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Figure 1: On the left, we illustrate the trajectories followed by three characters as their way points over the portal with clearance are
dynamically adjusted to their current positions and collision avoidance. On the right, paths followed by agents of different radii (from largest
to smallest in red, yellow and green) in a NavMesh showing their dynamically assigned way points (in black).

Abstract

There are two frequent artifacts in crowd simulation, the first one
appears when all agents attempt to traverse the navigation mesh
sharing the same way point over portals, increasing the probabil-
ity of collision against other agents and lining up towards portals;
the second one is caused by way points being assigned at locations
where clearance is not guaranteed which causes the agents to walk
too close to the static geometry, slide along walls or even get stuck.
In this work we propose a novel method for dynamically calculat-
ing way points based on current trajectory, destination, and clear-
ance while using the full length of the portal, thus guaranteeing
that agents in a crowd will have different way points assigned. To
guarantee collision free paths we propose two novel techniques: the
first one provides the computation of paths with clearance for cells
of any shape (even with concavities) and the second one presents
a new method for calculating portals with clearance, so that the
dynamically assigned way points will always guarantee collision
free paths. We evaluate our results with a variety of scenarios, and
compare our results against traditional way points at the center of
portals to show that our technique offers a better use of the space
by the agents, as well as a reduction in the number of collisions.
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1 Introduction

Applications such as video games require characters within a crowd
to follow visually convincing paths in real time. Characters should
move towards their destination along a realistic path, and at the
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same time maintain an appropriate amount of clearance with respect
to the obstacles and avoid collisions with other agents as smoothly
as possible.

Navigation meshes (NavMeshes) are commonly used to carry out
navigation of autonomous characters. NavMeshes consist of a data
structure that encodes the free space of the scene by splitting it into
convex polygons, known as cells. A Cell-and-Portal Graph (CPG)
is obtained where a node represents a cell of the partition and a por-
tal is an edge of the graph that connects two adjacent cells. Then,
given a start and a goal position, paths can be calculated through
a variant of the classic A* algorithm. Finally, at every step of the
simulation, a local movement algorithm is applied in order to guide
the agent through the obtained path by computing intermediate goal
positions (commonly known as way points) that connect the differ-
ent nodes of the path.

When simulating a variety of characters, it is convenient to be able
to calculate the shortest route for the characters based on their size.
If we think of applications such as video games, this would allow a
skinny character to escape from a large monster by running through
a narrow passage. Efficiency is also a key aspect, as many charac-
ters may require a path computation in the same frame over a large
scenario, so only a small fraction of a second is available for each
character.

Additionally, the method used to compute the way points is also
critical in order to produce visually convincing routes. Most pro-
posed solutions are based on computing a single point over the por-
tal (usually at the center, or at the endpoints of the portal), so all
agents share the same way point. This results in agents that tend
to line up when approaching the portal from the same side, or form
bottlenecks when several agents attempt to cross the portal coming
from different directions. These artifacts reduce artificially the flow
rates through portals and thus the overall time to reach their desti-
nation, and are also perceptually unpleasant. An algorithm that can
run in real time assigning different way points to different charac-
ters can mitigate these artifacts.

Previous work is either bounded to a specific amount of clearance,
or only work with a specific type of Navigation Mesh (e.g. triangu-
lar meshes, medial axis). On the contrary, our method is able to deal
with an arbitrary amount of clearance and can work with any type of
NavMesh even if cells are not strictly convex. To show this, we have
integrated our local movement algorithm into NEOGEN [Oliva and
Pelechano 2013].



Main Contributions. This work presents a novel system to guar-
antee character trajectories with clearance that make the most of
the available free space in the NavMesh. We present three contri-
butions: Firstly, a novel technique to dynamically use the whole
collision free space of portals to assign way points. Secondly, a
novel method for calculating clearance in navigation meshes con-
sisting of cells of any shape. And finally a new technique to com-
pute clearance over portals. The algorithm is straight forward and
computationally efficient to allow simulation of crowds.

2 Related Work

Path planning of autonomous characters in virtual environments is
a central problem in the fields of robotics, videogames, and crowd
simulation. The most popular solutions are based on a combination
of global and local movement techniques. The target of global nav-
igation techniques is to provide a representation of the free space of
the scene that is usually obtained by either constructing a roadmap
or a navigation mesh. The main objective of both approaches is to
generate a graph that can be used by a search algorithm (usually
A* [Hart et al. 1968]) to find a path free of obstacles between two
points in the scene.

The roadmap approach [Arikan et al. 2001][ Young 2001][Sud et al.
2007][Rodriguez and Amato 2011] captures the connectivity of the
free space by using a network of standardized paths (lines, curves).
The main limitation of this representation is that it does not describe
the geometry of the scene, nor where the obstacles are. Conse-
quently, avoidance of dynamic obstacles is usually a hard task and
not always possible, as exposed in [Sud et al. 2007].

The navigation mesh approach [Snook 2000][Tozour 2002][Kall-
mann 2005][Pettre et al. 2005][van Toll et al. 2012][Oliva and
Pelechano 2013] consists of the partition of the navigable space
of the scene into convex regions, guaranteeing that a character can
move between two points of the same cell following a straight line,
without getting stuck in local minima. Currently NavMeshes have
become more popular than roadmaps as the representation of the
free space is more intuitive, clean, and provides a better description
of the free space and the location of the obstacles. So we will focus
on this global navigation technique.

The target of local movement techniques is to provide a mechanism
for the autonomous characters to move from one location to the
next one in the path in a smooth and natural manner, while avoiding
collisions against dynamic obstacles. These methods are generally
driven by setting way points within the portals of the NavMesh that
work as attractors to steer the agents in the right direction [Reynolds
1987][Reynolds 1999][Pelechano et al. 2007][van den Berg et al.
2008a][van den Berg et al. 2008b][Snape et al. 2011].The main
problem of this approach is that characters tend to line up as they
share the same attractor point over the portal. An improvement to
traditional way points was introduced in [Curtis et al. 2012] by us-
ing way portals where the whole length of the portal can be used
to attract the local movement of the agents, thus resulting in more
natural looking paths. However, the problem of clearance is not
properly addressed on this paper, since they assume that a cell is
accessible by a character if the length of the portal that needs to be
crossed is greater or equal than the diameter of the character, which
is not always the case as we will show in this paper.

In order to carry out Path planning guaranteeing that the resulting
paths will have an arbitrary amount of clearance, a common so-
lution consists of enlarging the obstacles by a specific amount of
clearance known as the Minkowski sum. An example of an ap-
plication using this method is Recast [Mononen 2009]. The main
advantage of this approach is that every calculated path has the de-
sired amount of clearance and it is calculated offline, so it does not

have an impact on the performance of the path finding algorithm
being used. However, its major drawback is that it is bounded to
a specific value of clearance, so all characters must have the same
size, or at most the specific clearance size.

In [Kallmann 2010], Kallman introduced a new type of triangula-
tion called Local Clearance Triangulation (LCT) that allows paths
to be computed free of obstacles with arbitrary clearance. Such tri-
angulation is obtained by a process that iteratively refines the Con-
strained Delaunay Triangulation (CDT) resulting from the starting
set of obstacles. The resulting structure determines if there exists a
path free of obstacles for a given clearance value. However, it in-
troduces more cells in the partition of the scene, thus dropping the
performance of the path finding algorithm. Another limitation of
the method is that it only works for the described LCT but cannot
be generalized to any navigation mesh.

In [Geraerts 2010], the Medial Axis of the set of obstacles is ex-
tracted to create a new data structure called the Explicit Corridor
Map (ECM). The ECM allows computing the shortest path, the path
that has the largest amount of clearance, or any path in between.
This work has been further extended to calculate a finer set of attrac-
tors to obtain smoother paths [Karamouzas et al. 2009][Jaklin et al.
2013]. Straight skeletons have also been used to calculate roadmaps
for path finding of multiple characters [Haciomeroglu et al. 2007].

3 Clearance Value of a Cell

The clearance value of a cell depends on how we cross this cell.
Given a cell C (see Figure 2), we define a cell cross as the pair (
P1, P2) of C, where P is the entry portal and Ps is the exit por-
tal. We classify the obstacle edges of the cell into edges to the
left (stringLeft) and edges to the right (stringRight) in respect to
the path that crosses the cell from the entry portal to the exit por-
tal. Notice that it is not necessary to have strictly convex cells, in
fact, cells generated by NEOGEN [Oliva and Pelechano 2013] are
allowed to have certain concavities depending on the convexity re-
laxation threshold chosen when creating the mesh.

The algorithm proceeds by iterating over every portal endpoint and
notch (i.e., a vertex such that its internal angle is greater than 7)
present in stringLeft and the closest edge in stringRight is deter-
mined. The distance between the notch and the closest edge is the
clearance value of this notch. Notice that in this case, the endpoints
of each string must be treated as if they were notches. The clear-
ance value of the left string cl;, is the minimum of those distances.
To compute the clearance value of the right string clr, we proceed
in the same way. Finally, the clearance value of the described path
is computed as follows:

cl (P1,P2) = min (clr,clr) €))

stringLeft

stringRight g

Figure 2: Clearance calculation for a given cell.

Note that it is only necessary to check the distance of the notches of
the string against the edges of the opposite string, as in the case of a
convex vertex, the distance to the opposite string must be greater or
equal than the clearance value of the cell. This process is done off-
line once the NavMesh of the virtual scenario has been generated
and, for each cell, we store in a table the clearance value of every



possible cell cross. This is because it is possible to have a cell with
three or more portals, where an agent with a large radius can walk
for example from portal P; to P, but not from portal P; to P3 (see
Figure 3).

cl(P1, P2)

cl(P1, P3)

cross(P1, P2)

L cross(P1, P3)

Figure 3: Example of different clearance depending on the cross-
ing path through a cell.

4 Finding Portals with Enough Clearance

In order to avoid artifacts such as characters bouncing, sliding or
getting stuck on the edges of the geometry, we should only assign
way points that have enough clearance, meaning that they have the
required distance from the static geometry for the character to tra-
verse the portal without collision. Note that fixing way points to the
center of the cell does not always guarantee collision free traversals,
as we can see in Figure 4

Figure 4: Examples of fixed way points that cause collisions. On
the left, the way point is fixed at the center of a cell which causes
a collision with the geometry and on the right the way point is as-
signed at a distance r of the portal endpoint also causing collision.

Let C 4 be the cell were the character is currently located, Cp be the
next cell in the path and P the portal that joins both cells. We want
to calculate the sub-segment P’ of P such that all points in P’ have
enough clearance. The idea is to shrink the portal P by displacing
the obstacle edges of C4 and Cp a distance of r (where 7 is the
radius of the character) towards the portal P.

The algorithm for finding portals with enough clearance proceeds
by reducing the size of the original portals based on the following
three cases:

1. Limitations given by the endpoints of the current portal.

2. Limitations given by the endpoints of other portals in either
CaorCp.

3. Limitation given by edges of the adjacent cells.

case 1: The algorithm starts by displacing each endpoint of P a
distance of 7 units towards the center of the portal as we can see in
Figure 5. The resulting sub-segment P’ has enough clearance only
if the rest of the obstacles in C4 and Cp are at a distance greater

than or equal to r from P’. Otherwise, this sub-segment must be
further refined to guarantee collision-free traversability.

Figure 5: Example portal P that connects Ca and Cp. The shrunk
portal P’ is initialized by displacing the endpoints of the original
portal P a distance r towards its center.

In order to further shrink portal P’ based on cases 2 and 3, we need
to consider portals and edges as if they were defined for each cell
in counter-clock wise order (Figure 6 depicts this situation). Ca
and Cp are thus two oriented polygons where the vertices are given
in counter-clockwise order. P can then be treated as two identical
overlapping segments given in opposite order depending on which
cell they belong to. Then we can refer to them as Pap for the
oriented edge that belongs to cell 4, and Pp 4 for the oriented edge
that belongs to cellg.

Figure 6: C4 and Cp separated by P are in fact two independent
polygons with their vertices oriented in counter-clockwise order, so
P is the overlapping of Pag and Ppa.

case 2: Let Cp be an intermediate cell on the character’s path, i.e.,
a cell that is neither the starting cell of the path nor the final one.
In this case, we have to cross the cell by crossing two portals, an
entry portal P and an exit portal Pgc (portal that connects cell
Cp with Cc). In such a situation, it is possible that the endpoints
of P’ are determined by the endpoints of Ppc. This occurs when
one (or both) endpoint of Ppc is at a distance less than or equal to
the desired clearance value from the entry portal P. To handle this
situation, we check if a circumference centered in the endpoints of
Psc intersects with P’. If this intersection exists, we update P’
accordingly.

Considering the polygons with oriented edges from Figure 6, let
us define Pp4 [0] as the origin of the oriented portal Pp4, and
Ppa[1] as the end. Since the portals are also given in counter-
clockwise order, we can state that the origin of any portal can only
limit the clearance of the end of the portal for which we are calcu-
lating clearance, Pgc [0] can only shorten P’ 4 [1], and Ppc [1]
can only shorten P’ g 4 [0]. The algorithm to further shorten P’ 54
continues through the following two cases:

e If the circumference centered in Ppc [0] intersects P’'paata
single point, then P’ g 4 [1] is set to be this intersection point.

e If the circumference centered in Ppc [0] intersects P’ sa at



two points, then P’ [1] is set to be the intersection point
that is furthest from Ppa [1].

Symmetrically, a circumference centered on Ppc [1] is checked for
intersections against P’ 5 4 to determine if P’ g 4 [0] needs to be up-
dated. Figure 7 shows the result of the algorithm over an example.
Figure 8 illustrates the importance of respecting the ordering of the
portals when calculating portals with clearance. Even though in
both cases the characters can walk through the portals, in the first
case the way points assigned over the portals would continuously
push the characters to collide with the static geometry.
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Figure 7: The endpoint P' g a [1] of the entry portal is determined
by the endpoint Pgc [0] of the exit portal, since the circumference
centered on Ppc 0] intersects P'ga. The other end of P'pa is
not modified, since the circumference centered in Ppc [1] does not
intersect P’ a.

Figure 8: On the top figure we can see an example of what the
character’s trajectory would be if P’ was not shrunk respecting the
direction of the portals. The trajectory leads to collision against
the static geometry. On the bottom we can see the right trajectory
when clearance is calculated correctly.

case 3: Given a cell Cx, and a set of vertices in counter-clockwise
order {vo,v1,...,vn}, where each consecutive pair of vertices in
the sequence defines an oriented edge of the cell, i.e: €(;,;41) is
the edge starting in vertex v; and ending in vertex v;41, for ¢ =
[0,n — 1]. We define the shrinking direction of an edge, 5(; ;11), as
the unit vector perpendicular to the edge with its direction pointing
towards the interior of the cell (Figure 9).

The algorithm proceeds by displacing each obstacle edge €(; ;1)
a distance of r units along its its shrinking direction, 5(; ;1) if the
shrinking direction points towards the portal (otherwise there is no
chance of intersection). After displacement we obtain v’ (i) and
v’ (i + 1) as the results of displacing vertices v; and v;4+1 . For
each displaced edge E’(MH), we calculate its intersection against
P’ B a, and if such intersection exists, the corresponding endpoint of

P’ 54 is updated depending on the direction of ¢ (3,i+1) as follows:

e If v, is inside Cp and v(,, ) is inside Ca, then Ppa [0] is
set to be the intersection point.

o If véi) is is inside C4 and v2¢+1) is inside Cp, then P’ g4 [1]
is set to be the intersection point.

Figure 9 shows this process over the example scenario with a mag-
nified view of the area of interest. The same process is performed
for P’ ap and finally, P’ is computed as the resulting sub-segment
of the intersection between P’ 4 and P’ g4. Every point in P’ is
guaranteed to have enough clearance. Figure 10 shows the result of
the algorithm.

Figure 9: Close up of the top left of Figure 7 with the shrinking
process due to displacing edges.

Figure 10: Final result P’ after calculating the merging of the in-
termediate solutions P’ ag and P’ ga. The resulting shrunk portal
before merging illustrates the application of the three cases: Case
1 can be seen in c, case 2 results in b and case 3 in a and d. P’
is given in this example by the most limiting endpoints which are a
and b.

To accelerate the computation of the shrunk portal, we store the
result of the transformation for a particular value of clearance in a
table. So the next time that the portal needs to be shrunk, the table
is checked for that particular clearance value so it does not need to
be computed again.

Even though in the general scenario, case 3 will always be the most
restrictive and thus the only necessary calculation, it is important
to notice that there can be exceptions such as the ones illustrated in
Figure 11 where case 3 may not limit in anyway the clearance of the
portal. Therefore we want to emphasize the need for the three cases
treated by our algorithm as well as illustrate why previous work
that only considered distance to endpoints of the portals would fail
to give natural paths in certain scenarios.

It is also important to notice that if the original navigation mesh has
too many ill-conditioned cells, it may be necessary to iteratively



check cases 2 and 3 with not only the adjacent cells, but also the
cells that are connected to them. This can be easily incorporate
by checking whether the other portals in the cell are at a distance
smaller than 7 from P and if so, check against portal endpoints
and edges in those cells with shrinking direction pointing towards
‘P. Since this is calculated only once and then stored in the lookup
table, the impact on the final results would not be significant. The
inclusion of this iterative step can be left to be decided by the user
as a trade-off between portal clearance accuracy and performance.

Figure 11: These examples show different situations, where portal
clearance is not defined simply by case3, and thus cases 1 and 2 are
strictly necessary.

5 Dynamic Way Points

In the case of navigation meshes, the method used to steer the char-
acter from one cell to another is a key aspect to create natural routes.
When way points are assigned at a fixed position, usually the center
of the portals, animation artifacts arise (Figure 12). The most com-
mon artifacts are line formation among characters that move in the
same direction, and bottlenecks caused by characters crossing cells
in opposite direction and being forced to pass through the same
point. Another typical approach in video games consists of setting
the way points at a distance r from the closest endpoint of the por-
tal (where r is the radius of the character). This solution provides
slightly more natural paths since paths are apparently shorter and
at least two way points are available for each portal, but it does not
completely solve the problem. Our work focuses on dynamically
calculating way points over the shrunk portal (Figure 13).

Figure 12: Typical lining up artifacts and bottlenecks when way
points are set at either the center (left) or the closest endpoint of the
portal (right).

Our dynamic way points assignation is based on the position of the
character within the cell. First of all, we check if the goal position
of the character is visible from its current position, i.e., the seg-
ment joining the current and the goal position of the character only
produces intersection with portal edges. In that case, the attractor
point is simply the goal position. If the segment does intersect with
at least one obstacle edge, we need to compute a way point over the
next portal in the path to steer the character towards the next cell of
the path. Our target is to avoid characters having the same attrac-
tor point, so we compute the orthogonal projection point q of the

current position of the character p over P’, where P’ is the shrunk
portal after applying the algorithm described in section 4 over the
portal P. If q lies outside the limits of 7', then the furthest end-
point of P’ with respect to the current position of the character is
selected as a temporal attractor, until q is valid.

The position of the characters is given by the local movement al-
gorithm used to steer them. This algorithm will naturally move
characters away from each other to avoid collision. Since charac-
ter’s position approaching a portal will be different, their projection
over the portal will also be different, making it virtually impossible
for two different characters to share the same attractor point over
the portal if the characters are at risk of colliding.

O Way points
&3 goals

@ pPortal end points
@ = = ®Portal with clearance

Figure 13: The attractor point of the red character is its own goal
since it is visible from its current location. The green character
has its orthogonal projection, q,, over the portal as its way point,
whereas the blue character has the farthest away endpoint of the
portal assigned as its way point, since its current orthogonal pro-
jection lies outside the portal with clearance P’

We have determined empirically that in the case of q being invalid,
the furthest endpoint of P’ is a better candidate as temporal attractor
than the closest one. This is because when the steering attractor is
the closest endpoint, the character tends to move too close to the
walls, producing a bad quality route.

6 Results

In order to evaluate the results obtained with our algorithm, we
have carried out both qualitative and quantitative analysis. The two
things we are interested in are: first to examine whether our clear-
ance method combined with dynamic way points achieves a better
use of space, and second the performance of our algorithm to be
able to work with large groups of agents in real time when comput-
ing paths with clearance and collision free way points.

Figure 14 (and the accompanying videos') shows a comparison be-
tween using traditional way points at the center of portals and our
method with dynamic way points for two example scenarios, the
first one shaped as a donut and the second one shaped as a cross
with static obstacles randomly located. The local movement algo-
rithm is the same for all scenarios, and it is based on a simple rule
based model with collision avoidance, steering towards attractors
(way points) and collision response. Characters are considered to
cross a portal as soon as the physics engine Bullet [Coumans 2013]
detects that the character has arrived to the destination cell. Dy-
namic way points make better use of the space, with straight tra-
jectories whenever possible and more natural looking trajectories
for the characters, even when using a very simple rule based model
for their local movement. When way points are fixed at the center

"http://www.lsi.upc.edu/~npelechano/videos/
MIG2013.mp4
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of portals, we can observe that not only do the paths not make use
of the available space but also they are more chaotic as characters
bounce around portals trying to get close to the way point while
avoiding each other.

Figure 14: Comparison between having way points at the center
of portals (on the left) and dynamic way points (on the right) for the
donut scenario with 25 agents (top row) and large cross scenario
with 50 agents (bottom row).

The following results have been obtained in an Intel Core 2 Quad
Q6700 @ 2.66GHz 2.67GHz, 8GB of RAM . Figure 15 compares
the time spent per query (microseconds) of different versions of the
portal shrinking method:

e SimpleShrink(-/+): A fast and simple method, commonly
used on videogames and other virtual applications, that sim-
ply displaces the endpoints of the portal r units towards its
center. The (+) version uses a lookup table to store previously
computed shrunk portals, and the (-) calculates it at every sim-
ulation step.

e ExactShrink(-/+): Our exact clearance solution described in
section 4. The (+) version uses a lookup table to store pre-
viously computed shrunk portals while the (-) calculates it
at every simulation step. Each test case consists of a set of
queries where, for each query, we randomly chose a cell of
the NavMesh, a trajectory to cross this cell (i.e. an entry por-
tal and an exit portal) and a clearance value (0.5, 1 or 1.5).
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Figure 15: Comparison for the time taken per query (in microsec-
onds) as the number of queries increases for the different shrinking
techniques.

The results of this experiment highlight the efficiency of our exact
clearance method (ExactShrink(+)). The efficiency of the algorithm
increases with the number of queries as the chance of producing a

redundant query is higher, and eventually, every query will be re-
dundant. Results show that for the case of 1000 random queries,
the cost of ExactShrink(+) is just 1.54 times the cost of the most
efficient version, that in this case is SimpleShrink(-). So the algo-
rithm for calculating portals with exact clearance presented in this
paper (ExactShrink(+)) is around 50% more time consuming for
1000 queries than simpler implementations, but it also guarantees
that every computed path will have enough clearance with the static
geometry. Notice that as the number of queries increases this per-
centage is further reduced. For the given example, we get a proba-
bility of hit of 50% for 1000 queries, which means that one in two
queries does not need to be computed since it is already stored in the
lookup table, and 90% probability of hit when it reaches 6000. So
the time taken by the ExactShrink(+) algorithm converges towards
the SimpleShrink(+) method.

and also that this increment in time does not have a big impact on
the overall simulation since it is insignificant compared to the cost
of Al, rendering or physics.

The memory requirements to store the lookup table are minimal,
since for each radius size we only need two 3D point coordinates for
the corresponding shrunk portal. For example, in the cross scenario
with 208 portals, 3 character sizes and 12Bytes per 3D point, the
total memory required is less than 15K.

Since there are many elements that affect the resulting frame rate
of an application, such as: rendering engine, physics library, local
movement algorithm, size of the scenario, size of the crowd, and so
on, we are not interested in how many characters we can simulate
in real time, but in comparing our method for paths with clearance
against the standard solution where characters walk towards way
points fixed at the center of portals without checking for any kind
of clearance against the static geometry. Figure 16 (top) shows a
comparison of the average frame rate achieved as the number of
characters increases with and without our technique, when all the
other elements of the simulation stay the same. This graph com-
pares the standard solution (in red) against our technique (in blue).
As we can see, the results are practically the same (less than 5%
smaller frame rate on average with our method), meaning that the
computational time required to calculate portals with clearance and
dynamic way points is insignificant in the overall simulation time.
Both simulation can handle up to 500 characters in real time. Ob-
viously this result could be greatly improved with a different ren-
dering engine, but it would not change the comparison provided in
these results. At the bottom of this figure we show the decline in
performance which in the worst case is around 0.12x, and on aver-
age is 0.05x. Therefore we can claim that the computational cost
of our technique is insignificant for the overall simulation time, and
provides results that are perceptually nicer and make better use of
the space, as we can see in Figure 17 and the accompanying videos.

To show the results achieved by the path finding algorithm with
clearance, we can observe in Figure 17 the different paths used by
the characters depending on their size. As we can see, the larger
characters only traverse those cells with a clearance larger than their
radius. Another nice outcome of the presented method is the use
of space made by the characters depending on their size. We can
observe in the image how as the character’s size decreases, their
final emerging trajectories of their color are wider, since their way
points are assigned over larger shrunk portals.

Finally we wanted to demonstrate quantitatively that having dy-
namic way points, not only provides better visual results indepen-
dently of the local movement algorithm used, but also drastically
reduces the number of collisions by spreading the crowd over the
length of the portal. Figure 18 shows the results of a simulation
where all the agents are moving in the same direction walking



Figure 17: Trajectories followed by characters of different size. From left to right, the larger characters (red, r = 2.0) will not use the
narrower portals, the medium characters can already get through most ot the portals (yellow, v = 1.5), and finally the smaller size characters
(green, r = 0.5) can walk through all the portals having the largest shrunk portals.
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Figure 16: Average frame rates obtained in large cross scenario as
the number of characters increase for our method and a standard
solution (top), and the performance drop down (bottom) calculated
as how many times slower is the dynamic solution compared to the
static one.

around the donut scenario. We have counted for one minute of sim-
ulation, the number of collisions that occur between agents every 5
seconds. As we can see in the graph, there is a drastic reduction in
the number of collision when using Dynamic way points instead of
Fixed center way points.

7 Conclusion

We have presented a general technique to compute paths free of
obstacles with an arbitrary value of clearance that can be easily in-
tegrated in any existing Navigation mesh system.

Our method can be divided into the following steps: Firstly, during
the construction of the NavMesh, the clearance value of each cell
is computed in order to obtain paths that guarantee clearance when
applying the A* algorithm. Secondly, the portals of the path are
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Figure 18: Number of collisions between agents for the donut sce-
nario when all the characters move in the same direction. We com-
pare dynamic way points against fixed center way points.

refined by shrinking them depending on the clearance required for
each character and the surrounding geometry. Finally, way points
over the shrunk portals are computed depending on the character
position and hence, it mostly avoids two characters sharing the
same attractor point.

Results show that our method is fast enough compared to simplest
implementations, but produces paths of higher quality as it takes
into account clearance for both path planning and way point cal-
culations, and its dynamic assignation of way points along portals
avoids characters lining up when crossing portals or causing bottle-
necks.

We have tested our algorithm with NavMeshes of a variety of sce-
narios created by NEOGEN [Oliva and Pelechano 2013] which is
a NavMesh generator that provides an almost near-optimal number
of cells with very few ill-conditioned cells. If another NavMesh
generator was used which created too many ill-conditioned cells, it
may be possible that the portal clearance is not given exclusively
by the connected cells, but also the immediately adjacent ones. In
this case the algorithm could easily be adjusted by checking the
distance to other portals in the cell and based on that consider also
the visible edges of the adjacent cells in the algorithm described in
section 3. In the future we would like to incorporate this possibility.

For the qualitative evaluation of this work we have considered that
higher quality paths are those that tend to use most of the available
space instead of lining up to have all agents crossing through the
same way point, reduce bottlenecks and collisions against the ge-
ometry and between agents. As future work it would be interesting
to consider some metrics to carry out a quantitative evaluation of
clearance, path lengths and collisions.
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