
The future of avatar-human interaction in VR, AR and mixed reality applications

Nuria Pelechano¹, Julien Pettré ², Yiorgos Chrysanthou³

- ¹ Universitat Politecnica de Catalunya, Spain
- ² INRIA-Rennes, France
- ³ University of Cyprus & RISE center, Cyprus

Introduction

- What are avatars in VR? Why are they useful to?
 - VR for entertainment -> avatars for creating lively scenes
 - VR for training and learning -> avatars are part of scenarios
 - VR for experimental research -> avatars are confederates
 - VR for industry (e.g., automotive) -> avatars to create realistic test environments

- Common requirements for avatars in VR:
 - Autonomy
 - Realism: motion, visual aspect
 - Variety
- In this Think Tank:
 - Deeper presentation of 3 aspects of the topic:
 - For each: open problems and questions

Topics

Populate Virtual Worlds

 Virtual experiments on crowds: from understanding individual behaviours in crowds (for modeling purpose) to training robot navigation in crowds.

Collaborative VR

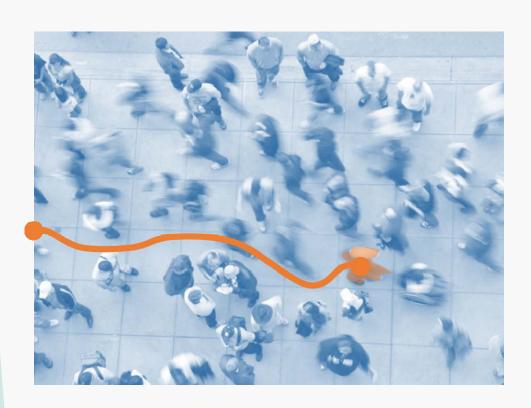
- Applications: architecture, teaching, medicine.
- Avatar representation for other users.
- Self-avatars.

Avatar in AR

 Computer vision, machine learning, correct interaction with real world objects and people.

Topics

- Populate Virtual Worlds
 - Virtual experiments on crowds: from understanding individual behaviours in crowds (for modeling purpose) to training robot navigation in crowds.
- Collaborative VR
 - Applications: architecture, teaching, medicine.
 - Avatar representation for other users.
 - Self-avatars.
- Avatar in AR
 - Computer vision, machine learning, correct interaction with real world objects and people.



About this presentation

Through the example of <u>crowd research</u>, show how <u>populated VR worlds</u> are used, and what are the <u>current challenges</u> to create and use them

Crowd Research

Microscopic crowd modeling

Crowd motion result from the combination of local interactions between people

- Neighborhood
- Interaction rules
- Combination rules

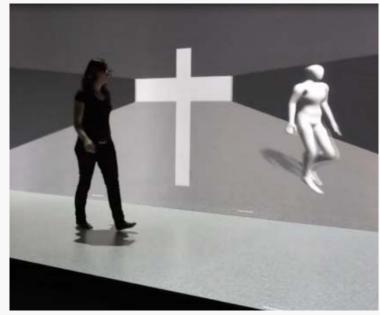
Crowd Research

Populated VR worlds

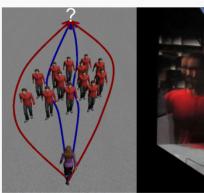
Shared virtual spaces where real and virtual humans can interact

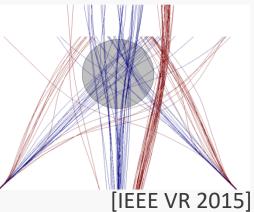
Use of VR in Crowd Research

Understand human behaviors


Improve simulation models

Benefit of VR


- Experimental technique:
 - Control of experimental conditions
 - Repeatability
 - Non physically feasible situations (incongruent stimuli, information removal)
- Logistics of experiments:
 - Recruiting people
 - Processing data

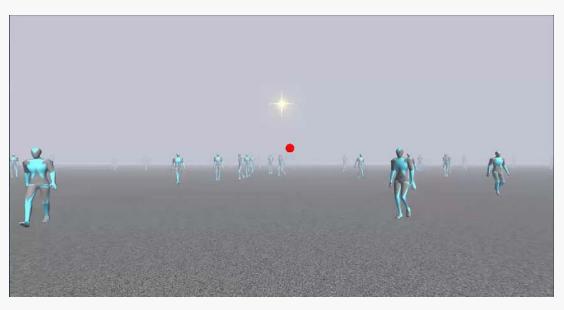


E1 – Going around or through?

- Energy efficient path?
- VR experiment could confirm hypothesis
- Study secondary factors in the "grey" zone

Main challenge:

Do participants move the same way in VR?


Benefit:

Group density and size easy to control

- Limtiations:
 - Non reactive characters
 - No rendering of collisions

E2 – Neighbors?

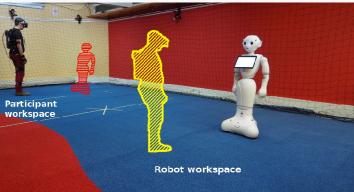
- We look who we avoid and conversely
- VR experiment could confirm hypothesis
- First identification of interaction neighborhood

Main challenge:

Correlate gaze and motion activity

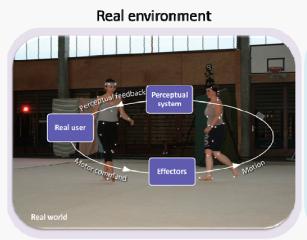

Benefit:

Easy processing of gaze data


- Limitiations:
 - Factors: speed, expressive motion, attention, whatever can attract gaze,

E3 – CrowdBot

- Validate Robot navigation techniques for crowds
- Simulation based at first


Main challenge:


Robot+Human perception

- Benefit:
 - Estimate of collision risks with no physical damage
- Limitations:
 - No contact

- Acting in V.R.
- Reactive V.H.
 - Animation
 - Behaviour
- Rendering interaction

- Acting in V.R. (how do V.H. perceive user actions):
 - Use of motion interfaces and metaphors: change action modalities compared to reality
 - Action/motion tracking:
 V.H. perceive (and can react to) what is tracked only
 - Perception biases: distances, limited FOV, modalities, perception of self (Michael)
- Reactive V.H.
 - Animation
 - Behaviour
- Rendering interaction

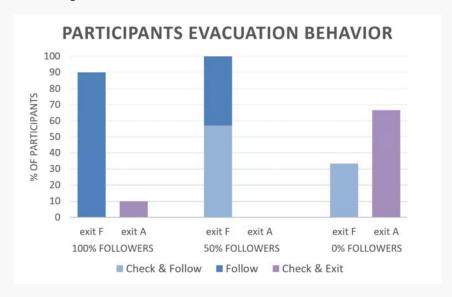
- Acting in V.R. (how do V.H. perceive user actions):
- Reactive V.H. (animation and behavior)
 - V.H. are basically inexpressive, non-reactive
 - Still challenging to perform real-time animation of virtual characters in situations of interactions with a real subject
 - Low dimensional input (sensing R.U. states)
 - Motion expressivity is still an open question (non verbal communication)
 - Collective behavior
- Rendering interaction

- Acting in V.R. (how do V.H. perceive user actions):
- Reactive V.H.
- Rendering interaction:
 - We are missing many modalities: touch, sound.
 - High-fidelity rendering of virtual humans

Avatars impact on users' behavior

How does avatar behavior impact our decision making?

Avatars impact on users' behavior


- Do we act differently based on the avatars' behavior?
- Does avatar's behavior affect our stress levels during an emergency?
- Given the same avatars' behavior, do we act differently based on the environment?
- Need for more studies on how avatar simulation can affect human behavior
 - What aspects need to improve?

Avatars impact on users' behavior

- Do we act differently based on the avatars' behavior?
- Does avatar's behavior affect our stress levels during an emergency?
- Given the same avatars' behavior, do we act differently based on the environment?
- Need for more studies on how avatar simulation can affect human behavior.
 - What aspects need to improve?

A. Rios, D. Mateu, N. Pelechano. *Follower Behavior in a Virtual Environment*. Virtual Humans and Crowds in Immersive Environments (VHCIE) 2018.

Topics

- Populate Virtual Worlds
 - Virtual experiments on crowds: from understanding individual behaviours in crowds (for modeling purpose) to training robot navigation in crowds.
- Collaborative VR
 - Applications: architecture, teaching, medicine.
 - Avatar representation for other users.
 - Self-avatars.
- Avatar in AR
 - Computer vision, machine learning, correct interaction with real world objects and people.

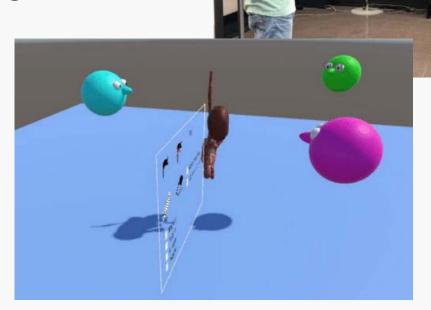
Fewer avatars / closer interaction

- Several people interacting in immersive VR (HMDs)
- Applications:
 - Architecture

Collaborative VR

Fewer avatars / closer interaction

- Several people interacting in immersive VR (HMDs)
- Applications:
 - Architecture

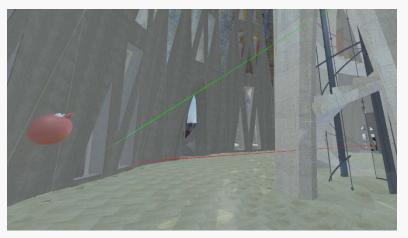

Fewer avatars / closer interaction

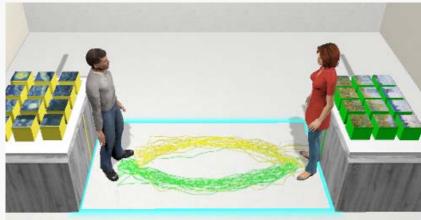
 Several people interacting in immersive VR (HMDs)

Applications:

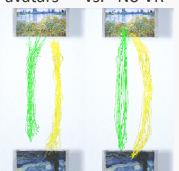
Architecture

Teaching





Collaborative VR



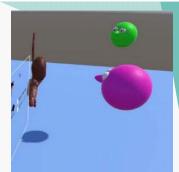
- Where are the others?
- What are they talking about?
- How would I move around them?

Sync anim.

avatars vs. No VR

Clearance difference \approx 5cm

A. Rios, M. Palomar, N. Pelechano. *Users' locomotor behavior in Collaborative Virtual Reality.*Motion Interaction and Games (MIG) 2018





How does VH representation affect the user?

- Is it better cartoonish avatars or realistic ones?
- Is it better to simply use stick figures?
 Floating heads and controllers?
 - It depends... if the avatar is not a good match, then users may prefer simplistic representations
 - But can we still get immersion? Presence?
- Uncanny Valley?

Embodiment

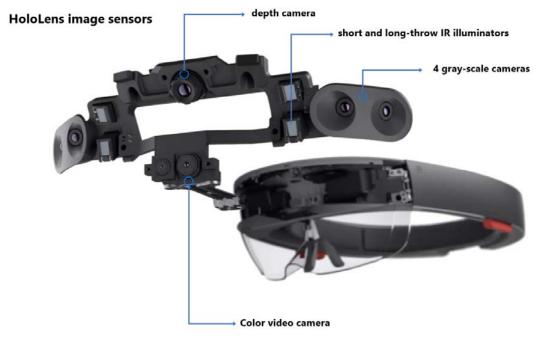
- We need to see some representation of ourselves.
 - Which one is best?
- Needs to be not only consistent in appearance but also in movement. Full mocap vs. a few markers

Mohler, B., Creem-Regehr, S., B. Thompson, W. & Bülthoff, H. The Effect of Viewing a Self-Avatar on Distance Judgments in an HMD-Based Virtual Environment. Presence. (2010).

How does VH representation affect the user?

- When it comes to interacting with virtual humanoids?
- When it comes to interacting with another immersed user?
- When it comes to self avatar?

Topics


- Populate Virtual Worlds
 - Virtual experiments on crowds: from understanding individual behaviours in crowds (for modeling purpose) to training robot navigation in crowds.
- Collaborative VR
 - Applications: architecture, teaching, medicine.
 - Avatar representation for other users.
 - Self-avatars.
- Avatar in AR
 - Computer vision, machine learning, correct interaction with real world objects and people.

Virtual humans in Augmented Reality

A common view is that Augmented Reality will be more useful and with more impact to our lives compared to VR

Virtual humans in Augmented Reality

Just like in VR:

Modelling

Behavior / Animation

Behavior / Animation

3D scan from Mirror 3D Lab (Cyprus)

Papagiannakis 2017

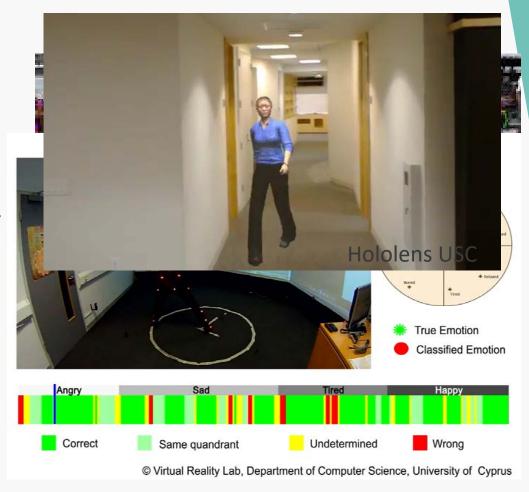
Behavior / Animation

Behavior / Animation

Live Augmented Reality for National Geographic / UPC from Appshaker Ltd

- Consistent illumination
- Good depth and geometry approximation

Behavior / Animation


Rendering

Interaction with the environment

- 3D representation
- Segmentation
- Semantic understanding

Interaction with other humans/user

- Track people
- Understand intentions
- Understand emotions
- Expressive characters
- Conversetional/intelligent
- More flexible animation system
- Haptic feedback

In the not too distant future

Siren Real-Time Performance | Project Spotlight | Unreal Engine

Does this create ethical issues?

For example:

- Further isolate users from real humans?
- Create emotional attachment to virtual characters?
- Creating bonds and "friendships" that could lead to disclosure of personal information?

Questions?

If you want to comment on this topic:

https://doodle.com/poll/8ewr7kn6iyg6tsxw

