
EUROGRAPHICS 2022/ N. Pelechano and D. Vanderhaeghe Short Paper

AvatarGo: Plug and Play self-avatars for VR

Jose Luis Ponton1 , Eva Monclús1 and Nuria Pelechano1

1Universitat Politècnica de Catalunya, Spain

Figure 1: Set up for computing the exact offsets between the trackers and the avatar’s joints to obtain a better match of poses and movement,
using only one HMD, two controllers and three trackers.

Abstract
The use of self-avatars in a VR application can enhance presence and embodiment which leads to a better user experience.
In collaborative VR it also facilitates non-verbal communication. Currently it is possible to track a few body parts with cheap
trackers and then apply IK methods to animate a character. However, the correspondence between trackers and avatar joints is
typically fixed ad-hoc, which is enough to animate the avatar, but causes noticeable mismatches between the user’s body pose
and the avatar. In this paper we present a fast and easy to set up system to compute exact offset values, unique for each user,
which leads to improvements in avatar movement. Our user study shows that the Sense of Embodiment increased significantly
when using exact offsets as opposed to fixed ones. We also allowed the users to see a semitransparent avatar overlaid with their
real body to objectively evaluate the quality of the avatar movement with our technique.

CCS Concepts
• Human-centered computing → User models; Virtual reality;

1. Introduction

The recent pandemic has forced most of the world to work remotely
using video conferencing. While this technology allows us to see
each other, and facilitates non-verbal communication, the 2D na-
ture interaction is a limiting factor. A widely shared vision for real
collaboration is based on immersive virtual reality (IVR). Several
users wearing Head Mounted Displays (HMD) should be able to
discuss complex 3D data in a natural manner while sharing the vir-
tual space. This level of collaboration requires the users to be rep-
resented with self-avatars that accurately follow their movements.
Areas such as architecture, medicine or teaching, could highly ben-
efit from having such enhanced communication through gestures,
pointing and interacting with 3D models and with each other. In
order to bring this technology main stream, it is essential to facili-
tate ready to use avatars for any VR application. Virtual humanoids
can be created using expensive 3D scanners or tools that start from

a standard avatar model and allow the user to modify its features
through a GUI (e.g: Autodesk Character Generator, MakeHuman,
or MetaHuman). Despite all the recent work to ease the process of
generating virtual humanoids, the main difficulty is still to bring
these avatars to any IVR application and have the user rapidly set
them up and be ready for animation using a few low cost trackers.

We present AvatarGo, self-avatars ready to be incorporated in
any VR application with a low cost set-up consisting of a HMD, 2
controllers and 3 trackers. Our system takes the user through a sim-
ple and quick set up that scales an avatar and computes the exact
offsets between the trackers and the avatar’s joints to provide high
fidelity movements. It simplifies the set up and initiation of track-
ers, the pairing between trackers and end effectors of the avatar, and
it naturally adapts the avatars’ hands to the controllers. The user can
easily walk into his/her own avatar and with just a few steps, have
the avatar accurately following his/her movements.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://orcid.org/0000-0001-6576-4528
https://orcid.org/0000-0002-9645-0510
https://orcid.org/0000-0002-1437-245X


Jose Luis Ponton & Eva Monclús & Nuria Pelechano / AvatarGo: Plug and Play self-avatars for VR

2. Related Work

When using a HMD, users cannot see their real bodies. A virtual
body can replace the participant’s body and if synchronized with
the user movement, can induce full-body illusion. This, in turn, en-
hances the exploration and interaction capabilities of VR [GFL17].
The Sense of Embodiment (SoE) presented in [KGS12] is the feel-
ing of being inside, controlling, and having a virtual body. It has
three sub-components: Sense of Self-Location (sensation of being
inside the virtual body), Sense of Agency (sensation of having con-
trol over the virtual body), and Sense of Ownership (sensation of the
virtual body being one’s body). When using avatars in collaborative
VR, even a simple representation such as spheres with eyes to in-
dicate the head orientation [ABB∗18], or an upper body cartoonish
avatar with floating hands can improve non-verbal communication.
However, full-body avatars can help users to perform cooperative
tasks more accurately and quickly [PS17], and improving anima-
tions perceptually by, for example, handling self-contacts can have
an impact on embodiment [BDH∗18].

Animating a self-avatar could be done from an ego centric view
using fish-eye cameras [XCZ∗19] as long as the body is visible
from the camera. HMDs typically work with trackers that can be
used to animate a self-avatar using IK solutions [ALCS18], such as
IKinema or FinalIK. However, from our experience, previous solu-
tions are not simple to include in any VR project, and suffer from
many problems with IDs and orientation matrices. Also, assump-
tions are made regarding the offsets between trackers and joints
that lead to unnatural poses due to the lack of accuracy between the
user’s body and the avatar. To improve the results, the user has to
manually input information or move around trackers through a time
consuming and error prone tweaking process.

3. Self-Avatar construction

3.1. Hardware setup

The system requires one HMD compatible with SteamVR, such as
HTC VIVE, two hand controllers and three HTC VIVE Trackers
(placed as shown in Figure 1 left). Two trackers are placed on the
feet and define the ankles’ position, as well as foot orientation. The
third tracker defines the position of the root, and it is placed on the
lower back to minimize the distance between the tracker and the
avatar’s root joint. We recommend using straps as tight as possible
for all three trackers to avoid jittering. The next step consists of
finding an exact correspondence between each tracker and the body
joint that will be animated following the trackers input.

3.2. Walk-In-Avatar step

Users can select any humanoid-like avatar imported in FBX format
to Unity. After putting on the HMD, users have to stand in T-Pose
facing a specific direction and press the trigger button of any con-
troller to start the calibration process. The calibration, consists of
fitting a plane through the location of all tracking devices, to then
automatically identify each tracker’s role based on their relative lo-
cation on the plane.

The HMD height is stored as the user’s eye height and used to
scale the avatar uniformly. Then the avatar is rendered in T-pose in

the center of the scene facing a virtual mirror and with the feet cor-
rectly located on the floor. The user has to walk into the avatar,
and find a good alignment between his/her body and the avatar
with the help of the virtual mirror. While performing this step, the
user can see the avatar and all the tracking devices located on the
user’s body, therefore the task consists of simply positioning the
feet trackers over the avatar’s feet, the back tracker on the avatar’s
lower back, and centering the HMD with the avatar’s head. Once
this is done, the user presses a trigger to activate the next step.

3.3. Computing exact offsets

This is a key step, because any mismatch will lead to incorrect po-
sitioning of limbs during animation regardless of the IK method
used. For example, simply using the back tracker as a root position
will give problems with the avatar root appearing a few centimeters
behind the user, and with the legs bent if the avatar’s legs are longer
than the user as shown in Figure 2, or floating otherwise.

Figure 2: A user standing up (left) next to an avatar of user
height but longer legs. If exact offsets are computed the avatar pose
matches the user (middle). If a fixed offset is assigned between the
root joint and the back tracker, the legs appear bent (right).

Each joint has specific limitations and thus needs its own com-
putation to achieve the most accurate animation later on. Therefore,
we need to store the initial displacement and rotation between each
tracker and the corresponding joint (end effector) that will be used
later by the IK to animate the avatar.

Root and feet. We extract 3 displacements between each tracker
Ti, and its corresponding joint Ji, where i ∈ {root, right_ f oot,
le f t_ f oot}. For clarity, we remove the subindex i in all equations,
since for each body part, i would be replaced in all J and T of
the equations, by the same name corresponding to that body part.
While the user is standing in T-pose inside the avatar, we extract
the following variables (initiation step, t = 0):

• pt(T ): position of the tracking device T .
• pt(J): position of the joint J.
• vt(T J): vector from the tracker position pt(T ) to the avatar’s

corresponding joint position pt(J).
• Rt(T ): tracking device’s T rotation.
• Rt(J): joint J rotation.

Head and back. To position correctly the avatar’s head and bend
the avatar’s back following the head position, we need to store the
vector that joins the initial root position with the center of the head:

w0 = p0(Thead)−p0(Troot) (1)

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Jose Luis Ponton & Eva Monclús & Nuria Pelechano / AvatarGo: Plug and Play self-avatars for VR

3.4. Avatar movement

Unity’s built-in IK was used for the full-body motion due to its
versatility and easy-to-use setup. End effectors are defined for the
IK, at the wrists and ankles. However it is necessary to also in-
clude control for the root and head position, as this is not taken into
account by default. Therefore we now describe how each joint is
computed in real time based on the trackers’ movement.

Root and feet. The position of the end effector pt(J) is com-
puted in real time using the initial vector offset between the tracker
and the joint, v0(T J), the rotation computed at the initiation step,
R0(T ), and the current rotation of the tracker, Rt(T ):

pt(J) = pt(T )+Rt(T )R0(T )
−1v0(T J) (2)

The current rotation for the end effector (i.e., the target rotation for
the joint) is computed as:

Rt(J) = Rt(T )R0(T )
−1R0(J) (3)

This ensures that the root and ankle joints follow the trackers
movement and rotations correctly, regardless of the avatar leg size
(thanks to the exact offsets, v0(T J), which are uniquely computed
for each user’s feet and root). Thus we guarantee that initially the
avatar will be standing in a T-pose just like the user, and then all
movements will be synchronized (e.g. avatar will bend the knees
when the user does, and straighten them exactly as the user does).
Our method can handle any initial orientation of the trackers, since
we compute the current rotation of the joint, taking into account the
initial rotation, R0(T ). This frees the user from having to follow
specific instructions regarding the initial orientation of trackers.

Head and back. Since Unity IK does not have an end effector for
the head, we use forward kinematics to incline the avatar’s spine.
During simulation time we can compute the angle that rotates the
initial root to head vector, w0, to the current one, wt .

αt = ̸ (w0,wt) (4)

We then apply this angle, αt , to the spine joint of the avatar to bend
its back following the user’s movement. Finally, the rotation of the
HMD tracker is applied to the head joint to orient the avatar’s head.

Hands. For better embodiment, it is essential that the hands ap-
pear to be holding the controller at all times to match the user’s
haptic and visual feedback. The wrist joint is computed so that the
center of the controller always appears under the palm (keeping an
exact offset between the palm and the wrist joint). If the avatar‘s
arm was shorter than the user’s arm, there could be positions for
which the avatar’s hand could not reach the controller. When those
cases are detected, we attach the virtual controller to the hand even
if it means not being co-located with the physical controller.

Fingers IK. Once the palm is on the controller, the fingers are
adapted to hold it correctly following a dedicated IK solution based
on gradient descent as shown in Figure 3. There are several ad-
vantages in using gradient descend for IK. For example, it simpli-
fies adding constraints such as limiting finger rotations. Moreover,
several goals can be minimized simultaneously, such as having the
thumb minimizing the distance to a specific button of the controller,
while minimizing its distance to the surface of the controller.

The controller can be represented as the signed distance function

(SDF) of a capsule, i.e., given a point, the function returns the clos-
est distance to the capsule (negative if the point is inside it). Given
two points s,e representing the start and end points of the capsule,
the radius r, and the query point p, we define the capsule SDF as:

sd f (p) = ∥v1 −v2h∥− r (5)

where h = clamp((v1 · v2)/(v2 · v2)), v1 = p− s, and v2 = e− s.
However, we are not directly moving points, instead, we define
the open and close pose of each hand, and for each finger f ∈
{1, . . . ,10} and its joints j ∈ {1,2,3} a parameter t j

f ∈ [0,1] that
interpolates from the open rotation to the closed one. We define the
following vector: t = (t1

1 , t
2
1 , t

3
1 , . . . , t

1
10, t

2
10, t

3
10) containing all inter-

polation factors for all joints. To find the best set of t we minimize
the distance from the capsule to each finger joint. To stop the fin-
gers from getting inside the controller, we multiply the result of
sd f by a penalization factor when the distance is negative and then
apply the absolute operator.

Let pos j
f (t) return the position of the joint j of the finger f after

applying the interpolation using t. The distance from the capsule to
each finger is calculated as:

d f = sd f (pos1
f (t))+ sd f (pos2

f (t))+ sd f (pos3
f (t)) (6)

We compute the gradient ∇d f numerically. Then minimize d f up-
dating t1

f , t2
f , t3

f according to the gradient as:

t j
f = t j

f −η
∂d f

∂t j
f

(7)

where η is the learning rate that controls how fast we follow the
gradient; a small value will take more time to reach a good solution,
while a high value will make the fingers jitter.

Figure 3: Fingers are automatically adapted by minimizing their
distance to the controller. The three red spheres represent the joints
used to perform gradient descent on the index finger.

4. User study

We focus our evaluation on self-avatar animation, because users in
VR can easily notice mismatches between the self-avatar and their
own movements. Whereas when it comes to collaborators’ avatars,
animations are less crucial since they cannot see both the collabo-
rators and their avatars simultaneously. To evaluate to what extent
our method for calculating exact offsets could enhance embodi-
ment (SoE), we performed a user study to compare the animated
self-avatars having fixed offset against our method computing ex-
act offsets. We analyzed only the Sense of Agency (SoA) and the
Sense of Ownership (SoO), since users are always in first-person
view and thus self location was guaranteed in all cases.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Jose Luis Ponton & Eva Monclús & Nuria Pelechano / AvatarGo: Plug and Play self-avatars for VR

We performed a within subject experiment with two conditions:
(F) Fixed offset and (E) Exact offsets, in random order for each
user. Each condition was tested first seeing only the Virtual Avatar
(VA), and then seeing a semitransparent Overlaid Avatar (OA) with
the user body shown using the pass-through camera of the HMD.
The goal of the OA was to allow the user to evaluate the self-avatar
poses in a more objective manner. For each condition, the user had
to perform three tasks: (T1) Arms task, while in T-Pose, move the
controllers towards the body and then outwards; (T2) Legs task, do
squats; (T3) Free task, users were encouraged to try any movement.

Before starting the tasks, we gave users some time to get used to
the avatar while looking at a mirror. We asked six questions: Ag1
for T1, Ag2 for T2, and Ag3 for T3, followed by Ow{1,2,3}. Ques-
tions were displayed inside VR while doing the exercise to avoid
breaking the flow of the experiment. Users had to score the follow-
ing questions from 0 (strongly disagree) to 7 (strongly agree):

• Ag1. I felt I was controlling the movement of the virtual arms.
• Ag2. I felt I was controlling the movement of the virtual legs.
• Ag3. The movements of the virtual body felt like they were my

movements.
• Ow1. It felt like the virtual body was my body.
• Ow2. It felt like the virtual body parts were my body parts.
• Ow3. The virtual body felt like a human body.

5. Results

A total of 9 participants took part in the experiment (3 females,
mean age and standard deviation: 31 ± 14 years). Most participants
reported low to medium experience in VR (2 high, 4 medium, 3
low). We tested the normality of the data using a Shapiro test, and
since some of the data was not normally distributed, we used the
non-parametric Aligned Rank Transform (ART) ANOVA with con-
trast tests for pairwise comparisons. We also report effect size using
Cohen’s d statistic for pairwise comparisons. Results on SoE are
summarized in Figure 4. Users reported significantly higher SoE
(p < .001, d = 0.60) for the avatar with exact offsets as opposed to
having fixed offsets. For both conditions, the SoE was significantly
higher when seeing only the virtual avatar (F: p < .05, d = 0.56;
E: p < .05, d = 0.53) instead of the overlaid avatar. Comparing
fixed offsets against exact offsets, results of SoE were significantly
higher for exact offsets whether they saw only the virtual avatar
(p < .001, d = 1.00) or the overlaid avatar (p < .001, d = 1.03).

Overall, users reported high ratings of the SoE for the avatar
with exact offsets when using the virtual avatar (medEVA = 6 and
IQREVA = 1). When comparing agency and ownership questions
separately, users also reported high ratings of the SoA (medEVA = 6
and IQREVA = 1) and of the SoO (medEVA = 6 and IQREVA = 1). For
a more in-depth analysis of SoA and SoO, see Figure 4.

6. Conclusions

In this paper we presented AvatarGo, a simple and efficient system
to rapidly compute exact offsets between the trackers located on a
user, and the joints of a virtual avatar. AvatarGo can improve the
accuracy of the avatars’ movement regardless of the IK method be-
ing used. It also provides plausible finger positioning over the con-
troller, which is important to match haptic and visual feedback, thus

Figure 4: Results of SoE, SoA and SoO comparing exact vs. fixed
offsets, for both render modes: VA and OA. Users rated significantly
higher the avatar with exact offsets.

further enhancing the SoE. The user study shows that exact offsets
can enhance SoE. The drop in SoE when seeing the overlaid avatar
was higher for the fixed avatar than for our exact avatars, since the
mismatch was larger for the avatars with fixed offsets. The source
code is available at https://github.com/UPC-ViRVIG/AvatarGo.

Acknowledgements

This work was funded by the Spanish Ministry of Economy, Indus-
try and Competitiveness (TIN2017-88515-C2-1-R).

References
[ABB∗18] ANDUJAR C., BRUNET P., BUXAREU J., FONS J., LA-

GUARDA N., PASCUAL J., PELECHANO N.: VR-assisted Architectural
Design in a Heritage Site: the Sagrada Família Case Study. In Euro-
graphics Workshop on Graphics and Cultural Heritage (2018), The Eu-
rographics Association. doi:10.2312/gch.20181340. 2

[ALCS18] ARISTIDOU A., LASENBY J., CHRYSANTHOU Y., SHAMIR
A.: Inverse kinematics techniques in computer graphics: A survey. In
Computer Graphics Forum (2018), vol. 37, pp. 35–58. doi:10.1111/
cgf.13310. 2

[BDH∗18] BOVET S., DEBARBA H. G., HERBELIN B., MOLLA E.,
BOULIC R.: The critical role of self-contact for embodiment in virtual
reality. IEEE Transactions on Visualization and Computer Graphics 24,
4 (2018), 1428–1436. doi:10.1109/TVCG.2018.2794658. 2

[GFL17] GONZALEZ-FRANCO M., LANIER J.: Model of Illusions and
Virtual Reality. Frontiers in Psychology 8 (2017), 1125. doi:10.
3389/fpsyg.2017.01125. 2

[KGS12] KILTENI K., GROTEN R., SLATER M.: The Sense of Embod-
iment in Virtual Reality. Presence: Teleoperators and Virtual Environ-
ments 21, 4 (2012), 373–387. doi:10.1162/PRES_a_00124. 2

[PS17] PAN Y., STEED A.: The impact of self-avatars on trust and collab-
oration in shared virtual environments. PLOS ONE 12, 12 (Dec. 2017),
e0189078. doi:10.1371/journal.pone.0189078. 2

[XCZ∗19] XU W., CHATTERJEE A., ZOLLHOEFER M., RHODIN H.,
FUA P., SEIDEL H.-P., THEOBALT C.: Mo2cap 2: Real-time mobile 3d
motion capture with a cap-mounted fisheye camera. IEEE transactions
on visualization and computer graphics 25, 5 (2019), 2093–2101. doi:
10.1109/TVCG.2019.2898650. 2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://github.com/UPC-ViRVIG/AvatarGo
https://doi.org/10.2312/gch.20181340
https://doi.org/10.1111/cgf.13310
https://doi.org/10.1111/cgf.13310
https://doi.org/10.1109/TVCG.2018.2794658
https://doi.org/10.3389/fpsyg.2017.01125
https://doi.org/10.3389/fpsyg.2017.01125
https://doi.org/10.1162/PRES_a_00124
https://doi.org/10.1371/journal.pone.0189078
https://doi.org/10.1109/TVCG.2019.2898650
https://doi.org/10.1109/TVCG.2019.2898650

