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ABSTRACT
The challenge of path-finding in video games is to compute optimal

or near optimal paths as efficiently as possible. As both the size of

the environments and the number of autonomous agents increase,

this computation has to be done under hard constraints of memory

and CPU resources. Hierarchical approaches, such as HNA* can

compute paths more efficiently, although only for certain config-

urations of the hierarchy. For other configurations, performance

can drop drastically when inserting the start and goal position into

the hierarchy. In this paper we present improvements to HNA* to

eliminate bottlenecks. We propose different methods that rely on

further memory storage or parallelism on both CPU and GPU, and

carry out a comparative evaluation. Results show an important

speed-up for all tested configurations and scenarios.
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1 INTRODUCTION
Path planning for Multi Agents in large virtual environments is a

central problem in the fields of robotics, video games, and crowd

simulations. In the case of video games, the need for highly effi-

cient techniques and methods is crucial as modern games place

high demands on CPU and memory usage. Typically it is not nec-

essary to obtain the optimal path for all agents, but paths that look

convincing.

The problem of path finding can be separated from local move-

ment, so that path finding provides the sequence of cells to cross in
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the navigation mesh, and other methods can be used to set way-

points and to handle collision avoidance.

In this paper, we focus on abstraction hierarchies applied to

path-finding to improve performance. A general notation consists

of labelling the hierarchy as levels or layers in ascending order, with

the lowest, L0 being the un-abstracted map in the game space and

consecutive layers numbered L1, L2 and so on being the different

levels of abstraction. The key idea consists on performing a search

at a high level, which is then "filled in" with more refined sections

of the path at lower levels, until a complete path is specified which

can be followed by an agent [Bulitko et al. 2007].

Typically a high level solution can be rapidly calculated, and the

challenge lies on inserting the specific Start (S) and Goal(G) posi-

tions to link them with the high level graph. Work in the literature

shows that this inserting S/G step can become a bottleneck in both

2D grids [Botea et al. 2004] and Navigation Meshes [Pelechano and

Fuentes 2016].

There are many techniques in the literature that have shown

impressive improvements for the case of 2D regular meshes to in-

crease speed without a large memory footprint [Sturtevant 2007].

However general navigation meshes consisting of convex polygons

of different complexity, present more challenges given their irregu-

lar nature (i.e. not all the cells have the same size and edge length)

[Van Toll et al. 2016]. In this work we propose several approaches

to speed up the existing bottleneck in hierarchical path finding

for general navigation meshes, and evaluate their advantages and

limitations in terms of both memory usage and performance im-

provements.

2 RELATEDWORK
Planning via hierarchical representation has been used to improve

performance in problem solving for a long time [Sacerdoti 1974].

A two-level hierarchy can be created by abstracting the map into

clusters such as rooms in a building or square blocks on a field

[Rabin 2000]. An abstract action crosses a room from the center of

an entrance to another, leading to fast computation at the cost of

a non-optimal path. Hierarchical Path-Finding A* (HPA*) [Botea

et al. 2004] reduces problem complexity on grid-based maps. The

HPA* technique abstracts a map into linked local clusters. At the

local level, the optimal distances for crossing each cluster are pre-

computed and cached. At the global (high) level of this method,

an action consists of crossing a cluster in a single big step rather

than moving to an adjacent atomic location and small clusters are

grouped together to create larger clusters.

Visibility has also been used create hierarchical abstractions

[Rabin 2000]. In this case, the graph nodes represent the corners of
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convex obstacles, and edges join nodes that can "see" each other

(i.e. that can be connected with a straight line).

Hierarchical Navigation meshes have also been used to speed up

path-finding [Pelechano and Fuentes 2016]. The method is based on

a bottom-up approach to create a hierarchical representation using

themultilevel k-way partitioning algorithm (MLkP), annotated with

sub-paths information. Their approach is flexible in terms of both

the number of levels in the hierarchy and the number of merged

polygon between levels of the hierarchy.

Hierarchical Annotated A* (HAA*) [Harabor and Botea 2008]

extends HPA* taking clearance into account. Kring and et al [Kring

et al. 2010], introduced the Dynamic Hierarchical path-finding A*

(DHPA*) and Static Hierarchical path-finding A* (SHPA*) hierar-

chical path-finding algorithms, along with a metric for comparing

the dynamic performance of path-finding algorithms in games. In

DHPA* the run-time cost is reduced by spending more time and

memory usage in the build algorithm and less time in the search

algorithm. In SHPA* the performance is improved and the memory

requirements of HPA* are reduced. In DHPA*, improves the search

performance by eliminating the time consuming "SG effort" that

is present in HPA*. Our work is inspired by their method, but ex-

tended to the more general problem of navigation meshes where

certain assumption such as cell size cannot be made beforehand.

The HNA* algorithm [Pelechano and Fuentes 2016] is a bottom-

up method to create a hierarchical representation based on a multi-

level k-way partitioning algorithm (MLKP) of a navigation mesh.

Similarly to HPA*, HNA* also pre-computes sub-paths and stores

them to be accessed by the on-line search algorithm.

In this paper we present several methods to solve the bottleneck

that appears in HNA* when connecting the start/goal positions

with the hierarchical representation.

3 THE HNA* ALGORITHM
The focus of this paper consists of solving the bottleneck that

appears in HNA* when inserting start (S) and goal (G) positions

into the high level abstraction graph. Before explaining the details

of our approach, we would like to remind the reader the origin of

this problem. A hierarchical navigation mesh consists of several

layers, where a node of a higher level contains a group of merged

nodes from a lower level. Finding a path in this representations

consists of four steps (as illustrated in Figure 1): (1) insert S and

G, (2) find path at high level, (3) extract sub-paths (stored from an

off-line phase), and (4) delete S and G from high level graph. The

bottleneck appears in step 1, since it is necessary to compute A*

from S to each inter-edge in the high level node (inter-edges connect

the high level node to its neighboring nodes). This cost increases

rapidly with the number of inter-edges. And the number of inter-

edges increases as we add more levels to the hierarchy or merge

a larger number of polygons between levels of the hierarchy (for

more details we refer the reader to the original paper [Pelechano

and Fuentes 2016]). This effect has a negative impact on the overall

performance of HNA* as it puts an upper limit on the performance

benefits of the algorithm.

Figure 1: Path-finding computation: S andG are inserted and
linked to their partitions at level 2 by calculating shortest
paths to each portal in their respective node(a). Paths are
calculated at level 2 (b), and then intra-edges are extracted
from lower level 1 (c) and the final path is obtained for level
0 (d) [Pelechano and Fuentes 2016].

4 NEW INSERT S AND G APPROACHES
In this paper, we present three alternative solutions to solve this

step and we carry out a quantitative evaluation of their advantages

and limitations. The first solution focuses on storing further data,

while the other two propose parallel implementations in both CPU

and GPU.

4.1 Pre-Calculated Paths
The simplest way to solve this problem consist of pre-storing further

information to speed-up the inserting step. We can calculate the A*

path from a specific point p in each polygon at level 0 (L0 which
corresponds to the original navigation mesh) to the inter-edges

that appear in the higher level node of the hierarchy (L# where #
represents the highest level). Therefore during the on-line phase it

is only necessary to determine which polygon of L0 contains S, and

extract the set of paths that connect p with the high level graph

without the need to run A* between p and each inter-edge (from

now on, since the algorithm is the same for both S and G, we will

only refer to S).

Therefore the method includes an off-line and an on-line phase.

In the off-line phase, the center point pc of each polygon at L0 is

calculated and the shortest paths and cost frompc to the inter-edges
in L# are calculated and stored in memory using a MultiMap hash

table. Table 1 shows an example of such table, where we have 4

inter-edges for polygon 11, and thus for entry polyID=11 we can

find 4 alternative paths with their corresponding cost. These paths

would be the temporal connecting edges with the high level graph

in order to compute A* at the higher level of the hierarchy during

the on-line phase of the algorithm.

Therefore, when a new path search starts in the on-line phase,

the algorithm checks the ID of the polygon containing S, takes its

center position and extracts the temporal edges from the MultiMap

table. We thus simplify the connect step with a fetch for the stored
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Table 1: structure of MultiMap

Poly ID Path Cost

11 06-08-05-03 46.048

11 06-08-05-04 81.72

11 06-06 33.61

11 06-08 18.06

12 18-19-21-28 106.55

12 18-19-21-26 92.53

paths as opposed to computing A* on-line for each inter-edge of

the node nS
#
(node of level # containing S).

Algorithm 1 shows the off-line phase of our method. Note that,

for navigation meshes, it is necessary to compute the exact path

from the center of each polygon, since we cannot assume that the

shape and size of all cells is the same as it happens with 2D regular

grids. It is important to note that center points are computed simply

to obtain estimated distances to portals, when computing global

paths. However this does not imply that the local movement of the

agent has to cross the center point. Agents are steered towards the

portal connecting with the next cell in their paths. Since all cells

are convex, the path is free of collisions against the geometry).

Algorithm 1 Find-Path

1: procedure Get_Path
2: N ← NumO f Polyдons ◃ Number of polygons in L0

3: C ← NumO f Cluster ◃ Number of clusters in L1

4: for i:=1 to N do
5: SId ← GetPolyдonID[i]
6: S ← GetPolyдonCenterPos[i]
7: for k:=1 to C do
8: CId ← InterEdдeID[k]
9: if SId == CId then
10: G ← InterEdдePos[k]
11: (PolyId, Path,Cost) ← FindPathAstar (S,G)
12: SavePath(PolyId, Path,Cost)

13: end If
14: end for
15: end for

4.2 Parallel Search on CPU
To exploit the parallel hardware architecture in depth, the algorithm

should be adapted to run concurrently using multiple threads and

shared memory access. The connecting S and G step is a highly

parallelizable problem, as we can simply run each A* search in a

different thread. In order to find a path from S/G in a polygon to

their corresponding inter-edges using Multiple threads per polygon,

we have used N threads concurrently to find an optimal path where

N = n +m with n being the number of inter-edges in nS
#
andm

the number of inter-edges in nG
#
. These threads work concurrently

so that each thread calculates the optimal path from S or G to

one of the inter-edges in the corresponding node nS
#
or nG

#
. Our

implementation uses the Boost library [BOO 2017].

4.3 Parallel search on GPU
The CPU usually contains several highly optimized cores for se-

quential instruction execution, while the GPU typically contains

thousands of simpler but more efficient cores that are good at ma-

nipulating different data at the same time. In addition, the GPU

has a memory system which is independent of that of its CPU.

Such a design provides a higher bandwidth for accessing the global

memory. In other words, cores of a GPU can retrieve and write

data from/to the global memory much faster than a CPU [Zhou

and Zeng 2015].

When several paths are being calculated in parallel in the Multi

thread implementation, the Binary heap used for computing A* can

become a bottleneck because it stores information in local memory.

The A* search algorithm usually requires many accesses to global

memory (especially in big scenarios) for storing and retrieving

nodes from/to both open and closed lists. The A* algorithm also

needs higher global memory bandwidth which can lead to a faster

expansion rate during A* search.

In order to overcome this weakness and speed up the search

process, we have used the GPU shared memory facility (using

CUDA [NVIDIA 2017]). All the required data is stored into shared

memory before any computation. Shared memory is much faster

than local and global memory, because it is on-chip memory. Shared

memory is allocated per thread block, so all threads in the block

have access to the same shared memory.

A program designed to run on a GPU is called a kernel, and in

CUDA the level of parallelism for a kernel is defined by the grid size

and the block size [Nickolls et al. 2008]. One of the most important

factors that can have an effect on parallelism performance is the

degree of parallelism (DOP), which in our case corresponds to the

number of inter-edges N (counting for both nodes of the high level

graph containing S and G). We have defined a kernel with one block

for the polygon containing S and another forG , plus n orm threads

per block respectively.

5 EXPERIMENTAL RESULTS
5.1 Error and Memory Usage in Pre-calculated

Path method
In this section we present the results achieved in terms of perfor-

mance but also discus the limitations of each approach. For instance,

the pre-calculated paths method, achieves the best performance,

as we expected. However it requires additional memory and also

introduces a small offset between the real position of S/G and the

center position of each polygon.Therefore we need to measure the

impact of both memory and offset in the results obtained. Figure

2 shows the memory usage in 5 different scenarios of a variety of

sizes (shown as number of triangles in the original mesh).

Memory usage increases with the size of the scenario (Figure

2). The allocated memory for Dungeon scenario with 119 polygon

is 2.9 MB while the allocated memory for Medieval City scenario

with 16,867 polygons is 49.6 MB. Memory could be further reduced

by storing in the hash table, only the next cell as opposed to the

whole path. However this would require further accesses to the

hash table, thus reducing performance.
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Figure 2: Memory usage in 5 different size scenarios.

In the pre-calculated paths approach, we have computed paths

and costs from the center of each polygon to the inter-edges of its

cell and store them in a hash table. When inserting new S and G

points in any location of a polygon, the algorithm checks the hash

table and fetches paths with the IDs that correspond to the polygons

containing S and G positions. Undoubtedly, this introduces an offset

between the center positions and the real S and G. However this

offset represents only a marginal error when compared to the total

length of the path (it simply adds a small offset at the beginning

and at the end of the total path). However note that this offset

simply affects the global path computation, and not the local path,

as agents are not forced to walk through the center points. Our

experimental results show a small impact on the total length of the

path (3% on average for paths under 100m, and 5% on average for

shorter paths).

Figure 3: Different scenarios with their corresponding num-
ber of triangles in the mesh. A: City Island (110.3K), B: Ser-
pentine City (135.1K), C:Medieval City (774.7K) and D: Big
Tropical scenario (239.1K).

5.2 Performance Results for Pre-calculated
paths method

For the evaluation of this method we have used several multilayer

3D scenarios as shown in Figure 3, with increasing numbers of cells

in the original NavMesh and different hierarchical configurations.

To compare the overall computational time of our pre-calculated

paths method against HNA*, we have computed the average cost of

calculating 100 paths with an Intel core i7-4770 CPU@3.5Gz, 16GB

RAM. Results show that we can achieve significant speed-ups for

all configurations, which was our ultimate goal.

For the City Island scenario, we can see in Figure 4-a1 the average

cost of performing A* in this scenario is 2.2 ms. Figure 4-a1, shows

that the performance of the Pre-calculated path method at L1 is not
significantly faster than HNA*, this is due to the fact that at L1 the
connecting S and G step does not represent an important bottleneck

as can be appreciated in Figure 4-a2 . The strength of the new

method can be observed for higher levels of the hierarchy. Figure

4-b1 and Figure 4-c1 show significant performance improvements

when compared against HNA*. This improvements can be seen

in Figure 4-b2 and figure 4-c2 where we have clearly manage to

drastically drop the cost of the connecting S and G step.

Results are similar for the Big Tropical Island. The average cost

of performing A* in this scenario is 1.7 ms. At L1, there is not a

large performance gain, since the bottleneck of inserting S/G in

HNA* is negligible. Our results show performance gain for all the

values of µ tested (µ ∈ [2,20]) at L1 with the fastest search being

1.12ms for µ = 20. The advantages of the new implementation are

noticeable for L2 and L3 after a specific value of µ. HNA* had a

performance of 2.13ms for L2 and µ = 20 and 9.01ms for L3 and µ =

10 while our new HNA* obtained paths in 0.39ms for L2 and µ = 20,

and 0.25ms for L3 and µ = 10.

Similar results where obtained for the Medieval city scenario (A*

performance of 3ms). HNA* suffered from the insert S/G bottleneck

after a specific value of µ. With 2.13ms in L2 and 9.01ms in L3 for µ
= 10 while our new HNA* had a computational time of 0.39ms in

L2 for µ = 20 and 0.25ms in L3 for µ = 10.

5.3 Achieved Results of parallel search on the
CPU

In order to evaluate our parallel CPU method, we have carried out

experiments with the same set of scenarios and configurations. In

parallel programming the performance of the method depends on

the degree of parallelism of the problem to be solved (DOP), which

in our case corresponds to DOP=N, with N being the number of

inter-edges. The number of inter-edges can rapidly increase with

the number of levels in the hierarchy and the number of merged

nodes as shown in Figure 5 for the example of L2.
As we can see in Figure 6 with increasing DOP (number of inter-

edges in our work) the total cost of our parallel CPU implementation

decreases the connecting S and G step although eventually con-

verging to a value. This is due to the fact that even though the

increment of µ also increases the value of the DOP, the overhead

of multi-threading outweighs the gains achieved.

From the results shown in Figure 6, we observe that the pre-

calculated path and the Multi-threads implementation are much

faster than the HNA* implementation on the CPU. However the

pre-calculated path method still shows the most efficient results.

HNA* and parallel CPU method exhibit similar results for small

values of µ (i.e.while the number of inter-edges does not represent

a big bottleneck in HNA*). However for larger values of µ, the cost
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Figure 4: Performance results for the city Island.

of inserting S and G in HNA* can become increasingly expensive

compared to pre-calculated path method or CPU parallel method.

CPU parallel is more costly than pre-calculated because the binary

heap used to implement the priority queue of A* can turn into a

bottleneck in Multi thread implementations. The reason is that

even though N (number of inter-edges per polygon) threads run in

parallel, when it comes to inserting values in the binary heap, only

one thread can remain active and all the other threads have to wait.

Finally, we also includ in this Figure 6 the results of connecting

S and G with the parallel GPU version to compare it against the

CPU version. We can clearly observe that the results for GPU are

almost as efficient as the pre-calculated method.

5.4 Achieved Results of Parallel Search on the
GPU

To compare the CUDA method against Pre-Calculated and HNA*,

we have computed the cost of calculating 100 paths in the same

Figure 5: Average number of inter-edges for L2 as the value
of µ increases.
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Figure 6: Performance cost for inserting S andG stepwith the parallel implementation on theCPU.Results shown theMedieval
city scenario using a hierarchy of 3 levels.

scenarios and configuration (see Figure 4). The CPU used in these

experiments is an Intel core i7-4770 CPU@3.5Gz with 16GB global

memory. The GPU was a single NVIDIA Geforce GTX 420 with

2.4GB off-chip global memory and 2496 CUDA cores.

For the City Island scenario, Figure 4-a1 shows that the average

cost of performing A* in this scenario is 2.2 ms. Figure 4-a1, for

L1 of hierarchy and µ = [2, 20] the performance of Pre-calculated

path method is faster than both CUDA parallel method and HNA*,

which CUDA outperforming HNA*. As in previous experiments,

the performance difference is not significant for L1, but for L2 and

L3 it becomes highly significant. The time of computing a path for

L2 and µ = 20 is down to 0.648ms, and for L3 and µ = 10 is down

to 0.561ms for CUDA and 0.411ms for Pre-calculated path method.

As we can see in the right column of Figure 4, CUDA has a

slightly higher cost when inserting S and G than the pre-calculated

path. However the difference is negligible while saving memory

footprint and avoiding the offset between S/G and the center the

point of each polygon.

Similarly, for the Big Tropical scenario, the performance differ-

ences are not relevant for L1, but show drastic improvements from

L2 onwards. For instance, the performance of CUDA in L2 and for

µ=20 drops to 0.659ms while the performance of HNA* increases

up to 2ms.058ms. However, Pre-Calculated paths is still faster than

CUDA in L2 with the time being 0.396ms for µ=20.
Finally, we obtain similar results for the Medieval city scenario.

In the original HNA* algorithm, the time of connecting S and G

points increases up to 7.43ms in L3 for µ =10 whilst it drops to

0.14ms for CUDA, and 0.011ms for Pre-calculated path.

6 CONCLUSION
In this paper we have studied the problems of path-finding in

large Scenarios for hierarchical representations based on navigation

meshes. Our results have provided improvements over the basic

HNA* algorithm. The first improvement that we have developed

consists of the use of pre-calculated paths calculated from the cen-

ter of each polygon in L0 (lowest level of the navigation mesh) to

its inter-edges in the higher level of the hierarchy. Those paths are

then stored in a MultiMap hash table and can be accessed efficiently

during the on-line search. Given the highly parallel nature of our

problem, the second improvement that we have implemented, con-

sists of having a multiple threads version of HNA* algorithm on

the CPU. In this implementation we have used threads in order to

calculate paths concurrently each A* path between S/G and inter-

edges of the high level node. Finally our third approach consists

of a parallel version of HNA* on the GPU using CUDA. To eval-

uate our different methods we have used several multilayer 3D

scenarios with increasing numbers of cells in the their navigation

mesh and increasing number of merged polygons. Our results show

that both the Pre-calculated Paths method and the CUDA version

are faster than the original HNA* but Pre-calculated path method

requires more memory usage than others. For all tested scenarios,

the performance improvements are not very significant for L1, but

they become very relevant from L2 onwards, as they eliminate the

bottleneck of HNA* which was the connect S and G step. With

this improvements, we have eliminated the important bottleneck

from HNA* and thus obtain hierarchical path finding algorithm

for general navigation meshes that offers speed-ups for a larger

number of scenarios.
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