Figure 5.
We add two losses L𝑆 and L𝑅𝑒𝑔 . The first loss guarantees precise
positioning of end-effectors, while the second ensures that the pose
generated by the generator is upheld. L𝑆 uses FK to compare the
positions and rotations with those of the end-effectors:

L𝑆 = 𝑀𝑆𝐸

(
𝐹𝐾 (Q), 𝐹𝐾 (Q̂IK)

)
(8)

where Q̂IK is the final pose after the execution of the learned IK
networks. Note that this loss is only computed over the joints re-
lated to the end-effectors of the limbs, i.e., hands and toes. When
two or more end-effectors are not within reaching bounds, the opti-
mization policy is implicitly learned by the generator. Subsequently,
as the learned IK operates on each limb independently, it makes
adjustments to each limb based on the output of the generator.

Next, we use a regularization loss that enforces the final pose to
be as close as possible to the one synthesized by the generator. This
loss is necessary because the learned IK subnetworks are unaware of
the full-body pose, and, thus may create unrealistic poses. Moreover,
it cannot guarantee continuity since it has no access to previous
poses. Thus, L𝑅𝑒𝑔 is needed to allow for minor adjustments while
maintaining the pose created by the generator:

L𝑅𝑒𝑔 = 𝑀𝑆𝐸
(
𝐹𝐾 (Q̂G), 𝐹𝐾 (Q̂IK)

)
(9)
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Fig. 4. The generator is often not able to accurately match the leaf joints with the end-effectors, which is resolved by the learned IK. The poses synthesized by
the generator are shown in blue, those corrected by the learned IK in yellow, while the sparse input data are in green.

Fig. 5. Motion generated by our full approach (yellow) compared to ground truth (green).

The final loss used to train the learned IK is a weighted com-
bination L𝑆 + _L𝑅𝑒𝑔 to control the tradeoff between end-effector
accuracy and pose quality. In our experiments we used _ = 0.1. Note
also that L𝑆 and L𝑅𝑒𝑔 are not computed over the same joints, L𝑆 is
computed for the end-effectors and L𝑅𝑒𝑔 for all non-end-effectors
joints.

Our system estimates dual quaternions for all joints, thus estimat-
ing both translation and rotation. Although dual quaternions aid the
network in understanding motion, when we animate the characters
we preserve the original skeleton offsets used for computing L𝑆
(not predicted ones).

5.3 Network Training
We implemented our system in PyTorch [Paszke et al. 2019] using
the AdamW optimizer [Loshchilov and Hutter 2019], with a batch
size of 256 and a learning rate of 10−4. For training, we used our
own motion capture database with approximately one million poses
at 60 frames per second (∼4.5 hours) and 9 different actors. Users
were captured using an Xsens Awinda motion capture system while
performing a series of activities such as locomotion, warm-up and
workout exercises, sitting, playing VR games, and dancing. We
ensured that right/left limbs are equally represented by mirroring
the animation sequences in the horizontal axis, thus resulting in two
million poses (∼9 hours). During training, each motion sequence
was split in windows of 64 frames with a stride of eight frames.
All components, both the generator and learned IK, are trained at
the same time in an end-to-end fashion. At each training iteration,
we optimize the parameters of the generator using the loss 𝐿𝐷𝑄
and then optimize the parameters of the learned IK while freezing
the parameters of the generator. For evaluation, we retrained our
system with the DanceDB [Aristidou et al. 2019] as explained in
Section 7.1. The training took around 13 hours for our database,
and 6 hours for the DanceDB, on a PC equipped with an Intel Core
i7-12700k CPU, 32GB of RAM and an NVIDIA GeForce RTX 3090
GPU.

Fig. 6. (Left) Sensor placement in a virtual reality setting: (1) head-mounted
display; (2 and 3) hand-held controllers; (4 and 5) foot trackers; (6) pelvis or
root tracker. (Right) Joints used to compute the offsets with the sensors.

6 VIRTUAL REALITY CONTROLLER
We used our system to animate a full-body avatar in VR from a
sparse set of sensors providing positional and rotational information.
Specifically, we used aHTCVIVE ProHead-MountedDisplay (HMD)
with two hand-held controllers and three HTCVIVE Trackers placed
on the feet and back (at hip level) as shown in Figure 6. These sensors
require at least one base station (laser projector) to track positional
and rotational information.

Recent studies [Winkler et al. 2022] have simulated sensor infor-
mation with respect to the body joints so that the neural network
can learn to generate poses. However, we noticed that there is con-
siderable variability in how users hold hand-held controllers and
place the trackers, which could lead to calibration difficulties when
assuming a fixed sensor placement. Instead, our architecture gets as
input the positions of the joints directly. Then, similar to the Walk-
In-Avatar approach [Ponton et al. 2022a], we have a calibration step
at the beginning of the application in which the avatar appears in
T-Pose, and we ask the user to enter the avatar and position them-
selves inside (see Figure 6). We assume that user dimensions are
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known so that bone lengths can be resized to match the user. Some
user dimensions can be automatically computed from the sparse
input while others are manually introduced, similarly to Ponton
et al. [2022a]. When ready, the user presses any button and our
method calculates the offsets between the sensors and their related
joints. We use this information, combined with the sensor’s posi-
tions and angles, as input to our network. An avatar animated in VR
with SparsePoser is shown in Figure 7; note that the visible offsets
between physical and virtual controllers are due to the pass-through
mode distortion.

At run-time, we keep track of the last 𝑇 − 1 frames (in our exper-
iments we use 𝑇 = 64), which, together with the current frame, we
use to construct Q ∈ R𝑇× 𝐽 ×8. We avoid using future frames when
implementing our system for virtual reality to minimize latency,
which is crucial to maintain immersion. However, as shown in Sec-
tion 7.1, incorporating access to future information into the pose
prediction process can improve the quality of the pose, which may
be required for certain applications such as motion capture. The
displacement D ∈ R𝑇×3 is extracted by the difference in positions of
the root sensor. Finally, the static component S ∈ R𝐽 ×3 is retrieved
directly from a skeleton with the user’s dimensions. The output of
the static encoder can be fixed for a given subject.

After the generator is executed, it outputs a list of poses (of length
𝑇 ), of which only the last one is provided to the learned IK part. The
final pose adjusted by the learned IK is used to animate the VR avatar.
Finally, we position the avatar in the virtual world using the root
sensor position plus the offset computed during the Walk-In-Avatar
step. At first, we attempted to predict the movement of the root
directly from the network but we encountered issues with positional
drift and sliding of the foot. As a result, we opted to enforce the root
sensor position and let the network adjust the pose accordingly.

Fig. 7. A virtual skeleton rendered over the user as captured by the HMD
camera. Note that the visible offsets between physical and virtual controllers
are due to the pass-through mode distortion.

7 EXPERIMENTS AND EVALUATION
In this section, we compare ourmethodwith previous work, perform
an ablation study to evaluate the main components, and assess the

use of the systemwith different user dimensions, i.e., user height and
proportions. We performed all the evaluations in real time, exactly
mimicking real-world use.

7.1 Comparison
To the best of our knowledge, there are no data-driven methods for
reconstructing full-body poses from a sparse set of sensors providing
positional and rotational information. Nonetheless, there are some
methods able to synthesize plausible poses from three 6-DoF sensors
(HMD and two hand-held controllers). The state-of-the-art method
is AvatarPoser (AP) [Jiang et al. 2022a] which employs a Transformer
model to generate full-body poses and uses an optimization-based
IK method to refine the arms. We extended the implementation of
AP to work with six 6-DoF sensors to enable a fair comparison with
our approach. We will refer to our extended implementation of AP
as the Extended AvatarPoser (EAP). Specifically, we modified the
input layer of the Transformer model while maintaining the training
procedure and the remainder of the code.

We also evaluate our method against Final IK (FIK) [RootMotion
2017], which is a state-of-the-art IK method for animating full-body
VR avatars when using a sparse set of 6 degrees of freedom (DoF)
trackers. Finally, we compare with other state-of-the-art data-driven
methods that reconstruct full-body poses from IMU sensors, such as:
TransPose (TP) [Yi et al. 2021], and Physical Inertial Poser (PIP) [Yi
et al. 2022]. Although comparisons with AP and FIK enable us to
evaluate the quality of our method with 6-DoF sensors, it is essen-
tial to compare with IMU-based methods to gain a comprehensive
understanding of our approach. This is because the use of 6-DoF
sensors does not necessarily ensure superiority over IMU-based
methods. Additionally, comparing with the wider body of literature
on full-body reconstruction provides a broader context for assessing
our overall performance gains.
As the generator is convolution-based, we use a window of 64

frames for real-time predictions. When predicting a new pose, we fill
this window with past frames of sparse data, the current data, and,
optionally, future data. When latency is not an issue, e.g., to generate
poses offline from an already captured sequence, we can allow the
system to have access to some future information to improve quality.
Our system, labeled asOurs-7 in Table 1, uses a window of 64 frames,
including 56 past frames, the current frame, and 7 future frames.
Similarly,Ours-0 uses 63 past frames, the current frame, but no future
frames, resulting in no added latency. In comparison, TransPose
uses 5 future frames, while AP, Final IK, and PIP do not use future
information.

We conduct a qualitative and quantitative evaluation of ourmethod
against EAP, AP, Final IK, TransPose, and PIP. Please refer to the
supplementary video for an animated version of our results.

Qualitative. In order to provide a visual comparison of ourmethod
with related work, selected frames from the video are shown in
Figure 8. In this experiment, we simultaneously collected positional,
rotational, and raw IMU data (accelerations and orientations) using
the HTC VIVE system and six IMUs from the Xsens Awinda motion
capture system. To make it easier to visually compare the poses, the
root is fixed in the generated poses.
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Both TransPose and PIP generate natural human-like poses in
most cases, however, they face challenges when dealing with poses
that involve a certain level of ambiguity from the sparse input; for
example, when the user crosses two end-effectors, such as hands or
feet, or when the user is crouching or lying on the ground. Over-
all, the movement reconstructed by these methods is often overly
smoothed and fails to precisely position the end-effectors. In con-
trast, Final IK is able to precisely match the end-effectors but fails
to reconstruct the real orientations of the joints. For instance, as
seen in the fourth row of Figure 8, the position of the right foot is
correct, but the lower leg appears parallel to the ground, differing
from the ground truth. In addition, poses often appear too stiff and
robotic. Extended AvatarPoser performance lies within an interme-
diate range, as it generates natural-looking poses in most scenarios.
However, its limitations become apparent when it fails to accurately
position end-effectors in some instances, resulting in a smoothed
pose. This is particularly evident in situations where the pose is am-
biguous, as demonstrated in the third row of Figure 8. Our method,
in contrast, is able to position the end-effectors accurately, similar
to Final IK, while also maintaining the natural appearance of the
poses and correctly matching the joint rotations when compared
to the ground truth. We believe our method produces more accu-
rate results due to the two-stage approach, which combines the
strengths of a convolutional-based pose generator and a learned IK
for accurate positioning.

Quantitative. We test ourmethod using two datasets fromAMASS
[Mahmood et al. 2019] that have not been used for training in the
learning-based methods: HUMAN4D [Chatzitofis et al. 2020] and
SOMA [Ghorbani and Black 2021], which contain a variety of human
activities captured by commercial marker-based motion capture
systems. We chose AMASS as it is a well-known human motion
database and is compatible with SMPL [Loper et al. 2015], which
is required by the code provided by the authors of AvatarPoser,
TransPose, and PIP. In line with previous works that have trained
their networks using multiple datasets from AMASS, our system is
trained using DanceDB [Aristidou et al. 2019], which is also part of
AMASS. We also retrained AvatarPoser with the DanceDB. Because
our approach relies on joint information as input, there is no need
to synthesize VR trackers. Instead, we directly use the orientations
from the databases and apply Forward Kinematics to obtain the
positions of the end-effectors.

Similar to previous work [Jiang et al. 2022a,b; Yi et al. 2022, 2021],
we evaluate the performance of our method using different metrics:

• Positional Error (Pos) measures the mean Euclidean distance
error of all joints in centimeters. The root position is aligned
with the ground truth data.

• Rotational Error (Rot) measures the mean global rotation error
of all joints in degrees. We compute the distance between two
rotations represented by rotation matrices 𝑅0 and 𝑅1 as the
angle of the difference rotation represented by the rotation
matrix 𝐷 = 𝑅0𝑅𝑇1 .

• End Effector Positional Error (EE Pos) measures the mean
Euclidean distance error of end-effectors (excluding the root)
in centimeters. The root position is aligned with the ground
truth data.

TransPose PIP Extended AP Final IK Ground Truth Ours-0

Fig. 8. Qualitative comparisons between TransPose, PIP, Extended Avatar-
Poser, FinalIK, and our method with no added latency (Ours-0). Poses were
recorded using HTC VIVE and six IMUs from the Xsens Awinda mocap.

• Root Error (Root) measures the mean Euclidean distance error
of the root joint in centimeters.

• Jitter measures the mean jerk of all joints in ten squared me-
ters per second cubed. Jerk is the third derivative of position
with respect to time, i.e., the rate of change of the accelera-
tion [Flash and Hogan 1985]. We use it as a measure of the
smoothness of the motion.

• Velocity Error (Vel) measures the mean velocity error of all
joints in centimeters per second. The velocity is computed by
forward finite differences.

We group these metrics into three main categories: pose quality,
end-effector accuracy, and smoothness. To evaluate the overall pose
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Table 1. Real time evaluation on HUMAN4D [Chatzitofis et al. 2020] and SOMA [Ghorbani and Black 2021]. We train our method with the DanceDB [Aristidou
et al. 2019] and evaluate it with no added latency (Ours-0) and with access to 7 future frames (Ours-7). We compare it with state-of-the-art methods using
IMU sparse input (TransPose (TP) [Yi et al. 2021] and Physical Inertial Poser (PIP) [Yi et al. 2022]) and 6-DoF trackers (Extended AvatarPoser (EAP) from the
original paper [Jiang et al. 2022a], Final IK (FIK) [RootMotion 2017]). The table shows the mean and standard deviation (in parenthesis) of the Positional Error
(Pos), Rotational Error (Rot), End Effector Positional Error (EE Pos), Root Error (Root), Jitter, and Velocity Error (Vel).

HUMAN4D SOMA
Pose Quality EE Accuracy Smoothness Pose Quality EE Accuracy Smoothness

Pos Rot EE Pos Root Jitter Vel Pos Rot EE Pos Root Jitter Vel
(𝑐𝑚) (𝑑𝑒𝑔) (𝑐𝑚) (𝑐𝑚) (102𝑚/𝑠3) (𝑐𝑚/𝑠) (𝑐𝑚) (𝑑𝑒𝑔) (𝑐𝑚) (𝑐𝑚) (102𝑚/𝑠3) (𝑐𝑚/𝑠)

EAP 5.34(5.06) 10.3(9.21) 7.82(5.30) 0.00(0.00) 5.45(18.9) 11.0(23.6) 5.64(5.23) 9.31(8.02) 8.86(5.41) 0.00(0.00) 5.57(18.9) 12.5(24.5)
FIK 3.62(5.22) 11.7(19.2) 1.11(1.37) 1.03(0.98) 2.99(15.0) 5.91(21.4) 3.01(4.07) 11.4(19.3) 1.22(1.07) 1.36(0.68) 3.49(15.2) 6.45(21.0)
TP 6.08(5.96) 7.19(8.33) 8.77(6.05) 27.5(17.8) 3.70(6.16) 17.4(26.3) 6.14(6.12) 6.82(7.42) 9.04(6.03) 38.0(22.7) 4.17(7.33) 19.2(27.3)
PIP 6.61(6.73) 7.94(8.91) 9.62(6.84) 22.1(10.8) 1.19(3.76) 12.7(20.0) 6.06(5.85) 7.09(7.53) 9.10(5.88) 33.1(18.2) 1.34(4.41) 13.9(19.9)
Ours-0 2.90(2.75) 5.84(6.00) 3.51(2.64) 0.00(0.00) 3.30(5.37) 9.93(13.8) 2.72(2.57) 5.72(5.70) 3.36(2.42) 0.00(0.00) 3.99(7.34) 11.8(16.2)
Ours-7 2.49(2.40) 4.98(5.04) 2.81(2.12) 0.00(0.00) 2.83(5.05) 7.00(9.97) 2.22(2.13) 4.62(4.64) 2.49(1.82) 0.00(0.00) 3.39(7.00) 8.28(11.6)

Table 2. Real time evaluation on HUMAN4D [Chatzitofis et al. 2020] and SOMA [Ghorbani and Black 2021]. The table compares the same metrics as Table 1,
but only considers upper-body joints to ensure a fair comparison with original AvatarPoser implementation (AP), which uses only three sensors.

HUMAN4D SOMA
Pose Quality EE Accuracy Smoothness Pose Quality EE Accuracy Smoothness

Pos Rot EE Pos Jitter Vel Pos Rot EE Pos Jitter Vel
(𝑐𝑚) (𝑑𝑒𝑔) (𝑐𝑚) (102𝑚/𝑠3) (𝑐𝑚/𝑠) (𝑐𝑚) (𝑑𝑒𝑔) (𝑐𝑚) (102𝑚/𝑠3) (𝑐𝑚/𝑠)

AP 4.15(3.57) 10.0(9.07) 6.63(3.59) 3.58(9.89) 8.17(13.9) 3.98(3.59) 8.10(7.04) 6.68(3.37) 3.75(10.4) 8.79(14.1)
Ours-0 3.09(2.81) 6.53(6.54) 3.96(2.67) 2.57(4.03) 8.96(12.2) 2.83(2.60) 6.29(6.17) 3.77(2.46) 2.98(5.19) 10.1(13.2)
Ours-7 2.71(2.45) 5.59(5.52) 3.24(2.13) 2.11(3.68) 6.31(8.82) 2.38(2.18) 5.13(5.08) 2.90(1.86) 2.40(4.76) 7.12(9.46)

quality of the generated data, we use the Positional Error and Rota-
tional Error that measure the joint positions and rotations accuracy,
respectively, when the root is aligned with the ground truth data.
To evaluate end-effector accuracy, we distinguish between the char-
acter’s placement in the world (Root Error) and the positions of the
remaining end-effectors (such as the head, hands, and toes) when
the root position is aligned. Lastly, motion smoothness is assessed
using Jitter and Velocity Error.

Table 1 presents the comparison results. The goal of our proposed
method is to achieve optimal pose quality while also maximizing
end-effector accuracy. Reconstructing full-body poses from sparse
data is an under-constrained problem, therefore, a balance must
be struck between the two metrics to achieve optimal results. Our
method balances the competing demands of high-quality poses and
accurate end-effector positioning without negatively impacting the
overall human-like appearance of the pose.
It can be observed that Final IK, being an inverse kinematics

method, effectively tracks the end-effectors but struggles in synthe-
sizing natural poses, and often introduces jittering artifacts with
abrupt changes in direction. Conversely, methods such as TransPose
and PIP, since they use IMU sensors, can achieve high overall pose
quality, but they introduce Positional Error and low end-effector
accuracy. Our model achieves the highest scores for pose quality,
regardless of whether future frames are used or not. Additionally,
our method greatly improves the accuracy of end-effectors when
compared to other data-driven methods, achieving results similar
to Final IK, which is specifically designed to minimize the distance
between end-effectors and the target. Furthermore, our model out-
performs other methods in Root Error as we do not predict the root
position, but constrain it based on the root sensor and let the net-
works adjust the pose. This aspect is crucial for self-avatar animation

as it keeps the user correctly positioned with the virtual avatar. In
terms of smoothness, PIP has the best results in Jitter but the worst
in End-Effector Positional Error, which suggests that they are miss-
ing the high-frequency details of the movement. In contrast, our
method provides a good balance as it obtains the second-best scores
in Jitter and Velocity Error while maintaining high end-effector ac-
curacy with a smaller variance. This suggests fewer large changes
in pose between frames and fewer jittering artifacts, resulting in
less noticeable popping artifacts in the animation.
Finally, our method outperforms Extended AvatarPoser across

all metrics (except for Root Error, since both methods introduce no
root error). We consider AvatarPoser as our baseline since it also
uses 6-DoF trackers, but employs the well-established Transformer
architecture. Hence, the performance of our approach is not solely
attributable to the use of 6-DoF trackers. As we extended the input
of AvatarPoser’s Transformer model to include six 6-DoF trackers
instead of the original three, to further validate our findings, we
also present in Table 2 a comparison of the same metrics but only
for the upper-body joints synthesized with the original AvatarPoser
implementation. Remarkably, even when focusing solely on the
upper-body joints, our approach still clearly outperforms Avatar-
Poser.
We attribute the superior performance of our approach com-

pared to the Extended Avatar Poser to the specialized architectural
composition of our networks. As opposed to Transformers, origi-
nally crafted for natural language processing, our method deploys
skeleton-aware operations intrinsically designed to accommodate
the hierarchical structure of the human skeleton. In addition, our
dual-stage strategy employs a time-aware network using convolu-
tions, enabling them to learn a comprehensive representation of
humanmotion, at the expense of losing some high-frequencymotion
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details. Nonetheless, our method can recover the high-frequency
details through the utilization of the learned IK. Crucially, we posit
that our learned IK, trained in an end-to-end fashion with the gen-
erator, is capable of learning an optimization policy that more accu-
rately replicates natural human motion, surpassing the traditional
optimization-based IK employed in AvatarPoser.

7.2 Ablation Study
As outlined in the previous section, our goal is to achieve both
optimal pose quality and maximum end-effector accuracy. In this
section, we describe an ablation study to examine the impact of each
of the components of our network on the balance between pose
quality and end-effector accuracy. We trained and evaluated our
system on the same datasets as in Section 7.1. For a fair comparison,
all experiments in this section had access to the 7 future frames,
matching the conditions of the Ours-7 version, which all ablation
tests are compared against. All results are listed in Table 3; please
refer to the supplementary materials for an animated version of
these results.
In the initial experiment, we assess the effect of using the gen-

erator alone, without the learned IK. We compared two versions:
first (No Learned IK in Table 3), the learned IK is not used and
the rest of the pipeline remains intact; second (Generator L𝑆 in
Table 3), a Forward Kinematics loss similar to L𝑆 was added to
compare the pose generated by the generator and the ground truth,
𝑀𝑆𝐸

(
𝐹𝐾 (Q), 𝐹𝐾 (Q̂G)

)
.

In this case, the only metric that showed improvement was jitter.
However, it was observed that the reconstructed motion failed to
maintain high-frequency details, resulting in lower performance in
other metrics. In the second case, when the FK-based loss is added
to the output of the generator, we observed a slight decrease in
rotational error, but a notable increase in both end-effector positional
error and overall positional error when compared to the case of
using the learned IK component. Thus, these findings suggest that
the inclusion of the learned IK component significantly improves
the end-effector accuracy while preserving the high-quality poses
synthesized by the generator. It is worth noting that, by improving
the end-effector positions and maintaining a low rotational error,
the overall positional error is decreased as the limbs are correctly
positioned.

Since the learned IK operates on each limb independently, it lacks
the ability to take into account the overall body pose. Therefore,
when omitting the L𝑅𝑒𝑔 loss term (No L𝑅𝑒𝑔 in Table 3), while there
may be a slight improvement in end-effector accuracy, a significant
decline in pose quality is observed. By looking at the generated
poses, it can be seen how the limbs are attempting to reach the
end-effectors at the cost of synthesizing non-human-like motion.
As such, the inclusion of the L𝑅𝑒𝑔 loss term leverages the strengths
of the generator with the learned IK, resulting in improved pose
quality and end-effector accuracy.
Additionally, to evaluate the impact of the skeletal-aware oper-

ations, we define a baseline method (No Skeletal Op. in Table 3).
Specifically, we replaced the previously-used skeletal convolutions
with conventional one-dimensional convolutions and modified the
skeletal unpooling to allow unpooled joints to receive information

from all joints instead of just neighboring ones. Not accounting for
the joint adjacency resulted in a significant decline in performance
across all metrics. By inspecting the visual results, we believe that al-
lowing convolutions to have access to all joints produces an average
effect that results in an overly smooth motion.

7.3 Pose Representation
In our method, we use dual quaternions, as proposed by Andreou
et al. [2022], as our pose representation because they offer a unified
and concise representation that includes both rotation and transla-
tion information. Through our experimentation, we have discovered
that utilizing dual quaternions results in superior reconstruction of
poses and continuity compared to other commonly used pose rep-
resentations such as quaternions or ortho6D [Zhou et al. 2019]. To
further evaluate the effectiveness of our method, we have modified it
to accept both quaternions and ortho6D as pose representations, and
conducted comparisons with our dual quaternions implementation.
We modified both the input and output of the networks. For a fair
comparison, we have also added root-space translation information
similar to that encoded in the dual quaternions, but using 3D vectors
instead.

The results show that quaternions and ortho6D yield similar out-
comes in terms of pose quality (ortho6D obtained about 5% lower in
Rotational Error). In contrast, the use of dual quaternions leads to
approximately ∼50% higher pose quality and ∼60% lower End Effec-
tor Positional Error. Furthermore, dual quaternions exhibit slightly
better results in smoothness.

7.4 User Dimensions Evaluation
The ability to adjust poses for different users without requiring
retraining of the underlying networks, taking into account factors
such as height and body shape, is crucial for motion capture and
creating a more personalized experience in virtual reality. Unlike
previous approaches that use IMU sensors and rely on a fixed skele-
ton during training, our method includes a Static Encoder to learn
skeletal features, and by using dual quaternions as pose representa-
tion, the network can adapt to a wide range of proportions.
To evaluate the effectiveness of our method in capturing the

motion of users with different body shapes and sizes, we conducted
an experiment using our motion capture dataset collected with an
Xsens device. For this purpose, we retrained the system omitting the
motion data from two users (about 30 minutes of data per user) with
distinct physical characteristics (height: 162 cm and 184 cm; arm
span: 151 cm and 187 cm; hip height: 90 cm and 97 cm), and used it
to evaluate the accuracy of their predicted poses. Our method was
able to accurately reconstruct the motion from both users, with a
difference of about ∼20% in Positional Error, ∼15% in end-effectors’
Positional Error and ∼5% in Rotational Error. Figure 9 illustrates the
pose reconstruction for two users with different body proportions
using our system. However, we expect that these differences will
decrease as we include a larger variety of users in the training set,
as the current dataset only contains data from seven different users.
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Table 3. Ablation study on HUMAN4D and SOMA datasets. We trained our method with DanceDB in all experiments. The first two experiments (No Learned
IK; Generator L𝑆 ) do not incorporate the learned IK component, but the second adds a FK-based loss to the output of the generator. The third experiment
(No L𝑅𝑒𝑔) removes the L𝑅𝑒𝑔 loss term. The last experiment defines the baseline method (No Skeletal Op.), we replace all skeleton-aware operations with
standard one-dimensional convolutions.

HUMAN4D SOMA
Pose Quality EE Accuracy Smoothness Pose Quality EE Accuracy Smoothness

Pos Rot EE Pos Jitter Vel Pos Rot EE Pos Jitter Vel
(𝑐𝑚) (𝑑𝑒𝑔) (𝑐𝑚) (102𝑐𝑚/𝑠3) (𝑐𝑚/𝑠) (𝑐𝑚) (𝑑𝑒𝑔) (𝑐𝑚) (102𝑐𝑚/𝑠3) (𝑐𝑚/𝑠)

No Learned IK 3.83(3.94) 5.47(5.56) 6.39(4.75) 1.60(2.85) 9.75(15.4) 3.49(3.61) 5.08(5.15) 5.83(4.31) 2.69(4.00) 11.7(18.1)
Generator L𝑆 3.37(3.50) 4.73(4.83) 5.16(4.06) 2.14(2.92) 9.17(14.2) 3.01(3.09) 4.29(4.38) 4.70(3.51) 2.70(3.65) 10.7(16.1)
No L𝑅𝑒𝑔 3.49(3.65) 9.66(10.3) 2.19(1.75) 3.04(5.51) 7.55(11.2) 3.04(3.21) 8.85(9.69) 1.99(1.55) 3.53(7.60) 9.11(13.6)
No Skeletal Op. 14.0(13.7) 24.1(21.3) 19.9(16.6) 6.94(36.4) 23.9(60.9) 13.2(13.4) 27.2(24.3) 20.3(17.1) 13.4(72.5) 34.0(99.9)
Ours-7 2.49(2.40) 4.98(5.04) 2.81(2.12) 2.83(5.05) 7.00(9.97) 2.22(2.13) 4.62(4.64) 2.49(1.82) 3.39(7.00) 8.28(11.6)

Fig. 9. Pose reconstruction for two users of different body proportions (orange and pink, respectively: height: 162 cm and 184 cm; arm span: 151 cm and
187 cm; hip height: 90 cm and 97 cm) while using a VR application.

7.5 Limitations
The limitations of our method include its reliance on the quality
of the training dataset. As with previous data-driven techniques,
our approach may inadvertently learn from inaccuracies or artifacts
in the ground truth data or have difficulty generalizing to sparse
input that it has not been sufficiently exposed to, such as uncommon
wrist rotations. In addition, SparsePoser works best when the input
data is within the range of typical human poses. However, if one of
the tracking devices is malfunctioning or the input data does not
correspond to a human skeleton, our method may fail to produce a
plausible pose.
Furthermore, our method demands a very specific setup. The

system’s functionality could be enhanced by enabling it to work
with varying numbers of sensors (e.g., HMD and two hand-held
controllers) or degrees of freedom (e.g., sensors providing only po-
sitional information), which would increase its applicability across
different scenarios. Currently, it is necessary to tailor the user’s
skeleton to maximize the fidelity of the generated motion. By incor-
porating simpler high-level attributes like height and width instead
of each bone length, the usability of our method could be signifi-
cantly enhanced.
Another limitation is the focus on the skeleton without consid-

ering the user’s physical body or surrounding surfaces. As such, it
may unintentionally synthesize self-penetrations or similarly unre-
alistic outcomes. Addressing these considerations would increase
the flexibility and real-world adaptability of our method.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we have presented SparsePoser, a new learning-based
architecture to synthesize high-quality human motion from sparse
input. Our network generates full-body animations from just six
trackers, placed on the pelvis (root) and the five endpoints of the
human skeleton (head, hands, and feet).
The comparisons with competing approaches demonstrate that

SparsePoser generates animations whose pose quality clearly out-
performs state-of-the-art motion reconstruction methods; as our
method provides the lowest positional and rotational errors (lowest
error mean and lowest error variance). We have shown that such
pose quality does not come at the price of end-effector accuracy.
In fact, our method beats non-IK methods in terms of end-effector
placement.
The key components of our approach are a convolution-based

generator that synthesizes high-quality animations, and learned IK
networks that slightly adjust the generated poses to fit the trackers’
positions. The generator is an autoencoder that learns the human
motion features from the sparse motion input, ensuring smooth
animations. The IK adjustments are carried out by feed-forward
neural networks, each one specialized in a particular body limb.

The ablation study has revealed the individual contribution of the
main ingredients of SparsePoser, including the role of skeletal-aware
vs. 1D convolutions, the encoding of the pose through dual quater-
nions instead of ordinary quaternions, the learned-IK adjustment,
as well as the different loss functions.
Since SparsePoser runs in real-time and is able to work with no

future frames, it is suitable for those applications (including VR)
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where low latency is critical. The Ours-0 version has an end-to-end
latency similar to state-of-the-art IK-based approaches, as shown in
the supplementary video. Furthermore, the accurate positioning of
the end-effectors makes it ideal for applications where the avatars
interact with other objects, as well as for VR self-avatars.
Although we tested SparsePoser on VR hardware, its applica-

tions go beyond VR, as some companies have just started to provide
standalone low-cost 6-tracker systems (e.g., Sony Mocopi). Sparse-
Poser can be used as a cheap motion capture method for varied
applications.

In future work, we plan to evaluate and possibly extend our archi-
tecture to deal with sparse data from a different number of trackers
(either fewer trackers for even more widespread use, or more track-
ers to compete with professional mocap systems). We wish to extend
our architecture to cope with noisy inputs (e.g., high-latency input
from remote avatars in social VR). Finally, we also plan to explore
generative models to handle different sensor configurations.

Code and data. The complete source code, trained model, anima-
tion databases, and supplementary material used in this paper can
be found at https://upc-virvig.github.io/SparsePoser.
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