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Figure 1: An avatar walking and dancing driven by a VR user. The avatar animation is based exclusively on the tracking data provided by
the VR headset and two handheld controllers.

Abstract
The animation of user avatars plays a crucial role in conveying their pose, gestures, and relative distances to virtual objects
or other users. Self-avatar animation in immersive VR helps improve the user experience and provides a Sense of Embodiment.
However, consumer-grade VR devices typically include at most three trackers, one at the Head Mounted Display (HMD), and
two at the handheld VR controllers. Since the problem of reconstructing the user pose from such sparse data is ill-defined,
especially for the lower body, the approach adopted by most VR games consists of assuming the body orientation matches
that of the HMD, and applying animation blending and time-warping from a reduced set of animations. Unfortunately, this
approach produces noticeable mismatches between user and avatar movements. In this work we present a new approach to
animate user avatars that is suitable for current mainstream VR devices. First, we use a neural network to estimate the user’s
body orientation based on the tracking information from the HMD and the hand controllers. Then we use this orientation
together with the velocity and rotation of the HMD to build a feature vector that feeds a Motion Matching algorithm. We built a
MoCap database with animations of VR users wearing a HMD and used it to test our approach on both self-avatars and other
users’ avatars. Our results show that our system can provide a large variety of lower body animations while correctly matching
the user orientation, which in turn allows us to represent not only forward movements but also stepping in any direction.

CCS Concepts
• Human-centered computing → User models; • Computing methodologies → Motion capture; Virtual reality;

1. Introduction

The rapid decrease in cost of VR headsets has made this technol-
ogy available for the general public. Users wearing a HMD should
be represented with an animated self-avatar that accurately follows
their movements, as this animation is essential to provide presence
and a Sense of Embodiment. In order to get correct animations for

self-avatars, one option is to rely on high-end motion capture sys-
tems such as Xsens, Vicon, or camera-based systems (see [CGG20]
for a full survey on the topic). However, standard VR devices in-
clude at most a HMD and two controllers, thus providing tracking
data of the head and hands exclusively. Some games and VR appli-
cations simply render floating bodies and hands that follow these
trackers, while ignoring the representation and animation of the
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lower body, for which no tracking data is available. Alternatively,
other VR applications do render the lower body, but they simply
blend animation cycles applying time warping, or simply drag the
avatar without leg movement. Furthermore, the avatar is typically
oriented according to the HMD forward direction. These simpli-
fications lead to incorrect animations that can affect the Sense of
Agency (SoA) and thus embodiment, and that convey wrong infor-
mation about the user’s poses, gestures and placement within the
virtual environment.

In this work we present a system to generate a plausible anima-
tion for VR avatars, which is suitable both for self-avatars (seen
from a first-person point of view) and collaborators’ avatars (seen
from a third-person point of view), and which only requires the
tracking data already provided by consumer-grade VR headsets. In
the first stage, we use a neural network to estimate the body orienta-
tion from the HMD and hand controllers. Then this information, to-
gether with the HMD velocity and orientation, is used to build a fea-
ture vector to feed a Motion Matching algorithm that searches the
best animation in a database. Since user behavior in VR is some-
what specific (e.g., high frequency of looking-around gestures), we
generated a specific MoCap database representing users while do-
ing typical walking and turning actions in VR. Our system outputs
natural-looking lower body animations that can correctly represent
the movements of the user while only needing the three standard
tracking devices that are included in most VR systems.

The main contributions of this paper are:

• Body Orientation Prediction using a lightweight neural network
based on body-size independent features, such as orientation, ve-
locities and angular velocities of the HMD and hand controllers.

• Customized Motion Matching for VR so that avatars’ lower body
movements are adapted according to the velocity and trajectory
of the user instead of using a fixed walking/running animation.

• The integration with an IK-based solution for the upper body
that results in a seamless animation of the whole body of the
user avatar.

Our system can be used to improve the animation of self-avatars
and the avatars of other users also wearing a VR headset, providing
natural animations that can be used in VR games and collaborative
VR to better trust the users’ positions and movement in the virtual
environment [RPP18].

2. Related Work

2.1. Self-avatar control in VR

The importance of self-avatars has long been recognized from var-
ious perspectives, including user performance, distance percep-
tion, cognitive load, Sense of Embodiment (SoE) and presence.
With the popularity of HMD-based VR devices, the impact of the
avatar’s visual fidelity has drawn much attention. Due to the limited
tracking information provided by consumer-grade VR, the floating
hands representation has become the most common form of self-
avatars in VR applications and games. However, recent studies have
shown that hands-only representations provide little SoE. Jung and
Hughes [JH16] conducted a study with hand-focused tasks to in-
vestigate the effect of inferred body parts on the Sense of Body

Ownership (SoBO), one of the subcomponents of SoE. Their re-
sults suggest that the inferred lower body leads to a higher level of
SoBO than no-lower body condition. Fribourg et al. [FALH20] in-
vestigated the effect of the appearance, control and point-of-view of
self-avatars on SoE. They found that most users were not satisfied
with abstract self-avatars (e.g., five spheres for body extremities)
when performing tasks like yoga, walking and kicking. Galvan et
al. [GCC20] explored the effect of different levels of body parts’
animation on Plausibility Illusion and Sense of Control (SoC).
They concluded that adding foot tracking to full-body self-avatars
increased the SoC of the users the most.

Additionally, full-body self-avatars and hand-only avatars lead
to different behaviors and cognitive loads in VR. Pan and Steed
[PS19] demonstrated that a full-body avatar could reduce users’
cognitive load when performing spatial reasoning tasks, in contrast
to hand-only avatars. Ogawa et al. [ONKH20] suggested that realis-
tic full-body self-avatars discouraged people more effectively from
walking through virtual walls than hand-only representations.

Many researchers have studied the impact of the lower body’s
animation fidelity. Some studies indicate that synchronized leg
animation based on feet tracking increases presence and SoC
[FALH20; GCC20; PJ19], whereas other studies have not found
significant differences for leg animations inferred with and without
foot tracking [GMB*22]. Lee et al. [LLKH20] also reached a simi-
lar conclusion that a prerecorded animation for the lower body and
a synchronized animation predicted by a neural network had a sim-
ilar effect on presence when observed indirectly during walking in
place (WIP). However, synchronized leg animation provided higher
presence and Body Ownership when users looked down at their
lower body during WIP. Galvan et al.[GCC20] observed that feet
tracking induced higher SoC compared to procedurally simulated
locomotion. Users reported as disturbing the fact that for the sim-
ulated condition the feet were always aligned with the HMD. For
this reason, instead of adding feet tracking we propose a full-body
self-avatar animation algorithm combining body direction predic-
tion and Motion Matching to improve the animation fidelity.

2.2. Data-driven Animation Control

Controlling a self-avatar in VR is equivalent to using sparse high-
level input to reconstruct the human pose and motion with real-
time constraints. Ellis et al. [EMAH04] demonstrated that less than
16 ms end-to-end latency is necessary to achieve perceptual stabil-
ity in virtual environments. On top of the highly under-constrained
nature of pose reconstruction, achieving low latency makes self-
avatar control in VR a challenging problem.

Various user input data from consumer-grade devices can be
used to synthesize full-body animation for characters in real time.
For example, some studies used optical data from egocentric cam-
eras mounted in a baseball cap [XCZ*19], a HMD [TAP*20;
YCQ*22], controllers [ASF*22], or glasses [ZWMF21] to estimate
the body pose. Egocentric cameras suffer from extreme perspective
distortion and self-occlusion that lead to inadequate tracking in-
formation for the lower body. Recent studies show that a sparse
set of Inertial Measurement Units (IMUs) could accurately recon-
struct full-body human motion with an accuracy similar to that of
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commercial IMU suits. For instance, DIP [HKA*18] and Trans-
Pose [YZX21] use learning-based methods to accurately recon-
struct the full-body pose with 6 IMUs mounted on users’ wrists,
knees, head and pelvis. However, IMUs can be impacted by envi-
ronmental noise, electromagnetic waves and temperature changes
[PXC*21]. Furthermore, the latency of state-of-the-art solutions
based on optical data or IMUs remains high for VR applications.

Several studies propose real-time methods for reconstructing
the body pose from consumer-grade VR devices, including HMD,
controllers, and trackers. The number of tracked points varies
from three to six. In a six-point tracking setting, the head, pelvis,
hands and feet are tracked. IK solvers can calculate the rotations
of untracked joints and reconstruct the full-body pose provided
that enough information about end-effectors is available [Roo17;
PMP22]. A more detailed discussion about IK methods for re-
constructing the human body in VR can be found in the sur-
vey [CGG20]. Four-point tracking commonly includes HMD, con-
trollers, and an additional tracker on the pelvis [YKL21] or ankles
[CAG19]. This configuration eliminates the infrared occlusion and
foot-floor impact problems with feet trackers. Yang et al. [YKL21]
propose a velocity-based recurrent neural network (RNN) model
that accurately predicts low-body pose in real time and could gen-
eralize to different body shapes. However it still needs an additional
tracker on the pelvis and post-processing to eliminate foot sliding.
Their 45 fps frame rate is not enough for real-time VR applications.

Three-point tracking, i.e. only HMD and controllers, has been
studied to obtain full-body poses in VR. Learning-based methods
like variational autoencoders and RNN models [DDC*21; Lin19]
can generate full-body poses from the three-point tracking data.
However, while these methods replicate accurate motions for the
upper body, but not for the lower body because of the lack of train-
ing data with various leg movements or lack of tracking information
for the feet. In our work, the locomotion data also covers walking,
squatting, and running. Our goal is to provide realistic lower-body
motion instead of replicating user leg movements.

CoolMove [AOG*21] uses k-Nearest-Neighbors (k-NN) to gen-
erate full-body animations in VR, including boxing, basketball,
climbing, running and swimming. They extract features from both
the motion database and the live input, along with position and
orientation of HMD and controllers. Matched motion candidates
returned by k-NN are blended with proportional weights to form
the output pose. Their result demonstrate that the generated poses
could lead to higher SoA when observed from a third-person view,
but lower embodiment than the IK solution due to the positional
error between users’ input and generated poses. Our work avoids
this mismatch problem by generating the upper-body and lower-
body pose using the IK solver and Motion Matching respectively.
Thus the positional error between the user’s and avatar’s hands is
reduced.

Some other works investigate the more extreme setting, i.e. us-
ing only HMD data [CKWv16; LPHK19]. Recent studies use Deep
Neural Networks (DNN) to predict the status of leg movement of
WIP with the HMD tracking data and then blend leg animations
based on the predicted status [LLKH20; HPAB19]. Our work can
handle real-walking, which is proven better than WIP in terms of
motion sickness and SoE [SUS95].

3. Overview

We propose a new method to realistically animate full-body self-
avatars using only the devices included in a typical consumer-grade
VR system: one HMD and two hand-held controllers. Figure 2
shows an overview of the approach. The core component of our
method is Motion Matching, which provides high-quality locomo-
tion animations with seamless transitions between different body
orientations and movements (such as idle, walking and running).

The method can be divided into three parts: body orientation pre-
diction, Motion Matching and final pose adjustments. One of the in-
puts of Motion Matching is the user’s trajectory, which is defined in
terms of the future positions and the target body orientation. While
the future positions can be predicted from the HMD’s velocity, es-
timating the body orientation from the HMD and controllers is not
straightforward. One simple solution would be to use the forward
direction of the HMD as the body direction. In that case, Motion
Matching will still produce high-quality animations, but the virtual
character will continuously change its orientation every time the
user rotates the head, as shown in Figure 5, even when the body re-
mains in the same orientation. Therefore we designed and trained a
neural network to obtain better estimates of the actual body orien-
tation, taking as input the rotation, velocity, and angular velocity of
all three devices, as well as the previous body orientation.

Once we have predicted the trajectory of the user, we build a
query vector and use Motion Matching to search for the sequence of
poses that better match our current pose and target trajectory. Our
system supports animations such as crouching by letting the Mo-
tion Matching algorithm search in different animation databases,
depending on the height of the HMD. Each of these databases have
been captured with the performers moving with different levels of
leg bend, and the specific database to use is selected at runtime.

Our method focuses on the animation of the lower body, for
which tracking information is missing. In contrast, the arms can
be animated by applying IK, since the end effectors can be lo-
cated and oriented precisely according to the handheld controllers.
This separation of the upper and lower body parts dramatically
decreases the dimensionality of the feature query for the Motion
Matching search, while providing a solution that guarantees the
correct positioning of the hands at all times. This offers a good
trade-off between animation smoothness and pose accuracy. Mo-
tion Matching guarantees smooth transitions as long as we allow
the returned avatar positions to drift a little from the requested user
trajectory. These drifts are usually imperceptible when controlling
the avatar with non-VR devices such as joysticks, but large drifts
are clearly perceptible in VR. Therefore we allow users to limit the
maximum distance between their actual position and that of their
avatars. However, this constraint may introduce some foot sliding,
as the root displacement will no longer agree with the chosen ani-
mation. We thus apply a foot lock technique to reduce foot sliding.
The following sections describe each part of the method in detail.

4. Prediction of the Body Orientation

Predicting the body orientation is a common problem in applica-
tions using full-body avatars with only one HMD and two con-
trollers. Often, the forward direction of the HMD is used to orient
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Figure 2: Our pipeline starts by predicting the body orientation from the rotation, velocity and angular velocity of the HMD and controllers,
using a lightweight neural network. In the second step, a query vector is formed by combining predicted trajectory features and pose features
extracted from the current pose. The previously predicted orientation is part of the trajectory features. Every 10 frames we use a Motion
Matching approach to find the motion that best matches the current pose and trajectory. Finally, we apply IK to adjust the upper body pose
to the hand-held controllers.

the whole virtual body. However, this often leads to a significant
misalignment between the forward direction (and pose) of the user
and the avatar. For example, users may be moving their head to look
around (keeping the rest of the body static), but their avatars will
rotate the whole body (not just the head) to match the orientation
of the HMD.

From the HMD and controllers, we cannot directly extract the
orientation of the body. However, we can try to infer it from the
information given by these devices. For this purpose, we trained a
lightweight feedforward neural network to predict the body orien-
tation from the rotation, velocity and angular velocity of all three
devices. The positions are not used so that the method is body-size
independent and can be applied to a broader range of users. Our
method also takes as an input the previously predicted body orien-
tation to induce temporal continuity.

4.1. Network Input and Output

The input vector for the neural network is constructed using the
velocities and rotations of the k = 3 trackers and the previous
predicted orientation. It can be defined as x = {xv,xw,xr,xd} ∈
Rk×12+6 where xv ∈ Rk×3 are the 3D velocities, xw ∈ Rk×3 are
the 3D angular velocities (axis-angle rotation vector with the angle
encoded as the length of the axis vector), xr ∈ Rk×6 are the 3D ro-
tations, and xd ∈R6 is the previous predicted orientation. Rotations
are represented with the 2-axis rotation matrix used in [ZBL*19] to
ensure rotation continuity during training. We also normalize each
feature of the input by subtracting their mean and dividing by the
standard deviation. The output d̂ ∈ R6 is the predicted body orien-
tation.

To create the database we used an Xsens motion capture sys-
tem to record the full body motion of a user while playing different
games for SteamVR-based HMDs and Oculus Quest. We also ex-
plicitly captured more extreme movements to cover a wide range of
poses. In total we used around half a million poses for the training

with around 2.4 hours of motion capture. We use this data to sim-
ulate the trackers’ information. We assume fixed offsets between
the head, left and right wrist joints and the corresponding trackers.
Then, for each pose, we compute their velocities, angular veloc-
ities and rotations. We represent the orientation of the body with
the orientation of the virtual root joint computed in Section 5.1. To
facilitate training, we represent all features with respect to a local
coordinate system defined by the following three axes: the projec-
tion of the forward direction of the HMD onto the floor plane, the
vertical world vector, and their cross product. This guarantees that
the prediction is independent of the user’s orientation.

4.2. Network Architecture and Training

We used a simple feedforward neural network with 2 hidden lay-
ers with 32 units each and ReLU activation functions. The training
is performed as usual with feedforward neural networks. However,
predicting the orientation directly from the ground truth data would
not match the real usage scenario of the network, and therefore, the
network would not be learning how to predict the next orientation
based on the previously predicted one. Instead, for every element
in a training batch, we iteratively predict the orientation r times
(e.g., r = 50). Then, we compute the MSE loss by comparing the
final predicted body orientation d̂ with the ground truth orienta-
tion d∗ after r frames. Algorithm 1 provides more details about
the training process. Notice that subindices in Algorithm 1 refer
to frames within the motion database used for training. The neu-
ral network was implemented using PyTorch [PGM*19] and the
hyperparameters tuned using the ASHA scheduler implemented in
Ray [LLN*18]. We optimized the model with Adam and the final
tuned model used a batch size of 64, learning rate of 3 · 10−4 and
weight decay of 0.035.

5. Motion Matching for VR

Motion Matching is a data-driven algorithm used to animate vir-
tual characters using high-quality motion capture data and a mini-
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Algorithm 1 Body orientation predictor training
Input: D: body orientations database (training set)

1: W ← initialize weights
2: r← number of iterations (e.g., 50)
3: for all epochs do
4: // Iterate D in batches (here batch size = 1 for simplicity)
5: for i← 1 to D.length− r−1 do
6: // Subindices in this algorithm indicate
7: // the frame within the database
8: // Get Previous Body Orientation
9: xd

i−1← sample body orientation from Di−1

10: d̂← xd
i−1

11: // Get Ground Truth Body Orientation
12: xd

i+r−1← sample body orientation from Di+r−1

13: d∗← xd
i+r−1

14: for j← 0 to r−1 do
15: xv← sample velocity from Di+ j
16: xw← sample angular velocity from Di+ j
17: xr← sample orientation from Di+ j
18: // Predict Body Orientation
19: d̂← Predict(W,{xv,xw,xr, d̂})
20: end for
21: L←MSE(d∗, d̂)
22: W ← backpropagate L
23: end for
24: end for

mal manual setup. It was initially presented by Büttner and Clavet
[BC15] and further developed for Ubisoft’s game For Honor
[Cla16]. Recently, Holden et al. [HKPP20] have provided a state-
of-the-art Motion Matching implementation used in AAA game
productions which we use as the main reference for our implemen-
tation. This section presents the details of our adaptation for its use
with Head-Mounted Displays in VR.

5.1. Pose database

Motion Matching searches over an animation database for the best
match for the current avatar pose and the predicted trajectory.
Since Motion Matching does not create new poses, the animation
database is an essential component that determines the quality of
the final animations. Again, we used the Xsens motion capture sys-
tem to capture a wide range of locomotion sequences typically
found when a user performs real walking in VR. This includes
walking and running forward, backward, different turning rates, in-
place rotations, and side stepping. Compared to other applications,
VR requires us to capture slow movements (users tend to walk
carefully in VR), with different ranges of velocities for the same
movement, and sudden changes in velocity direction and torso ori-
entation. Since the avatar is driven by real users, we cannot enforce
the character’s velocity as we could do when using a joystick for
a video game, so it is crucial to capture animations at different ve-
locities to ensure that Motion Matching has enough flexibility to
follow the user’s trajectory. In total, our animation database con-
tains around 25 thousand poses (approximately 5 minutes of raw
MoCap data).

The animation database can include one or more motion cap-
ture files. These files are preprocessed to create the pose database,
which is essentially a vector containing all poses in the same or-
der as they appear in the motion capture files but with additional
information. Each pose y is defined as follows:

y =
(
yp,yr,yv,yw,yc) (1)

where yp are the local joint positions, yr are the local joint rota-
tions, yv are the local joint velocities, yw are the local joint angular
velocities and yc contains two Boolean values indicating whether
the left and right foot are in contact with the ground.

The avatar returned by Xsens has the hip joint as root of the
skeleton. Therefore, when creating the pose database, we add a vir-
tual root joint to the skeleton that indicates the position and orienta-
tion of the character. It is created by projecting the hip joint onto the
floor plane, and its coordinate frame is defined by the projected hip
forward direction, the vertical world vector and their cross product.
Then the hip joint is transformed to the virtual root space.

5.2. Feature database

Notice that y contains data relative to a given frame of the ani-
mation. Since we wish to search for the best sequence of poses, we
need to add temporal information. Therefore, instead of directly us-
ing the pose database when searching for a new sequence of poses,
we compute a new database with the main features defining loco-
motion [Cla16]. We compute a feature vector z∈R27 for each pose
y. This feature vector combines two types of information: the cur-
rent pose and the trajectory. When comparing feature vectors, the
former ensures no significant changes in the pose and thus smooth
transitions; the latter drives the animation towards our target trajec-
tory. Feature vectors are defined as follows:

z =
Ä

zv,zl,zp,zdä (2)

where zv,zl are the current pose features and zp,zd are the trajec-
tory features. More precisely, zv ∈ R9 are the velocities of the feet
and hip joints, zl ∈ R6 are the positions of the feet joints, zp ∈ R6

and zd ∈ R6 are the future 2D positions and 2D orientations of the
character 0.33, 0.66 and 1.00 seconds ahead. Trajectory features
are projected onto the ground and all features are local to the virtual
root joint, i.e., in character space. Each feature is also normalized
by subtracting its mean and dividing by the standard deviation.

5.3. Search

At runtime, we perform a Motion Matching search every a few
frames (e.g., 10 frames). At a given update n, the character is at
a certain pose described by the feature vector zn (including all the
elements in Eq. 2), and we want to search for the sequence of poses
that best matches the predicted user’s trajectory. To do so, we cre-
ate a query feature vector q defined as in Eq. 2 and update it before
every search (see Eq. 5-8). The query vector q is used to search
in the feature database for the closest vector. The returned pose is
not necessarily the continuation of the current pose in the anima-
tion database. Therefore, although we added temporal information
to the feature vectors to prime smooth transitions, there may still be
some noticeable changes between poses, especially for motions not
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included in the database. Therefore, we apply inertialization blend-
ing [Bol17] to smooth the transitions. Since linearly searching over
the animation database may be costly, we accelerate the search with
a two-layer Bounding Volume Hierarchy as introduced by Holden
et al. [HKPP20].

The trajectory components qp, qd are estimated as follows. The
future position qp is predicted from the HMD’s velocity projected
on the ground plane, and the future direction qd is predicted from
the trackers’ input data using the neural network described in Sec-
tion 4.

The HMD velocity v̂ is needed to compute the future positions
of the avatar. However, directly using it could lead to undesir-
able noise and discontinuities. Instead, the velocity should change
smoothly so that the search can find suitable trajectory matches.
For this purpose, we could use an exponential decay function. We
define the smoothed velocity v as follows:

vn+1 = vn +β(v̂n−vn)∆t (3)

where ∆t is the time between updates and β is the responsiveness
factor which adjusts how fast v converges to v̂.

Similarly, we do not directly use the predicted body orientation d̂
(see Section 4), but a smoothed version d. Although orientations are
represented as 2-axis rotation matrices for network training, they
can be easily smoothed by representing them as quaternions and
using the spherical linear interpolation:

dn+1 = Slerp(dn, d̂n,β∆t) (4)

For simplicity, we show the exponential decay function for veloc-
ities and the Slerp function for orientations. However, to obtain a
smoother behavior, the results of this paper used a spring-damper-
based system [Kir04].

Formally, to create a query vector q we retrieve the current fea-
ture vector zn from the feature database, and predict the trajectory
of the user from v and the orientation d:

qv = zv
n (5)

ql = zl
n (6)

qp = (p̂n +
1
3

vn, p̂n +
2
3

vn, p̂n +vn) (7)

qd = (dn+20, dn+40, dn+60) (8)

where qp and qd contain the future predictions at 0.33, 0.66 and
1.00 seconds assuming the application runs at 60 frames per sec-
ond. The orientation d is estimated with Eq. 4 by fixing d̂n as the
current frame prediction. And the target position of the body p̂ is
computed by projecting the center of the head on the ground floor
(the center is an estimate of the most stable point under rotations of
the head). All values are local to the virtual root joint.

5.4. Position accuracy

One of the limitations of Motion Matching is the drift between
the desired and actual position and direction of the character. The
search tries to find a sequence of poses that follows the target tra-
jectory while avoiding significant changes in the pose. A sequence
of poses may better match our target trajectory, but another may be

chosen to prevent considerable pose changes. Providing weights for
the different features in the query vector q helps to adjust this qual-
ity vs. responsiveness trade-off. However, even if we set to zero the
weights for the current pose features, it is impossible to always find
a perfect match with the target trajectory since we are constrained
by the poses available in the animation database. This is typically
not a problem when animating a character in a video game from
a third person view, but it can be problematic when animating a
self-avatar in VR, where a correct alignment between the virtual
character and the user is needed at all times.

We reduce this problem first by slightly moving the virtual root
joint towards the target position proportionally to the character’s
velocity, thus minimizing the adjustment when the character is
moving slowly to avoid users noticing the foot sliding introduced.
Second, we let users provide a position accuracy parameter α to
ensure that the position of the virtual root joint p does not deviate
more than α with respect to the target position p̂ defined in Section
5.3. The corrected position of the virtual root joint p′ is computed
as follows:

p′ =

{
p̂+α

p−p̂
∥p−p̂∥ , ∥p− p̂∥> α

p, otherwise

If positional accuracy is a priority, users can use a low α (e.g.,
10 cm). This will reduce the positional misalignment that in the
case of a self-avatar in VR could lead to a reduction in the Sense
of Embodiment. On the contrary, a larger value will leave more
freedom for Motion Matching to provide higher quality motions, at
the expense of some positional drift, which may not be important
when animating other users’ virtual avatars for collaborative VR.
Therefore, α can be adjusted depending on the requirements of the
application and the user preference.

5.5. Improving motion search for non-upright motions

One crucial aspect of keeping users immersed in VR is synchroniz-
ing the leg movements of the avatar with that of the users. As shown
in [PMP22], having the bending of the virtual legs synchronized
with the user’s legs positively affects the Sense of Embodiment in
VR. Consequently, we provide a way to control the height of the
virtual avatar while maintaining fast Motion Matching searches and
motion continuity.

In addition to the standard locomotion database, we captured
multiple locomotion databases with different levels of knee bend:
from a small bend to having the legs completely bent, or walking
on tip-toes. Then, the user’s height is represented with a normalized
value computed as the ratio between the current HMD’s height and
the one calculated during a calibration step (at the beginning of the
execution, the user is asked to press a button while standing up).
Each database has an assigned range of height ratios, and thus, in
real-time, we can select the proper database only by querying the
HMD’s height.

Every time we change the database, we trigger a Motion Match-
ing search. The query vector q is computed as usual, and the final
result is inertialized to blend significant changes in pose. Although
the database changes for the search, by maintaining the current pose
features in the query vector (e.g., the local position of the feet), we
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will obtain a similar pose; for instance, if the right foot is ahead of
the left one, the new search will try to find a pose with the same feet
configuration in the new database. The result for different databases
can be seen in Figure 3.

Figure 3: Examples of poses with different leg bends based on the
HMD height. From left to right: tip-toes, normal length, small knee
bend, medium knee bend, and crouching pose.

We decided to use different databases to avoid adding more com-
plexity to the search and prevent unnecessary pose changes. While
it may be feasible to include the HMD’s height in the feature vec-
tor, this would have two main drawbacks: First, having an exten-
sive database with all possible motions increases the memory and
computation requirements of the search. Second, VR users have
complete freedom to move as they wish, which makes the Motion
Matching search more challenging. Adding the HMD’s height as a
feature would drastically hinder finding a suitable pose, and lead to
more frequent animation changes.

6. Final pose adjustments

In our work, the upper body is not considered for the Motion
Matching algorithm to avoid increasing the dimensionality of the
feature vector and focus instead on lower body locomotion, for
which no tracking data is available in consumer-grade VR. In order
to obtain the upper body pose for the arms, we can use the hand
controllers as end effectors for an Inverse Kinematics algorithm.
This solution is fast to compute and provides a good solution for
the user to interact with the environment in VR.

If the animation database does not contain enough variation in
velocities and trajectories, the search will constantly return mo-
tions that slightly deviate from the target trajectory, which together
with the method to avoid positional error explained in Section 5.4
may cause considerable foot sliding. While one possible solution
would be to add even more motions to the animation database, this
is not always possible due to computation or memory requirements.
Therefore, we propose to apply foot lock to improve the final re-
sult. The following sections explain how we apply IK and foot lock
methods in detail.

6.1. Upper Body Inverse Kinematics

Current VR applications use inverse kinematics to adjust the upper-
body poses to the hand-held controllers. When having only three
trackers, using IK alone for full-body (or upper-body) avatars may
not produce satisfying results because too much data is missing
for several body parts. Consider the case where the body and the

head directions are orthogonal (i.e. head looking to the side); this
would require us to correctly orient the body so that the IK can
find a natural solution to reach the end effectors. Simply using the
HMD’s forward direction to orient the body will lead to incorrect
shoulder locations and the IK will not find a pleasant arm pose. In
our work we combine the body orientation predictor and the result
given by Motion Matching, which contains the correct body orien-
tation, with IK solvers for the final adjustment of the arms to have
the virtual hands following the controllers. Nonetheless, suppose
the position accuracy is set to low (e.g., 30 cm), and in an instant
of maximum body position error, the user stretches the arms in the
opposite direction. In that case, the IK will fail to reach the target,
and the arms will be stretched.

6.2. Foot lock

As discussed in Section 5.4, to avoid the virtual avatar deviating
too much from the user’s position, we constrain the position of
the virtual character to follow the position of the user when the
error is above a configurable threshold. Thus, the character may
be dragged towards the user’s position, which causes foot sliding
as it is translating the root of the skeleton. We apply foot lock to
minimize this issue: the feet will remain locked until a maximum
distance is reached or Motion Matching changes the pose.

When a pose database is created (Section 5.1), foot contacts yc

are calculated based on the toe’s joint velocity. We store a Boolean
value for each foot set to true when the velocity is close to zero.
Then, it is used to decide whether each foot should be locked at
runtime. IK is used to lock the foot, but to avoid sudden changes,
it only applies adjustments to the pose returned by Motion Match-
ing, instead of finding an IK solution from scratch. Finally, if the
returned pose and the lock position are too far apart, we unlock the
foot to avoid unnatural poses.

7. Results

We have implemented the proposed method for animating avatars
using the game engine Unity 2021.2.13f1 and PyTorch 1.11.0. We
tested it on Oculus Quest 1 and 2, and HTC Vive Pro driven by
a PC equipped with an Intel Core i7-8700k CPU, 32GB of RAM
and a NVIDIA GeForce GTX 1070 GPU. We used FinalIK from
RootMotion [Roo17] as IK solver to animate the upper body pose.
In this section, we compare our method to current solutions for
consumer-grade VR used in video games and applications. We an-
alyze the effect of changing the size of the animation database on
the position accuracy, and also show how bounding the positional
error affects the animation quality. Finally, we analyze indepen-
dently the body orientation prediction. The readers are referred to
the supplementary video for comprehensive comparisons.

7.1. Comparisons

In this section we highlight the main advantages of our method
when compared against standard solutions that can be found in cur-
rent VR applications. We focus on four categories of motions that
are common movements in VR.
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Walking When the user is physically walking, most VR appli-
cations rendering full-body avatars either drag the character, pro-
cedurally generate feet position and apply IK for the leg anima-
tion, or apply a fixed animation. These solutions introduce highly
noticeable foot sliding and look artificial. In contrast, our solu-
tion combining Motion Matching with orientation prediction pro-
duces natural-looking walking animations with smooth transitions
between different velocities and orientations, thus better adjusting
the avatar’s movement to the user (see Figure 4).

Figure 4: A typical approach in VR games consists of simply drag-
ging a static avatar (top). Our solution results in natural walking
animations (bottom).

Body and head orientations When using natural walk to navi-
gate in immersive VR, it is important to keep the head and torso
orientation decoupled, so that the user is free to move in any direc-
tion while rotating the HMD to look around. HMD velocity should
also be distinguishable from torso movement, so that the user can
take steps in any direction: from walking forward to side stepping.
Unfortunately, given the lack of torso tracking in consumer grade
VR devices, most applications use the HMD’s forward direction to
orient the avatar’s body, or simple rotate the avatar’s body when
the angle between the HMD’s direction and the current body direc-
tion is above a certain threshold. This keeps the avatar torso from
being correctly aligned with the user, and often results in wrong
motions when applying procedural animation. Our neural network
predicts the user’s body orientation from the trackers’ data so that
the body can be oriented correctly when combined with Motion
Matching. Figure 5 compares the resulting avatar orientation with
just the HMD (left), a MoCap-based ground truth (center) and our
neural network prediction (right). Better orientations in turn lead to
smoother animations when using Motion Matching.

Non-upright motion Another important aspect when animating
full-body avatars is their behavior when users bend their legs. The
applications that allow the avatar to crouch typically require the
user to press a button or use the HMD’s height information to bend
the legs procedurally. These approaches usually result in incor-
rect pose matching and unnatural poses. With our approach, non-
upright motion (e.g., tip-toes or crouching) is achieved by changing

Figure 5: In the center the ground truth using Xsens with the red
vector indicating the correct body orientation. On the left incorrect
torso orientation when using the HMD forward vector as the body
orientation. And on the right our neural network prediction.

the animation database, which can be switched at run-time based
on a given parameter or condition. Additional databases can be in-
cluded for other type of motions such as dancing, or walking with
different gaits. This provides natural non-upright motion with al-
most no manual setup. Compared to procedural approaches, it pre-
serves the realism of motions as Motion Matching does not synthe-
size new animations (see Figure 3).

In-place rotations In-place rotations are another common move-
ment in VR that the user performs often while looking around, and
they typically require small steps for changing the body orientation.
Most applications handle this user movement by rotating the avatar
in place keeping a static pose or by applying a slow walk forward
animation, but both cases result in noticeable foot sliding. Motion
Matching naturally handles changes in direction that require small
steps, since it is part of the trajectory features in the query vector,
thus allowing us to replicate such behavior.

7.2. Animation database effect on the position accuracy

In Motion Matching, the positional accuracy of the search results
is limited by the discrete number of animations in the database. In
Section 5.4 we explained the challenge of enforcing the position of
the avatar to a specific location when animating self-avatars with
Motion Matching, which is aggravated in VR due to the highly un-
predictable nature of the user trajectory. Consequently, to keep the
avatar at a reasonable distance from the user, we bound the posi-
tional error between the user and the avatar and clamp the avatar
position if necessary (thus, introducing some foot sliding).

Ideally, if the animation database could represent all possible
user movements in VR, Motion Matching could always perfectly
follow the user, and there would be no positional error. Therefore,
there is a strong dependency between the positional accuracy of
Motion Matching and the size and variety of the database. Fig-
ure 6 shows the effect of applying different sizes of animation
databases to the same user input to show the importance having
a good database on the final quality of the movements and the po-
sitional accuracy.

We tested the system with our complete animation database and
two reduced versions with 25% and 10% of the poses. The posi-
tion accuracy α was set to 30 cm. We performed different types of
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Figure 6: Three avatars animated with the same input (user doing a turn-in-place), but using an increasingly large portion of the animation
database. From top to bottom: 10%, 25% and 100% of the poses in the database. Smaller databases struggle to match the user’s motion,
thus reducing the final quality and increasing the time and space needed to complete the turn.

locomotion including run, walk, turn in place, walk in circles, and
step sideways, while running Motion Matching for each database.
For every frame, the positional error was computed as the distance
between the target position (user) and the position of the virtual
root joint (avatar). As shown in Figure 7, the positional error is re-
duced as the size of the database increases. Some movements had
the same error for the complete database and the 25% version due to
the movement being well represented in both databases. The mean
positional error for the complete database was 19 cm, while for the
25% and 10% it was 22 cm and 27 cm, respectively.

Figure 7: Positional error (distance between the user and the
avatar) for different animation database sizes using the same user
input. 100% is our complete animation database, while the others
contain 25% and 10% of the poses in the complete database. The
error is averaged every 20 seconds. Large databases represent a
wider range of motions and better match the user’s trajectories,
thus minimizing the positional error.

7.3. Position accuracy effect on the animation quality

The position accuracy parameter α defined in Section 5.4 is an up-
per bound of the positional error between the user and the avatar.
On the one hand, this parameter should be as low as possible to
maintain a good match between the user and the avatar positions.

On the other hand, Motion Matching may need some flexibility to
find a suitable trajectory to reach the target. The search may not find
an exact match to the target trajectory at all times. It may sometimes
deviate from the target, causing a positional error, but eventually, it
will correct the deviation by searching for new trajectories towards
the target. If a maximum positional error is enforced before Mo-
tion Matching corrects the trajectory, the animation quality could
be reduced due to the limited number of poses used.

We set up two avatars with α = 0.3 m and α = 0.1 m, and con-
trolled them simultaneously for around 5 minutes. We recorded the
indices to the pose and feature databases used for each avatar. Fig-
ure 8 shows one of the 2D position features (0.33 seconds in the
future) for all poses in the database and for those poses used for the
avatars. The avatar with α = 0.3 m has more freedom of movement
and can use a larger number of poses, thus, enhancing the final
animation quality. In total, the avatar with α = 0.3 m used 6,932
different poses while the other used 5,715 different poses.

Consequently, a large α is recommended for other users’ avatars
to improve the animation quality and reduce visual artifacts such as
foot sliding. However, the quality of certain types of motion (e.g.,
reaching an object) may be reduced because of positional misalign-
ment: upper body IK will frequently fail to reach the target. Visual
artifacts on the legs are less noticeable when animating self-avatars,
as users usually do not look at their legs [LLKH20]. Thus, we sug-
gest using a small α to avoid problems with the IK and the location
of the virtual body for self-avatars.

7.4. Body orientation prediction

In this section, we compare our neural network and the HMD’s
forward direction for predicting body orientation. We also compare
the accuracy of the neural network depending on the parameter r
defined in Section 4.2. Xsens was used to capture the motion of a
user playing a video game for Oculus Quest for 15 minutes. The
game required the user to change the direction of the body and the
head frequently. We measured the angle error between the ground
truth body direction captured with Xsens, which is the projection
of the hip joint forward direction onto the ground, and the different
body orientation predictors.
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Figure 8: Poses used by two avatars with α = 0.3 m and α = 0.1 m
were recorded for 5 minutes. The plot shows one of the 2D position
features (0.33 s in the future) from a top-down view. Larger position
accuracy allows Motion Matching to use more variety of poses.

Figure 9 shows the average angle error per minute for the dif-
ferent body predictors. Directly using the HMD’s forward direc-
tion as body direction had a mean angle error of 14.5º and a stan-
dard deviation of 18.9º while using our neural network trained with
r = 50 had a mean angle error of 5.4º and standard deviation of
7.7º. When r = 1, the neural network learns to imitate the previous
orientation, which is one of the network’s inputs, because it always
comes from the ground truth data during training. At runtime, the
previously predicted orientation is given as an input to the network,
therefore, it may not be reliable. Instead, we want the network to
learn to use the tracker’s information to predict the new orientation
while still having access to the previous one to induce continuity
in the changes. When r = 50, the neural network is trained to pre-
dict 50 consecutive frames and only compares the last one with the
ground truth data, which makes the network use the tracker’s in-
formation to predict the future orientations as simply copying the
previous predicted orientation is not enough. The mean angle error
when r = 1 is 15.0º, and the standard deviation is 25.7º. The result
is worse than when using r = 50 because, as shown in Figure 9,
around minute 7, the angle error is very large, and since the neu-
ral network is imitating previously predicted orientations, it cannot
quickly recover from the failure.

8. Discussion and limitations

Why not animate the upper body with Motion Matching One
of the strengths of Motion Matching is the final high-quality anima-
tions that it can provide directly from the motion capture database.
However, new animations are not synthesized from the existing
data. The search finds the best sequence of poses that approximate
our target trajectory, but since it is unfeasible to have a database
with all possible movements (and with different speeds, styles...)
it is common to add procedural touch-ups such as slightly rotat-
ing the virtual character towards the desired direction. Responsive-

Figure 9: Average angle error per minute for different body pre-
dictors while playing a video game for 15 minutes. HMD’s forward
direction had a larger error than our neural network for predicting
the body orientation. The neural network trained with r = 1 learns
to imitate the previous orientation instead of using the trackers’
data resulting in a larger error than training with r = 50.

ness and accurate positioning of the arms are crucial when it comes
to VR. Therefore we would need the position (and orientation) of
the controllers (or similar features) to match the upper body pose.
However, users in VR are free to do any movement with their arms,
and to represent the 6 degrees of freedom of each controller accu-
rately, the number of different trajectories and poses needed in the
animation database would make it unmanageable due to its size.

Even if a large animation database was available, we found
through exhaustive testing that the high dimensionality of the fea-
ture vector introduces a challenge to the search when prioritizing
features and as a result it does not return continuous movements.
We believe more research is necessary to deal with these issues.
For instance, neural networks can be used to effectively represent
massive databases as in [HKPP20], and eventually learn the mo-
tion manifold to overcome the limitation of having a discrete set of
poses in the animation database.

Quality dependency on the database The main component of our
method is Motion Matching, which provides high-quality locomo-
tion animations, and could be directly incorporated in most existing
VR applications using full-body avatars. To cover most of the re-
current motions in VR, the creation of the database is critical: it
should contain a good variety of walking speeds, a high number
of in-place turns, and sideways walking. The behavior of the sys-
tem can be easily modified by changing the animation database,
for instance, different walking gaits (sad, happy, hurt, etc.) could
be represented just by changing the database, or we could use a
dancing database to make the lower-body of the avatar dance ac-
cording to the movement of the HMD and the body direction (see
accompanying video).

Upper body animation This paper does not focus on the upper
body IK because it is already incorporated in any application us-
ing full-body avatars. However, by combining orientation predic-
tion with Motion Matching before applying upper body IK, we get
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two benefits. First, the avatar will always have a correct pose for the
torso, thus resulting in a better arm position. Second, if we detect a
controller failure, we could disable IK for that arm and let Motion
Matching return a plausible pose for the arm.

Foot lock Motion matching suffers from the foot sliding problem
when handling hard constraints with procedural touch-ups (e.g., en-
forcing an exact position for the character). This issue arises from
the discrete nature of the animation database. The problem is typ-
ically alleviated with IK to lock the foot to the floor. However this
problem becomes more noticeable in VR due to the highly unpre-
dictable nature of the user trajectory in real time.

In the case of animating characters to follow a path or a joy-
stick input, the trajectory used for Motion Matching is the exact
trajectory that the character has to follow. However in VR, predict-
ing such trajectory depends on the real time movement of the user
which can rapidly change, and on the velocity of the HMD, which
is irregular and may suffer from latency (e.g., remote collabora-
tors). This difficulty to create accurate trajectories introduces more
noticeable foot sliding problems when enforcing hard constraints.
Moreover, the problem is further aggravated by the larger amount
of locomotion movements that can be performed in VR compared
to animating a character in a video game. Still, we observed that
foot lock could successfully minimize foot sliding, and we believe
that it could be disabled as the animation database grows, allowing
the system to find better matches to the target trajectory, or when
the maximum positional error allowed is large enough.

9. Conclusions and future work

With the increasing interest in using avatars for the user represen-
tation in VR applications, such as video games, collaborative meet-
ings or the Metaverse, there has been a growing amount of research
in areas such as facial animation or 3D avatar reconstruction from
images. However, body pose animation is still relying on traditional
animation methods. We believe our approach can help improve cur-
rent VR applications by providing higher-quality animations for
avatars.

In this work, we have presented a data-driven method combin-
ing body orientation prediction and Motion Matching for animat-
ing full body avatars in mainstream VR devices (i.e., one HMD
and two controllers). Our system can improve existing VR applica-
tions using full-body avatars since it provides good animations that
correctly follow the user movements without requiring additional
tracking devices. To have a good pose alignment between the avatar
and the user body, we present a neural network for predicting the
body orientation and use it as input for Motion Matching. Over-
all, we hope this work will help in the development of high-quality
data-driven animations in the field of VR that can greatly improve
embodiment and facilitate collaborative work in VR.

For further research, it would be interesting to incorporate the
upper body animations into the Motion Matching system by reduc-
ing the dimensionality of the feature vector or combining multiple
searches for different body parts. The use of deep learning can be
another interesting direction of research to increase the expressive-
ness of the method and avoid the limitations of using a discrete
number of poses in the animation database.

Code and data The complete source code, trained model, anima-
tion databases, and supplementary material used in this paper can
be found at https://upc-virvig.github.io/MMVR.
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