
In this poster we present a method to create a hierarchical representation based on a multilevel k-way partitioning

algorithm (MLkP), annotated with sub-paths that can be accessed online by our Hierarchical NavMesh Path-finding

algorithm (HNA*). The algorithm greatly benefits from searching in graphs with a much smaller number of cells, thus

performing up to 7.7 times faster than traditional A* over the initial NavMesh

Hierarchical Representation

Hierarchical Path-Finding for

Navigation Meshes (HNA*)
C. Fuentes, N. Pelechano

Universitat Politècnica de Catalunya

Path Finding

Based on: multilevel k-way partitioning algorithm

(MLkP)

Intra-edges: store optimal paths between portal edges

Inter-edges: connect nodes of the partition

 Results:

The average cost of calculating several paths using HNA* in NavMeshes of different sizes

has been computed with an intel core i7-4770 CPU@3.5Gz, 16GB RAM.

We have used up to three levels for the hierarchy and increasing values of merged polygons

between levels (µ). For the example NavMeshes we obtained the following speed ups:

(a) 7.7x for L1 and µ = [15; 20], (b) 3.9x for L1 and µ = 15, and (c) 4.0x for L2 and µ = 6.

 The current bottleneck is the cost of connecting S and G using A* which can escalate as the partition

size increases.

Hierarchical subdivision of a simple map, with µ=5 and 3 levels. Red lines in

(c) represent inter-edges and yellow lines in (b) and (c) represent intra-edges.

Partitions are shown with black (a), blue (b) and red (c) separation lines

respectively. Level 0=76 nodes (a), Level 1=12 nodes (b), Level 2=3 nodes (c).

Graph partition with:

 good balance of cells

 small number of edges

between partitions

HNA* search:
1. Insert and connect start

(S) and goal (G)

2. Search path at the

highest level

3. Extract intra-edges

4. Delete temporal nodes

nodes = (a) 3908, (b) 5515, (c) 12666

a) b)

