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Abstract

In this paper we introduce a novel automatic method for generating near optimal navigation meshes from a 3D multi-layered virtual
environment. Firstly, a GPU voxelization of the entire scene is calculated in order to identify and extract the different walkable
layers. Secondly, a high resolution render is performed with a fragment shader to obtain the 2D floor plan of each layer. Finally, a
convex decomposition of each layer is calculated and layers are linked in order to create a Navigation Mesh of the scene. Results
show that our method is not only faster than previous work, but also creates more accurate NavMeshes since it respects the original
shape of the static geometry. It also provides a significantly lower number of cells and avoids ill-conditioned cells and T-Joints
between portals that could lead to unnatural character navigation.
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1. Introduction1

Character navigation in complex scenes is commonly per-2

formed by having a Navigation Mesh (NavMesh), which en-3

codes a convex decomposition of the scene. The NavMesh is4

represented with a Cell-and-Portal Graph (CPG), where cells5

are convex regions and portals are the edges shared by convex6

regions that a character can traverse. Path finding algorithms7

such as A* are then used over those NavMeshes.8

Although NavMeshes are widely used in complex applica-9

tions such as video games and virtual simulations, there are10

limited applications to automatically generate a NavMesh suit-11

able for path planning. Either the user needs to manually refine12

semi-automatically generated NavMeshes, or create them man-13

ually from scratch, which is extremely time consuming and a14

source of errors. There is therefore a need for automatic meth-15

ods to generate CPGs from any given 3D environment with16

minimum user input required.17

Previous work is either not fully automatic, cannot han-18

dle any geometry, and/or provides CPGs with far too many19

cells or ill-conditioned cells (a cell where vertices are practi-20

cally collinear which occurs when any of the internal angles is21

close to 0, or when the ratio Area/Perimeter of the polygon is22

close to 0). An over-segmented partition has two main prob-23

lems. Firstly, the performance of the path finding algorithm24

directly depends on the dimensions of the generated graph, so25

the fewer cells we have, the faster this step will be. Secondly,26

depending on the underlying local movement algorithm being27

used, an over-segmented partition may end up with characters28

walking in zig-zags through a long convex space as they are29

forced to go through unnecessary portals, or in portals so close30

together that they add too many unnecessary nearby attractors31

and therefore complexity when trying to achieve natural look-32

ing local movement.33

The architecture presented in this paper is novel, as it over-34

comes all limitations described above and presents an entire35

pipeline to go automatically from a 3D multilayer environment36

given as a polygon soup, to the final navigation mesh which37

adjusts tightly to the original geometry.38

The main contribution of this paper is a novel GPU based39

method to generate a CPG for a given 3D scene (with slopes,40

steps and other obstacles). The algorithm starts by performing a41

GPU voxelization of the geometry to classify the different lay-42

ers and calculate a cutting shape, CS. The CS is a depth filter43

used by the fragment shader to flatten each layers’ geometry44

into a 2D high resolution texture encoding the depth map of45

each layer. Then each layer is encoded as a single simple poly-46

gon with holes which is the required input for the NavMesh47

generator [1]. The NavMesh generator provides a convex de-48

composition with a number of cells close to the optimal value,49

since for most cases it only needs to create one portal per notch50

of the polygon with holes (see proof in the appendix). The re-51

sulting CPGs are further optimized with a novel convexity re-52

laxation technique which further reduces the number of cells.53

Finally all the layers’ CPG are automatically linked together to54

obtain the final CPG of the entire scene. Figure 1 shows the55

flow of the algorithm.56

To the best of our knowledge this is the first fully automatic57

architecture that can provide an accurate navigation mesh, with58

an almost optimal number of cells, ready for path planning from59

just a polygon soup (with degeneracies such as intersections and60

holes). The presented system is efficient enough to allow the61

scene modeler to make changes and observe the impact on the62

final navigation mesh at interactive rates and is of high impor-63

tance to the fields of video games, robotics, movies and charac-64

ter simulation.65
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Figure 1: Near optimal navigation mesh construction for a simple example of a 3D environment with 2 layers. From left to right we can see the original scene, the
result of the layer extraction step after the coarse voxelization, the 2D floor plan of each layer, and finally the near optimal navigation mesh.

This paper is organized as follows: In the next section we66

discuss previous work on Navigation Meshes. The third section67

describes the details of our method, explaining step by step the68

algorithm to go from the initial polygon soup to the CPG rep-69

resenting the navigation mesh of the entire scene. Next, results70

are shown followed by conclusions and future work.71

2. Related Work72

The determination and representation of free space in a vir-73

tual environment is a central problem in the fields of robotics,74

videogames and crowd simulation. Two general approaches ex-75

ist in order to represent the free space of a scene: roadmaps and76

cell decomposition. The main objective of both methods is to77

generate a graph that can be used by a search algorithm (usually78

the A*) to find a path free of obstacles between two points in79

the scene.80

The Roadmap approach [2, 3, 4, 5] captures the connectiv-81

ity of the free space by using a network of standardized paths82

(lines, curves). The main limitation of this representation is that83

it only contains information about which locations of the scene84

are directly connected, but it does not describes the geometry85

of the scene, nor where the obstacles are. Consequently, avoid-86

ance of dynamic obstacles is usually a hard task and not always87

possible, as exposed in [4].88

The Cell Decomposition approach consists of the partition89

of the navigable geometry of the scene into convex regions,90

guaranteeing that a character can move from two points on the91

same cell following a straight line, without getting stuck in lo-92

cal minima. This particular decomposition is usually known93

as Navigation Mesh (NavMesh) [6], and a CPG can be ob-94

tained to compute paths free of obstacles. Collisions with mov-95

able obstacles such as other agents are solved by using a local96

movement algorithm [7, 8], or by dynamically modifying the97

NavMesh [9].98

Local movement algorithms are generally driven by set-99

ting way points within the portals of the NavMesh that work100

as attractors to steer the agents in the right direction. An im-101

provement to traditional way points was introduced by Curtis102

et. al. [10] by using way portals where the whole length of the103

portal can be used to attract the local movement of the agents,104

thus resulting in more natural looking paths.105

Uniform grids have been proposed as a cell decomposition106

of the environment [11, 12]. It is an easy and fast solution to107

obtain a convex decomposition, but the main problem of this108

technique is that a high-density CPG is generated, increasing109

the time of the search algorithm. Another limitation is the poor110

adjustment to the shape of the obstacles, thus losing an impor-111

tant part of the walkable space. Valve’s Game Engine follows112

a similar approach [13]. It subdivides the virtual map by Axis113

Aligned (AA) quads of arbitrary size. The resulting partition114

contains fewer cells than in the case of uniform grids, but is115

still far from the optimal as it is a partition restricted by AA116

Quads. For the same reason, the adjustment to the obstacles re-117

mains poor. Hale et. al. [14], presented an automatic NavMesh118

generator method that consists of spreading a certain number of119

unitary quad seeds in the scene. Those quads are expanded as120

much as possible, adjusting to the contour of the obstacles and121

generating new seeds to completely cover the walkable space.122

Although the adjustment to the obstacles is perfect, the partition123

obtained contains many narrow cells and T-Joints, which could124

introduce artifacts on the movement of the characters when ap-125

plying a local-movement method. In addition, the method only126

works if every obstacle is convex, so a preliminary step to de-127

compose the obstacles into convex parts is required. A volu-128

metric version of this algorithm was proposed in [15], but it has129

the same limitations as the 2D version.130

Triangular Meshes have also been used to represent a Nav-131

igation Mesh. In [9, 16], a dynamic Constrained Delaunay Tri-132

angulation (CDT), having as constraints the edges of the obsta-133

cles, is used to represent the walkable area of a scene. During134

run-time obstacles are allowed to be inserted, removed or dis-135

placed and the CDT is able to dynamically take into account136

these changes. However, the results show that the performance137

of the application greatly depends on the complexity of the138

CDT, as well as on the complexity and number of constraints139

being moved. The size of the CDT is linear to the input ver-140

tices, whereas the convex partition obtained by our approach is141

linear to the concave vertices and hence, our method scales bet-142

ter. In [17], Kallmann introduced a new type of triangulation143

called Local Clearance Triangulation (LCT) that allows com-144

puting paths free of obstacles with arbitrary clearance. Such145

triangulation is obtained by a process that iteratively refines the146

starting CDT of the scene.147

TopoPlan [18] is an application that automatically gener-148

ates a CPG for a given virtual environment defined as a mesh149

of triangles that can contain multiple layers. The layers are ex-150

tracted using a prism subdivision, and the CDT of each layer151

is computed. Although the description of the walkable space is152

perfect, it is very costly in time. Results show that for a scenario153

of just 120k triangles, Topoplan needs more than 15 minutes to154

compute the NavMesh. This work was then extended to identify155

2



outdoor, indoor and covered areas for spacial reasoning [19].156

The main advantage of using a partition based on triangles is157

that geometric operations with triangles are very efficient, the158

convexity of the partition is guaranteed and it contains the least159

possible number of ill-conditioned cells. However, the partition160

is far from optimal as it is restricted by triangles.161

Another representation consists of partitioning the space by162

using Ngons [20, 21, 22, 1]. An example of such an applica-163

tion is the Recast toolkit [22], a popular tool used in complex164

applications such as videogames and other virtual simulations.165

The method used by Recast is inspired by the work of Hau-166

mont et al. [23]. Firstly, it computes a voxelization of the scene167

that makes the method robust against degeneracies of the input168

model (such as interpenetrating geometry, cracks or holes) as169

well as simplifies the furniture. Then, a partition of the scene is170

obtained by applying the Watershed Transform (WST) on the171

Distance Map Field of the voxelized scene. This partition is172

further refined as the WST does not guarantee convexity of the173

generated cells. Recast is a robust application, but the descrip-174

tion of the walkable space is not totally exact as the adjustment175

to the contours is not precise. However the most important176

drawback is the over-segmentation of the scene and the gen-177

eration of walkable regions where a character cannot access,178

(which may not be desirable and thus require manual adjust-179

ment, or post-processing).180

Toll et al. [24] presented a NavMesh generation method for181

a multi-layered environment, such as an airport or a multi-story182

car-park, where the different layers of the scene are connected183

by elements such as stairs or ramps. However, they do not pro-184

vide an automatic method to extract such layers. The imple-185

mentation of this NavMesh generation method, restricted to one186

single layer, can be found in [25].187

The work presented by Oliva and Pelechano [1] provided188

an efficient technique to calculate a convex decomposition with189

a number of cells close to the optimal convex decomposition.190

However, it only worked for simple polygons with holes, so in191

order to use it for a real scene, the polygons would have to be192

introduced manually, and the CPGs merged together manually.193

3. Automatic NavMesh Generator194

NEOGEN takes as an input a polygon soup describing a195

multi-layer 3D environment and provides as an output a CPG196

that can be directly used for character navigation without any197

manual work required by the user. The user only needs to spec-198

ify four input parameters:199

• maximum step height, hs, indicates the maximum differ-200

ence in terrain height that the character can overcome.201

• maximum walkable slope angle, αmax, indicates the max-202

imum angle of the slope that the character can walk up or203

down.204

• height of the character, hc.205

• walkable seed, sw, introduced by the user to indicate one206

point of the geometry where the characters can navigate.207

Note that the first two are character navigation skills and208

thus could be calculated automatically from the set of anima-209

tion clips available, and the third one can also be automatically210

calculated.211

In Figure 1 we can see an example with some intermedi-212

ate results provided by NEOGEN, and the final CPG. Figure 2213

shows the NEOGEN framework to generate a navigation mesh214

from a 3D multi-layer environment.215

The first step of the presented method consists of perform-216

ing a GPU coarse voxelization. This step classifies the voxels217

based on whether they are empty, positive, or negative. Geom-218

etry does not need to be axis aligned, and the discretization at219

this level will not affect in any way the final result. This GPU220

voxelization is then processed by the Layer Extraction and La-221

beling step to classify the voxels into layers.222

Once the layers have been detected, the Layer Refinement223

step performs a high resolution orthogonal render of each in-224

dividual layer in order to obtain a 2D image of the layer that225

preserves the original geometry. From this 2D image it calcu-226

lates the floor plan of each layer. Finally a near optimal convex227

decomposition of each floor plan is carried out and linked to228

the adjacent layers in order to obtain the CPG of the scene. The229

following subsections explain each of the steps in detail.230

Figure 2: Multilayer framework for the automatic navigation mesh generator.

3.1. GPU coarse voxelization231

GPU voxelization is employed to speed up the navigation232

mesh generation which is of great importance for the artist mod-233

eling the scene. By achieving interactive rates in this process we234

greatly help in the time consuming task of creating and modi-235

fying scenarios.236
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The voxelization method is an extension of the GPU method237

described in [26], where they perform in just one rendering pass238

a voxelization based on a slicing method. A grid is defined by239

placing a camera above the scene and adjusting its view frustum240

to enclose the area to be voxelized. This camera has an asso-241

ciated viewport with (w, h) dimensions. The scene is then ren-242

dered, constructing the voxelization in the frame buffer. A pixel243

(i, j) represents a column in the grid and each voxel within this244

column is binary encoded using the kth bit of the RGBA value245

of the pixel. Therefore, the corresponding image represents a246

w × h × 32 grid with one bit of information per voxel. This247

bit indicates whether a primitive passes through a cell or not.248

The union of voxels corresponding to the kth bit for all pixels249

defines a slice. Consequently, the image/texture encoding the250

grid is called a slicemap. When a primitive is rasterized, a set251

of fragments are obtained. A fragment shader is used in order252

to determine the position of the fragment in the column based253

on its depth. The result is then OR − ed with the current value254

of the frame buffer.255

Since faces near-parallel to the viewing direction do not256

produce any fragment, we have extended the previous technique257

by carrying out three separated slicemaps, one for each view-258

ing direction (along the X, Y and Z axis respectively). A final259

slicemap is then created by merging these separated slicemaps260

into a single one.261

In this step, we need a coarse voxelization that provides in-262

formation regarding the walkable areas of the scene. Each voxel263

will be of size w × w × hs where w can be a user input, or else264

can be automatically initialized as the diameter of the cylinder265

enclosing a character, and hs is the maximum step height. Each266

voxel will be classified into positive, negative or empty, there-267

fore we will use two slicemaps, one to store positive fragments268

and the second one to store negative fragments. This can be269

done in a single pass using Multiple Render Target (MRT) and270

a shader that outputs each fragment in the corresponding texture271

depending on its classification.272

For each drawn fragment we classify the voxel as:273

Vi jk =

{
positive cos (αmax) > (~n · ~UP)
negative otherwise

274

where αmax is the maximum walkable angle, ~n is the normal275

of the polygon corresponding to that fragment and ~UP is the276

vector (0, 1, 0).277

The main problem is that positive and negative surfaces can278

fall in the same voxel. Since in our application we are only279

interested in detecting the voxels with walkable surfaces, we280

will classify those voxels also as positive. The refinement step281

performed later on will solve the ambiguity. Figure 3 shows282

the decomposition into positive and negative voxels of a simple283

scene.284

Currently the maximum resolution for the coarse voxeliza-285

tion is 128×128×128. This resolution is limited by having MRT286

that can render into 8 textures in a single pass and we need 2 for287

each slicemap (positive and negative). Therefore we can count288

on 4 textures to encode each slicemap, with 8 bits/channel and289

4 channels (RGB).290

Figure 3: Original scene and its corresponding GPU coarse voxelization. Red
indicates negative voxels and blue positive voxels (i.e. where the slope is within
the walkable capabilities of the character).

3.2. Layer extraction and labeling291

After the coarse voxelization step, we know which voxels292

of the scene contain potentially walkable geometry. The poten-293

tially walkable area is formed by all those voxels:294

WA = ∪
{
Vi jk = positive

}
295

In this step, we need to split the potentially walkable area296

WA into layers, as well as eliminate all those voxels that are297

unreachable due to the character’s maximum step height hs, or298

the character’s height, hc. A Layer, Li, will be composed by a299

set of connected accessible voxels such that it is not possible300

to have in the same layer Vi jk and Vi jk′ (i.e. it can contain at301

most one voxel per column of the voxelization). An accessible302

voxel is a positive voxel where the character can stand without303

colliding with any geometry above:304

Vi jk =

{
accessible Vi j(k+{1..n}) = empty, n =

⌈
hc
hs

⌉
non accessible otherwise

305

Two accessible voxels Vi jk and Vi jk′ , (where k ≤ k′) are306

connected when the distance in both i and j is at most 1 and307

Vi jk′′ = positive,∀k′′ = [k + 1, k′ − 1], when k′ − k > 1.308

An ordered flooding algorithm is performed to extract all309

the different layers and assign them layer IDs, Lid. Initially310

accessible voxels are stored ordered from bottom to top and as-311

signed an invalid Lid. Starting from the most bottom accessible312

voxel, an Lid is created and its connected accessible voxels are313

checked for an Lid propagation step, in which we can encounter314

the following three cases:315

• The voxel has an invalid Lid: the current Lid will be as-316

signed, as long as there is no voxel below it that already317

has the current Lid. Otherwise the voxel will remain with318

an invalid Lid until the flooding method reaches it.319
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• The voxel has a valid Lid different from the current one: A320

layer merging can be carried out between the two layers321

if there are no voxels from one layer in the same column322

as a voxel from the other layer.323

• The voxel already has the same Lid: in this case nothing324

needs to be done.325

The flooding algorithm proceeds iteratively from bottom to326

top. Figure 4 shows the result of the layer ex5traction step.327

Figure 4: Result of the layer extraction step. Each color indicates the set of
voxels belonging to the same layer.

Finally, layers that are unreachable for the seed sw provided328

by the user are eliminated. Figure 5 shows the result of the layer329

connectivity step.330

Figure 5: After the layer connectivity step, unreachable layers are eliminated
(for this example, the orange and green layers are eliminated.

3.3. Layer refinement331

At this stage, we have subdivided the real walkable space332

into Layers. The Navigation Mesh could be computed from this333

representation, but since we want to obtain a fine adjustment to334

the obstacles, we need to further increase the resolution. The335

goal is to obtain a 2D high resolution floor plan of each layer.336

This is a key step of our algorithm, since it will solve any am-337

biguities contained in the voxels due to the coarse voxelization338

step, and provide as an output an accurate high resolution de-339

scription of the original geometry. In order to do this we have340

implemented a fragment shader that for each layer will only341

render the geometry that corresponds to such layer. Once the342

fine floor plan is rendered we can calculate the polygon border-343

ing the layer, as well as the obstacles. We will now explain in344

detail each of the sub-steps followed by the Layer Refinement345

process as shown in Figure 6.346

Figure 6: Layer refinement diagram.

Layer contour expansion347

For each layer obtained from the coarse voxelization we348

have two types of voxels: accessible and obstacle. It is possi-349

ble though that obstacle voxels neighbours of accessible voxels350

partly contain walkable geometry. Contour expansion is thus351

computed in order to consider these voxels for the cutting shape352

calculation. Figure 7 shows the result of this step around obsta-353

cles or floating geometry.354

Cutting Shape355

The Cutting Shape, CS, is calculated from the accessible356

voxels of each layer. The CS can be seen as a shape that wraps357

each layer in order to filter the geometry that should be rendered358

into a 2D high resolution texture to obtain the floor plan of each359

layer.360

This CS stores for each pixel the depth of the top of the361

accessible voxels with the offset hc and the type of voxel. The362

output texture stores:363

• Channel R: the type of voxel (1 for accessible voxel, 0.5364

for voxels which contain a portal between layers, and 0365

for non-accessible voxel).366

• Channels GBA: the depths of the cutting plane for each367

column of the voxelization grid.368

Depth map extraction369

An orthogonal top view camera is defined enclosing the370

scene. The depth map of the layer is calculated with a fragment371

shader, using the cutting shape as a filter. The fragment shader372

will discard a fragment (i, j) if it satisfies any of the following373

conditions:374
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Figure 7: From left to right we can see a close up of the scene. On the left,
the output of the layer extraction, in the center the result of the voxel expansion
step to better capture the original geometry around obstacles, and on the right
the calculated Cutting Shape (in white).

1. textureCS
i j .R = 0. If channel R of the cutting shape con-375

tains a 0, it means it is a non-accessible voxel.376

2. f ragmenti j.depth < textureCS
i j .GBA. If the current frag-377

ment’s depth is smaller than the cutting shape depth (stored378

in channels GBA) then those fragments do not belong379

to the geometry of the current layer, but to some other380

higher layer.381

3. cos (αmax) > (~n· ~UP). This means that the current surface,382

with normal ~n cannot be overcome by the character for383

the given maximum walkable slope angle αmax.384

In any other case, the fragment is passed to the next step385

of the graphics pipeline. Since the CS can intersect with verti-386

cal walls, and those walls will not produce any fragment on the387

rasterization process, we need to deal with near-perpendicular388

polygons separately in order not to lose any details of the orig-389

inal geometry. This is done by storing those polygons and then390

for each layer rendering polygons that intersect with accessible391

voxels directly onto the depth map of the corresponding layer.392

Figure 8 shows the result of this process for the bottom and top393

layer of the example scene. Notice that black areas indicate394

non-walkable space (obstacles, or empty) and in grey scale we395

can see the depth of the walkable areas. Notice how the ramp396

has been split between the two layers.397

Figure 8: Depth maps for the bottom and top layers of the example scene.

Obstacle detection and polygon reconstruction398

To identify floor vs. obstacles, a flood fill algorithm is per-399

formed over the depth map. Obstacles are detected when the400

difference in height between neighbouring pixels is bigger than401

the character’s step height, hs. The output of this flooding is a402

binary file where 1 means floor, and 0 means obstacle. Pixels403

belonging to the contour of an obstacle are considered vertices404

of the obstacle shape. To reduce the final number of vertices,405

we apply the Ramer-Douglas-Peucker algorithm [27].406

Figure 9: Floor plans of bottom and top layers. White polygons provide the
shape of each layer, and red polygons represent obstacles.

3.4. NavMesh Generation407

The final step of the algorithm consists of generating a nav-408

igation mesh of the scene. The floor plans generated previously409

are in the input format required by the navigation mesh gen-410

erator ANavMG [1]: a single polygon with holes representing411

floor vs. obstacles. The resulting CPG is a near optimal con-412

vex subdivision of the space, since the results obtained show413

that the final number of cells is close to the minimum value of414

the range where the optimal solution lies (as proven in [1] and415

in the Appendix). ANavMG calculates for every notch (con-416

cave vertex) its Area of Interest (delimited by the prolongation417

of the edges incident to the notch). Then the closest element to418

the notch inside this Area of Interest is calculated and a portal419

is created to convert the notch into a convex vertex. The clos-420

est element to the notch can be another vertex, an edge of the421

geometry, or a previously created portal. Figure 10 shows the422

output provided by ANavMG for a simple polygon with holes.423

Figure 10: Cell-and-Portal Graph obtained with ANavMG (69 cells).

Convexity Relaxation424

The purpose of Navigation Meshes is to have a decomposi-425

tion of space into walkable cells with portals joining those cells.426

Path planning algorithms are used to find the path between two427
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cells of the navigation mesh, and a local movement algorithm428

usually deals with the character’s displacement within a cell.429

Local movement algorithms, use different techniques to avoid430

obstacles that can also be used against small concavities in walls,431

therefore we can further reduce the number of cells in the final432

navigation mesh if we take this into consideration and relax the433

notion of convexity. Oliva and Pelechano [1] introduced this434

idea, by allowing to slightly increase the internal angle of the435

Area of Interest. However their solution does not always give436

good results since it does not guarantee to reduce the number of437

concave vertices for all scenarios, and it may lead to even more438

ill-conditioned polygons. Therefore in this work we present439

a different approach that matches better the local movement440

abilities of characters. Depending on the local movement algo-441

rithm being used for collision detection and avoidance, the user442

can decide empirically the convexity relaxation threshold, τcr.443

Our approach has some similarities with the Ramer-Douglas-444

Peucker algorithm [27], which is commonly used to reduce the445

number of points in a curve that is approximated by a series446

of points. Our method focuses exclusively on notches in the447

floor plan, since our goal is to determine which notches can be448

ignored when creating portals. So the algorithm is run for ev-449

ery sequence of notches found between two convex vertices (by450

sequence we mean 1 or more). Given the input threshold τcr,451

the algorithm recursively finds the notches that need to be kept452

in order to create portals. So at each step it finds the center453

notch of the sequence and calculates the distance between the454

center notch and the line segment joining the first and last ver-455

tex. If the distance is bigger than τcr then that notch needs to be456

kept and the algorithm calls itself recursively for the sequence457

of notches before and after the center notch. The recursivity458

stops when the distance is smaller than τcr, and all notches not459

marked as kept are ignored. Note that we are not eliminating460

these notches, we are simply not creating portals to split these461

notches into convex vertices.462

Figure 11 shows the navigation mesh after applying our463

convexity relaxation method to the example shown in Figure 10464

. This solution allows us to keep a detailed geometry for local465

movement purposes, yet reduces the final number of cells to466

speed up path planning.467

Figure 11: CPG of the example shown in Figure 10 after applying convexity
relaxation (τcr = 0.5). The final number of cells is 29.

Merging layers468

During the layer extraction step, we mentioned that chan-469

nel R of the cutting shape texture stores the value 0.5 when a470

pixel could belong to boundary between layers. This informa-471

tion is used to determine the portals that join a layer with its472

neighbouring layers. During this step, the algorithm iterates473

through these possible portal edges to join them together. After474

the merging process is finished, the navigation mesh could end475

up with some non-essential portals. A non-essential portal is476

defined as a portal that if removed will not leave a notch in the477

navigation mesh. For example in Figure 12 we see that a portal478

has been created in the center of the ramp to join the bottom and479

top layers (black dotted line) that could be removed merging the480

cells of the ramp. Therefore the final step of the algorithm con-481

sists of searching for non-essential portals around the merged482

areas.483

Figure 12: The merging step will join the top and bottom Navigation Meshes
into one, and will also eliminate the non-essential portals around merged areas
(black dotted line).

4. Results484

We have tested our algorithm in several scenarios of in-485

creasing complexity and number of vertices. NEOGEN has486

successfully generated the Navigation Mesh for all the multi-487

layered 3D environments tested. In Table 1 we have a summary488

of some different scenarios in which we have tested our algo-489

rithm. Figures 15 and 16 show the visual results obtained. It is490

important to mention that our algorithm is robust against inter-491

secting geometry, cracks and holes (which would be treated as492

obstacles). This is a very important advantage, since it makes493

easier the task of designing scenarios.494

scene #Fig #triangles #layers #cells τcr

map1 1 18,431 2 29 0.5
map2 16 7,308 3 86 0.5
map3 15 19,510 4 50 0.75

Table 1: Summary of the scenes tested (with references to the Figure number
in the paper) with the number of triangles and layers for each scene and the
final number of cells generated by NEOGEN for the given convexity relaxation
threshold, τcr .

In Figure 13 we show the time taken by NEOGEN to out-495

put the NavMesh for each scene (tested with Intel Core 2 Quad496
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Q9300 @ 2.50GHz, 4GB of RAM and a GeForce 460 GTX).497

Even though the execution time of the algorithm is not a ma-498

jor goal, it is important that the process run as fast as possible,499

to make it easier for the designer to make changes to the ge-500

ometry and see the impact on the resulting navigation mesh at501

interactive rates.502

We also compare our results against Recast, since it is one503

of the most widely used tools for the computation of NavMeshes504

in complex virtual applications. As we can observe, our method505

takes considerably less time to compute the Navigation Mesh,506

and this difference increases with the size and complexity of507

the environment. Regarding the number of generated cells, for508

map1 Recast created 121 cells, whereas NEOGEN needed only509

53 (without convexity relaxation) and can be further reduced to510

29 (with τcr = 0.5 ).511

Figure 13: Computation time (in seconds) taken for each of the tested scenes.

Another advantage of our method is that it creates cells that512

adjust tightly to the geometry. Figure 14 compares the adjust-513

ment to the contour offered by NEOGEN and Recast. As we514

can observe, NEOGEN provides a better adjustment to the con-515

tour of the obstacles, and hence, our description of the walka-516

ble space is more accurate as can be seen in the contour around517

the columns (notice that the small visual offset between the cell518

limits and the contours in our method is due to the cell edges be-519

ing rendered slightly above the terrain). The voxelization used520

in Recast provides a coarse approximation of the geometry that521

can be refined by reducing the size of the voxels, but at the cost522

of generating significantly more cells (this issue arises regard-523

less of the character’s size used to calculate clearance through524

Minkowski sum). NEOGEN offers a tight fit to the geometry525

without adding unnecessary cells.526

Finally, in Figure 15 we can see one of the limitations of527

Recast being that it creates walkable regions where a character528

cannot access. This occurs as Recast only takes into account529

whether the geometry enclosed by a voxel is traversable by the530

character or not, but it does not take into account any type of531

connectivity. Some of those regions can be discarded if they532

are small enough compared to the real walkable region, but if533

not the resulting CPG will have many unnecessary cells. While534

this limitation may not be a problem in situations where con-535

nectivity is assumed (for example, where characters can jump536

or teleport) we believe that accessibility (or the lack thereof)537

should be dictated by a set of parameters that describe the abil-538

ities of the character.539

Our results show that our system is faster than previous540

work in the literature, with minimal user input. In fact the infor-541

mation required from the user could be limited to the walkable542

seed sw. The rest of the input elements (hc, hs, αmax and τcr)543

could be automatically extracted from the walking abilities of544

the characters.545

Figure 14: Adjustment to the geometry of the NavMesh in our method (a) and
Recast (b,c,d). Recast results are calculated with agents radius being 0 (to elim-
inate the object enlargement carried out by Recast to account for clearance). In
(b) we can observe a good adjustment to the geometry when the original cell
size for the voxelization is 0.1, which has the drawback of creating too many
cells (see (d) where cells are shown with different colors), and taking too long
to compute. When the cell size is big (0.9), Recast can obtain a small number of
cells (c), but with very bad adjustment to the geometry and even intersections
(notice the bottom of the columns). In our result (a) we combine small number
of cells with tight adjustment (cell borders drawn slightly above the geometry
for clarity).

5. Conclusions546

We have presented a novel fully automatic system entitled547

NEOGEN, to compute a Near Optimal convex decomposition548

from a multi-layered complex 3D environment given as a poly-549

gon mesh.550

Our method can be divided into the following steps: firstly,551

a coarse voxelization of the scene is done in order to obtain a552

first approximation of the walkable area. Secondly, the poten-553

tially walkable area is subdivided into layers, using an ordered554

flooding process, and the layers that are not connected with the555

user seed, sw, are discarded. Then, each layer is refined by us-556

ing the fragment shader at higher resolution and the NavMesh is557

computed. Finally, all those individual NavMeshes are merged558

into a single one, that represents the walkable space of the entire559

scene.560

The results show that convexity relaxation is a powerful tool561

to reduce the final number of cells, especially when the scenario562

contains many rounded objects, and hence, the resulting CPG563

fits well with the requirements of an application that needs a564

real-time response. To the best of our knowledge, NEOGEN is565

the first NavMesh generator for complex 3D scenes that applies566

this concept successfully to reduce the size of the graph.567

We have compared our results against a well known tool568

used in many popular games, Recast, and show how we obtain569

better results in terms of number of cells, adjustment to obsta-570

cles and computational times.571
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As future work, we would like to add support for dynamic572

events. Our current method only takes into account the static573

geometry, which is enough for most applications, as collisions574

against dynamic obstacles such as other characters is normally575

solved by applying a local movement algorithm. However, it is576

common in applications such as video games to have worlds577

that are constantly changing (for example, an explosion that578

creates a crack in the floor, a tree that falls and blocks a path,579

a door that blocks or makes accessible a region of the scene,580

etc.). In those situations, the NavMesh needs to be modified on581

the fly.582

We would also like to extend our method to work with ar-583

bitrarily large environments. The size of the environment that584

we can currently handle is restricted by the resolution of the585

voxelization step. Hence, the main idea is to subdivide the586

scene into regions small enough to fit with the resolution of the587

voxelization, treat each of these regions as an individual multi-588

layered map applying the method described in this paper, and589

finally join the resulting NavMeshes into a single one.590

Finally, we would also like to add support for more char-591

acter skills. In addition to walking, a character can do more592

sophisticated actions such as jumping, crouching, or climbing593

walls. Such abilities allow the character to gain access to parts594

of the scene that he cannot reach by simply walking, and this595

information could be represented on the NavMesh.596
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Appendix: Near Optimal Decomposition of a Polygon with692

Holes693

The convex decomposition calculated for each layer (2D694

simple polygon with holes) is based on creating a portal be-695

tween each notch and the closest element in the polygon (edge,696

vertex, or portal). In a few cases, if the closest element is a697

portal, it may be necessary to create two new portals to avoid698

T-Joints between portals. Often, when this happens the initial699

portal can be eliminated because it turns into a non essential700

portal. As proven by Fernandez et. al. [28], the optimal number701

of cells, OPT, for a convex decomposition of a polygon with702

holes is within the bounds:703 ⌈ r
2

⌉
+ 1 − h ≤ OPT ≤ 2r + 1 − h704

Where r is the number of notches, and h the number of holes.705

The lower bound corresponds to the ideal case where all portals706

created join two notches, and the higher bound corresponds to707

the case where a portal needs to be created for each notch to turn708

it into a convex vertex. Since the NavMesh generator creates in709

most cases one portal per notch, our convex decomposition will710

theoretically provide a result around r − h, although in practice711

as we increase the complexity of the polygons our result tends712

towards the lower bound .713
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Figure 15: Comparison between the results given by Recast and our method (using map3). As we can see, our method not only successfully eliminates unreachable
layers, but also it calculates a navigation mesh with a much lower number of cells.
Note also that the shape of obstacles is perfectly adjusted by our cell decomposition (cells rendered slightly above the geometry for clarity), without increasing
unnecessarily the number of cells in the final CPG.

Figure 16: Two views of the Navigation Mesh for the scene map2 (3 layers and 7,308 triangles) NEOGEN calculates 86 cells with τcr = 0.5
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