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ABSTRACT AABBSSTTRRAACCTT  

This project addresses the problem of detecting collision between flexible 

objects, such as cloth and skin. We are dealing with the collision detection between two 

sets of points. The first set of points corresponds to the cloth and the second one 

corresponds to the skin of the deformable body. 

The cloth is modelled by a mesh of points. The movement of those points is 

given by the fundamental law of dynamics and will be affected by different kinds of 

forces. These forces can be divided in two subsets, internal and external forces. Internal 

forces are the resultant of the tension of the springs linking a point with its neighbours. 

External forces can be due to gravity, wind, inertia and the movements of the body. 

Skin is modelled by a mesh of triangles. Each individual vertex is related to a 

particular limb of the skeleton and will change its position depending on the movements 

of that limb of the skeleton. 

Our target is to achieve quick collision detection between those two sets of 

points in order to obtain a real time animation. For this purpose we have studied 

different methods of space subdivision such as space partitioning trees combined with 

the skeleton hierarchy.  

The algorithm proposed performs collision detection starting with a coarse 

approximation of the human body given by oriented bounding boxes, to finally perform 

a more accurate collision detection test in the areas required.  

We have achieved a  reduction of about 98% in the number of triangles against 

which we need to apply collision detection.  This reduction allows the algorithm 

implemented works well for real-time animation of deformable human bodies. 
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1 INTRODUCTION 11  IINNTTRROODDUUCCTTIIOONN  

Interaction of objects in the virtual world is often an important aspect of 

computer animation. This interaction between moving objects is usually a dynamic 

process which main aspects are the collision and the response. Collision detection 

between two objects involves testing for intersection of these objects and once an 

intersection has been detected, dynamic equations are applied to simulate collision 

response. 

Collision response involves modifying the velocities of the objects colliding in 

order to avoid them from passing through each other once the collision occurs. This 

implies computing new forces for the vertices that collide. 

The main problem in collision detection is to control de computational 

complexity due to the discretization. The surface of the body and the cloth surface are 

both represented by polygonal meshes that can have several thousand polygons each. 

Testing each pair of polygons for potential collisions is an unrealistic task. 

Collision handling can cause substantial difficulties for any real time system 

where a maximal simulation speed is required since the computational requirement 

increase according to a square law with the number of vertices in the modelling scene. 

In practice, the implementation of collision detection and response methods can account 

for anything up to 90% of the total computation required for a typical simulation. This 

complexity problem drives the development of advanced algorithms for collision 

detection. 

In the case of collision detection between cloth and skin we are dealing with 

deformable objects, so collisions appear not only between different objects but also 

several parts of the same object, which is known as self-collision detection. 

Geometrical collision detection can consist of detecting whether the objects 

interpenetrate (interference detection), or the objects come closer than a given threshold 

distance (proximity detection).  
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When we want to design an efficient collision detection algorithm we need to 

consider the following: 

- If we have more than one test available with different costs, how can 

we combine them? 

- How can we make the test cheaper? 

- How can we avoid unnecessary tests? 

And so the principles we should follow are: 

- Apply first of all a fast simple test in order to eliminate many potential 

collisions. Eg: test bounding volumes before testing individual 

polygons of the objects 

- Exploit locality to reduce the number of potential collisions. Eg: use 

cell structures to avoid taking into account distant objects. 

- Use as much information as possible about the geometry. 

- Exploit frame to frame coherence between successive tests 

There are many different collision detection algorithms in the literature, adapted 

to the geometrical attributes specific to the context in which they are implemented. 

However they can be classified into groups depending on the general idea used to 

reduce the complexity of the problem. The main groups are: 

- Bounding volumes: Complex objects or groups of objects are enclosed 

within simpler volumes that can easily be tested for collisions. 

- Subdivision methods: they can be based either on the scene space or 

one the object. The main idea of this method is to decompose the 

problem into smaller space volumes or objects regions, usually 

evaluated through bounding volume techniques. Efficiency can be 

added by using hierarchical subdivision techniques. 

- Projection methods: evaluate possible collisions by considering 

separately the projections of the scene along several axes or surfaces. 

- Proximity methods: where we have an arrangement of the scene 

according to their geometrical neighbourhood and detection between 

objects is collected depending on their neighbourhood structure. 
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The deformable surfaces with which we are dealing for this project are given as 

polygonal meshes. In our case collision detection tries to search efficiently for those 

surface polygons which are colliding when considering highly refined meshes 

containing thousands of polygons. The nature of a polygon mesh consists in numerous 

flat elements, where neighbouring elements are connected by a locally fixed topology 

and there is also a slightly deforming geometry during animation. It is thus important to 

consider the nature of the objects we are dealing with in order to chose the best 

algorithm. 

The mesh description accuracy of a curved surface depends directly on the 

refinement of the elements of that mesh, that is on the size and number of mesh 

polygons. Collision detection between polygonal mesh surface representations should 

be able to handle very large number of elements while detecting only a small number of 

collisions, because complexity of the collision detection increases with the number of 

elements but the amount of collision involved in a curved surface depends only on the 

formal geometry of that surface.  

The elements consisting a mesh will always keep the same neighbourhood and  

thus maintain similar relative positions. Collision detection algorithms can therefore 

take advantage of this consistency during animation. 

Finally we have to consider the robustness of the algorithm we want to use, 

because  the fact of taking advantage of the simplified geometrical assumptions to carry 

out their computation efficiently, may lead to unreliable algorithms that miss some 

collision or degrade the performance in those cases where the particular geometrical 

situation may not satisfy these assumptions. 

In this project we propose a collision detection method especially efficient for 

dynamic deformable human bodies.  Collision avoidance consists in testing, firstly, 

cloth vertices against a coarse representation of the body given by an oriented bounding 

boxes hierarchy. Secondly, vertex-triangle intersections are tested and repulsive forces 

are applied. The magnitude and direction of such  forces are dependent on the normal 

and distance between  the cloth point and  the skin surface. Our method handles 

efficient collision detection between dynamically deforming polygonal meshes since it 

achieves a  reduction of about 98% in the number of triangles to test against for each 

cloth vertex. The algorithm proposed has cost that is independent of the model 

complexity.  
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Chapter 2 provides a brief overview of  the existing research on collision 

detection techniques and human and cloth model. We begin by describing the current 

methods for collision detection. Secondly we outline the different types of bounding 

volumes, the evolution of representation and deformation of human bodies and the cloth 

model techniques currently being used. In the last part of chapter 2 we present the 

existing environment used as a starting point for the implementation of this project. 

Chapter 3 presents our collision detection algorithm and the optimisations that 

we have applied, we also explain how we tackle the simple collision response problem. 

Chapter 4 describes the implementation details. 

Chapter 5 presents the tests carried out using our algorithm and chapter 6 shows 

the final results obtained for a deformable human body 

Finally we give the conclusions of our algorithm and the future work to be done. 
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2 BACKGROUND AND LITERRATURE 

REVIEW 

22  BBAACCKKGGRROOUUNNDD  AANNDD  LLIITTEERAATTUURREE  

RREEVVIIEEWW  

2.1 Collision Detection Techniques 

Since we want to perform collision detection for real-time simulation, we need 

to take advantage of the current graphics acceleration hardware. For this purpose we 

need to work with triangle meshes of vertices. 

Therefore we are going to compute collision detection either between a vertex of 

one object and a triangle of the other object (“point-triangle” collision) or between an 

edge of an abject and an edge of the other object (“edge-edge” collision) [PRO99]  

Knowing the positions and velocities of each node of our model at an instant t0, 

it is possible to compute its position at a time t0 +  ∆t, assuming that each node moves at 

a constant velocity.  

In order to detect collision detection between a moving point and a moving 

triangle or between two moving edges we need first of all to compute the time at which 

the four points are coplanar [PRO99,BRI02]. 

 

2.1.1 “Point-triangle” collision 

Considering the moving point P(t) and a moving triangle with vertices A(t), B(t), 

C(t) with velocities V , AV , BV , CV  respectively during the time interval [t0, t0 +  ∆t]. 

Each of the vertices of the triangle will have a linear movement given by the equations: 

AVttAtA += )()( 0  , BVttBtB += )()( 0  , CVttCtC += )()( 0  

In case of collision, the point P(t) will be coplanar with the plane defined by the 

three vertices of the triangle ABC(t). This can be written by the following relation: 

[ tttt ]∆+∈∃ 00 ,  such that [ ] )()()(,1,1,0, tACvtAButAPvuvu +=≤+∈∃  (1) 
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In order to solve this non-linear vector equation we can use another condition 

that will also be satisfied in the moment of collision: 

0)()( =⋅ tNtAP         (2) 

 Where )(tN is the normal of the plane defined by the triangle ABC(t) obtained 

by the cross product:  )()()( tACtABtN ×=  

)(tN is a t2 term, )(tAP is a t term, thus the dot product is a third degree equation 

that can be solved easily. By solving this dot product, we can obtain three values of t. 

We are only interested in those values included in the time interval [t0, t0 +  ∆t] and in 

case of having several values we will consider the smallest one because is the first 

collision produced between the point and the triangle. Once we have obtained the values 

of t we can inject them in equation (1) in order to obtain the values of u and v. 

 

2.1.2 “Edge-edge” collision 

There will be a collision between the edges )(tAB and )(tCD if and only if: 

[ tttt ]∆+∈∃ 00 ,  such that [ ] )()(,1,0, tCDvtABuvu =∈∃    (3) 

This is also a non linear system, but as we have seen for the point-triangle 

collision we can use another relation in order to obtain the value  of t without solving 

the equation (3). At the moment of collision, the four points that define the two edges 

will lie in a same plane, which can be defined with the following equation: 

0)())()(( =⋅× tACtCDtAB        (4) 

This is a third degree equation. Any roots outside the interval [t0, t0 +  ∆t] are 

discarded, and then the remaining roots are checked in increasing order. Once we have 

the value of t we can obtain the values of u and v by injecting t in equation (3). 
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2.2 Space Subdivision 

Collisions are a major bottleneck in cloth simulation. The collision detection 

between an object of the scene, such as the skin, with N nodes and a cloth model with 

M nodes has a O(NM) complexity. As the number of vertices of the model increases, 

this complexity becomes very limitative, and so it is important to find some techniques 

that can minimise the computation time. These techniques will imply a trade off 

between speed and accuracy 

In order to reduce the complexity of the collision detection we can use a space 

subdivision that allow as to compute collision test only between those vertices that are 

potential colliders. 

This first level of optimisation is called minimising collision detection test. The 

most common method is the use of bounding volumes for early elimination of collision 

test. In this method every object of the scene is enclosed in a bounding volume, then a 

preliminary collision detection is carried out between bounding volumes, and in case of 

intersection a more detailed collision detection is computed between the objects within 

those bounding volumes. 

Bounding volumes technique is very effective when objects are simple, but for 

complex objects it has the disadvantage that it may encompass too much empty space 

and therefore it losses its effectiveness. Bandi and Thalmann proposed a technique for 

oc-tree based compact bounding volumes which is not computationally expensive 

[BAN95].  

For the case of cloth-skin collision detection we need to generate a space 

subdivision structure for the cloth and another one for the skin.  

There are different space subdivision structures such as bounding volumes 

hierarchies and BSP trees. There are efficient algorithms [COH95, PON95] that rely on 

hierarchical representations of the scene to quickly identify pairs of intersecting objects 

and capitalise on temporal and spatial coherence between successive frames of 

simulation. 
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2.2.1 Bounding Volumes 

A bounding volume is a geometric primitive that contains a group of objects, a 

complex object, or a group of primitives. The application of bounding volumes in 

computer graphics applications is given in [MOO 88]. 

There are different kinds of bounding volumes. In choosing the appropriate 

bounding volume we should consider several criteria: 

 

- Their geometrical or filling efficiency, which means how well they 

contain the objects within minimum empty space . 

- Compactness, that is how many values are required for describing 

them. 

- Dependency on the environment, this refers to if there are any kind of 

axis-dependency, scaling, etc. 

- Collision detection simplicity, it means how efficiently the collisions 

can be detected between two volumes or between a volume and another 

primitive. 

-  Building simplicity, that refers to how efficiently they can be built 

from a set of objects or by merging several other bounding volumes. 

 

The most widely used bounding volumes are oriented bounding boxes and 

bounding spheres, but there are also some other techniques. 

 

 Axis Aligned Bounding Boxes (AABB) 

In a 3D space an AABB is defined by six values giving the minimal and 

maximal axis coordinates of the box including the object. The axes of the box are 

aligned with the workspace axes. 

The main advantage of this method is that they are very easy to build, to merge 

and to detect collision. Building an AABB involves only finding the minimal and 
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maximal coordinates of the object that we want to bound. Intersection test are reduced 

to detect overlap along the axes. 

AABB have fast processing but their main disadvantage is that their filling is not 

very good particularly when the object are elongated in diagonal directions. 

 

Bounding Spheres 

A bounding sphere need four values to be defined, which are: its radius and the 

coordinates of its centre. 

Bounding spheres have the advantage of being non axis-dependent and therefore 

can be transformed by a rigid-body motion with no need of being recomputed. Collision 

detection test can be easily performed by comparing distances between  centres of two 

spheres with the sum of  their radius. 

The disadvantages of this technique are that they are difficult to build and 

merge, because the computation of the optimal centre needs non-linear geometric 

calculations. 

 

Discrete Orientation polytopes (k-dops) 

Another efficient volume is the Discrete Orientation Polytopes (k-dops) which 

are convex volumes defined by truncate planes that can have normals which comes 

from a fixed small set of k orientations (k-dops) 

 

Figure 1. 8-DOPs example 
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Construction of a k-dop begins by selecting k directions that cover the entire 

direction-space as evenly as possible. A 6-dop represents a box. After the k directions 

have been chosen and therefore the planes that define the volume, vertices are projected 

onto the direction vectors and the maximal projection on each direction is chosen. This 

k maximal distances represent the k-dop [KLO97]. 

Merging and detecting collision between k-dops of the same nature are simple, 

but become more costly as the orientation number k increases. 

 

 

Other bounding volumes 

Using more parameters for the description of the bounding volumes, it is 

possible to allow a wider range of shapes in optimising their filling efficiency so that 

their collision becomes more representative of the collision of the contained objects. 

The choice depends directly on the shape of the object to be bounded. In the case 

of elongated objects, a possible solution are ellipsoids and cylinders. 

 

 

Transformed Volumes 

In this case we have a hierarchical structure where each group can be moved and 

oriented by changing a geometrical transformation matrix. Each bounding volume can 

be defined in local coordinates so that it is not necessary to recompute its shape. This 

can lead to great economies in computational time while moving the elements in the 

scene and also allows to optimise the volume of an object. An example of this are the 

Oriented Bounding Boxes [GOT96] that we will see in more detail in the next section 
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2.2.2 Bounding volumes Hierarchies 

The bounding volumes can be axis aligned or have an arbitrary orientation. 

Depending on the object that we are interested in creating a space subdivision we can 

use a different kind of bounding volumes. 

For the cloth model a simple optimisation can be obtained by recursive 

partitioning of the triangles of the cloth mesh depending on their position in the 2D 

texture space [PRO99]. 

For the skin it is possible to use a hierarchical representation of oriented 

bounding boxes (OBBs). An OBB is a rectangular bounding box oriented in an arbitrary 

axis in the 3D space [LIN96]. This space subdivision representation is called OBBTree. 

The fact of using an arbitrary orientation instead of an axis aligned orientation allows us 

to obtain a tight-fitting OBBs. 

We want to have OBBs of each part of the body, and once we have the bounding 

box of each part we can obtain the OBBTree.  

In order to obtain the bounding box of a set of vertices that correspond to a 

particular part of the skin of the body we can compute its covariance matrix and then 

obtain its eigenvectors. Since the covariance matrix is symmetric, those eigenvectors are 

going to be orthogonal. Once we normalise them we will obtain the basis of the 

bounding box, and afterwards we need to find the extremal vertices along each axis of 

this basis to obtain the size of the bounding box. 

Another method consists in using the convex hull of the vertices of the triangles. 

The convex hull is the smallest convex set that contains all the points and there are 

some algorithms of O(n lg n) complexity that are available as public domain packages 

[BAR93].  

Given an algorithm to compute OBB around a group of vertices we need a 

hierarchical representation of the whole object. There are two categories of methods for 

constructing a hierarchy: top-down and bottom-up. Top-down methods begin with an 

OBB that includes the whole object and recursively subdivide until all the leafs nodes 

are indivisible. Bottom-up methods begin by obtaining the OBB of each polygon and 

from there recursively merge them until it obtains the OBB that includes the whole 

object. 
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2.2.4 Binary Space Partitioning Trees (BSP trees) 

A BPS tree is a hierarchical subdivision of n-dimensional space into 

homogeneous regions, using n-1 dimensional hyperplanes [CHR95]. Those hyperplanes 

can be defined by the expression: 

12211 ... +++++= nnnn axaxaxaf  

All those points where fn is greater than 0 are situated in front of the hyperplane, 

the set of points where fn is smaller than 0 are at the back of the hyperplane and the 

point where fn equals 0 lie on that hyperplane. 

A BSP tree has a binary structure where each node corresponds to a region of the 

space and contains a hyperplane that partitions that region into front and back 

subregions. 

The nodes of the tree that do not contain any hyperplane are known as the leaf 

nodes and correspond to a non partitioned region of space which is  called a cell. 

There is different ways of creating a BSPTree for a dynamic scene. We can 

either add one by one new polygons into the tree and so restructure the hierarchy or we 

can also merge a BSPTree corresponding to a particular new object with the BSPTree of 

the scene that we have already created. 

 

2.3 Fast overlap test 

Given a space subdivision defined by a hierarchical bounding boxes 

representation, we can test pairs of bounding boxes to find out which parts of the skin 

and the cloth may collide and so perform collision detection only between the polygons 

included in those bounding boxes. There are several simple algorithms for testing 

overlap between bounding boxes, but they are usually computationally expensive.  

It is possible to use a fast overlap test [LIN96] which uses a trivial test for 

overlapping. The main idea of this algorithm is to project the bounding boxes onto some 

axis is space. This axis is called “axial projection”. Under this projection each box will 

be projected onto a segment in that axis. If the segments corresponding to each 
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bounding box do not overlap then the axis is called a “separating axis” for the boxes 

which are therefore disjoint. The fact that there is an overlap between the segments does 

not necessary mean that there exist an overlap between the boxes, further test are 

required. 

For the performance of the fast overlap test we can use the “separating axis 

theorem” described in [GOT96] for testing overlap. This method establishes that two 

boxes in 3D are disjoint if there exist a separating axis orthogonal from an edge to each 

box or to a face of either box. For two boxes there can be only 15 possible axes that 

may be a separating axis. 

 

2.4 Models 

The human body can be briefly defined as a composition of skeleton, muscles, 

fat and skin. The skeleton is formed by bones attached with each other by joints. The 

skeleton hierarchy is therefore composed of articulated line segments whose movements 

are described at the joint level. Each joint has associated up to three Degrees of 

Freedom DOF which correspond to the three possible axis of rotation. Each limb 

position is defined locally in relation of its node parent in the hierarchy. The muscles 

are usually modelled by metaballs and the skin by a triangle mesh. 

In order to perform the motion of the skeleton it is necessary to assign values to 

each of the degrees of freedom of the joint. Currently there are three ways to perform 

human motion. The first way consists in assigning interactively values to each join. The 

second way is to read and execute the motion form an animation file (key framing 

tables). The third way is by using tracking devices to perform motion capture. 

The other object that we need for the collision detection is the cloth. Cloth pieces 

are designed in two dimensions with polygonal panels and then are seamed and attached 

to the avatar’s body in three dimensi ons [CAR92]. Then according to the seams, forces 

are applied to the edges of the panels to put them together. Once the clothes have been 

created, physical properties are simulated and clothes are animated depending on the 

avatar’s movements in a physical environment.  
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2.4.1 Cloth 

The most generalised model for the representation of a cloth model consists of a 

deformable surface composed of a network of masses and springs [7,8], which 

movement is evaluated using the numerical integration of the fundamental law of  

dynamics:  

jiji aF ,, µ=  

Where µ  is the mass of each point  and  is the acceleration created by 

the force . 

jiP , jia ,

jiF ,

In the elastic model described by Xavier Provot [PRO95, LOU95] a mesh of 

mxn virtual massed is used. Each mass is linked to its neighbours by massless springs of 

length at rest non equal to zero. There are three kinds of links between masses in order 

to give different properties to the cloth object: 

- “Structural springs”: defined by springs between masses [i,j] and [i+1,j], or 

between masses [i,j] and [i,j+1] 

- “Shear springs”: defined by springs linking masses [i,j] and [i+1,j+1], or 

masses [i,j+1] and [i+1,j] 

- “Flexion springs”: defined by springs between masses [i,j] and [i+2,j], or 

masses [i,j] and [i,j+2] 

Shear springs provide a shear rigidity to the cloth and prevent it from excessive 

and unrealistic distortion in its own plane. Flexion springs are under stress when flexion 

occurs in the cloth object and thus have a three-dimensional role. 

 

Figure 2. mass-spring cloth model 
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The forces that affect the movement of the cloth can be divided between the 

internal and the external forces.  

The internal forces result from the tension of the springs linking  to its 

neighbours. 

jiP ,

The external forces are of various natures depending on the types of loads we 

wish  the model to be exposed to. The most common loads are gravity, a viscous 

damping and a viscous interaction with an air stream or wind. The role of  this damping 

is to model an approximation of the dissipation of the mechanical energy of the cloth 

model. 

All this forces are integrated using a simple Euler method in order to obtain the 

total force applied to each mass of the cloth. Once computed the total force it is possible 

to obtain the movement of a mass using the fundamental law of dynamics. 

The model described previously uses a regular quadrilateral mesh, but it is also 

possible to use a model described by an irregular triangle mesh, the dynamics of which 

are computed by considering the effects of Newtonian mechanics (internal and external 

forces) acting on their discrete elements [AND98]. The model described by Anderson is 

considered to be a mass-particle system positioned at the corners of triangular 

discretizations which are attached to adjoined edges. There are six kinds of forces acting 

over the mass points which are gravitational force, tensional forces, flexional forces, 

frictional forces, air resistance and wind effects.  

This model is based in the method employed by the MIRALab team at the 

University of Geneva, Vollino, Courchesne and M. Thalmann [VOL95] which consists 

in a physical model based on Newtonian mechanics acting on irregular triangle meshes. 

The forces acting on the edges of each triangle are obtained by calculating during each 

time-step both the elastic and shearing strains on individual triangles and the bending 

strains between adjacent triangles. Then the overall change in dynamics is estimated 

over each time-step using the second-order Euler-Cromer numerical method (Kreyszig, 

1998) 
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2.4.2 Skin 

The skin is usually modelled as an elastic triangle-mesh surface generated 

typically with a modelling program. This skin is then attached to the underlying bone 

hierarchy of the avatar and in some more complicated avatars is also attached to the 

underlying muscle model [SCH98]. 

Changes in the joints of the skeleton result in changes to the position of the 

bones and therefore in the skin attached to those bones. The vertices of the attached skin 

move with their underlying components (bones and muscles) resulting in natural-

looking deformation to the avatar’s model. 

 The surface model that represents the skin can be either a triangular mesh or a 

set of surface patches. Deformation of the skin is implemented by using specialised 

procedures that deform the surface as a function of each joint angle. Similar techniques 

are used in some of the commercial animation systems available. 

Thalmann [AUB00] introduce joint-dependent local deformation operators 

named JLDs to be able to control deformations in the vicinity of joints. This technique 

uses a surface mesh and assigns each vertex to a specific joint in the skeleton hierarchy.  

 

Figure 3. Layered Avatar Construction. Virtual Reality Lab. 
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It is also possible to group the vertices into contours [KAL98] and deform all of 

them together in order to speed up the deformation process. For the deformation of 

those contours it is only necessary to compute for each frame the orientation and 

position of each contour. 

Some other techniques with higher computational cost are based in the use of 

Free Form Deformations (FFDs). In each time step the FFD control points are moved 

using kinematics or dynamics. Usually those control points deform at joints under 

several constraints such as elasticity, area preservation and implicit repulsive force 

fields that mimic bones and muscles [HEN90]. It is also possible to use Rational FFDs, 

Dirichlet FFD which allow a more accurate control of the deformations. 

Another approach is to define the skin by implicit formulations like meatballs. 

This method provides an efficient way of creating real-looking virtual humans at a 

reduced storage cost [YOS92]. 

 

2.5 Prometheus Avatar Toolkit 

The Prometheus project is a consortium which is involved with developing a 

studio broadcast platform for virtual 3D TV.  The aim of the Prometheus project is to 

allow television production using virtual sets and characters, which are driven by real 

actors using a motion capture system developed by the University of Surrey. Then there 

is  cloth simulation carried out by UCL  and the data is sent out to a central server which 

integrates all the data from various parts of the system streams it to set top boxes using 

MPEG4. The system contains also a facial motion capture system [PRO_BBC]. 

The parts of the project with which we are working in the collision detection 

project are the software developed by the UCL [PRO_UCL] and the software developed 

by the University of Surrey. 

The software from the UCL contains:  

- Rendering engine based on VRML97/H-Anim 

- Cloth simulation system using a method based on finite elements 

- Voxel collision detection (cloth/avatar) for segmented avatars without skin 

deformations. 
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- Animation system which can handle lots of simultaneous motion capture 

data from files or streamed 

- Server architecture and test harness of several temporary servers for motion 

capture streaming, cloth simulation and playback. 

Human animation of 3D models on the internet is currently done in VRML 

format. In the Prometheus Avatar Toolkint the avatars are defined with the H-Anim 1.1 

standard for VRML. The H-Anim specification [H-Anim1.1] defines a method for 

representing articulated humanoids characters in VRML. 

 

2.5.1 VRML humanoid models 

The H-Anim 1.1 specification defines a standard representation for avatars in 

VRML. This standard defines a set of VRML nodes implemented using the VRML97 

PROTO mechanism. 

A Humanoid node defines the tope level of the humanoid model, which contains 

a hierarchy of Joint nodes describing the skeleton of the avatar. Except for the 

HumanoidRoot joint, all the joints are children of a higher level joint, and each joint has 

associated a centre of rotation and a motion limit information to avoid impossible 

human posses.  Joints are only allowed to rotate, not translate, so the skeleton keep the 

same basic topology and shape as the skeleton moves. Each joint rotation will  also 

rotate in the same way all the children in the same way.  

In order to define the shape of the body parts we need another kind of nodes, the 

Segment nodes. Each segment node will have as a parent node a join node and therefore 

the geometry defined in the segment node will rotate in the same say as its parent joint 

node.  

A standard H-Anim model is thus made up from a number of separate models 

each attached to a different part of the articulation hierarchy. 
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2.5.2 Seamless Models 

The avatars we are dealing with in this project are seamless models. In order to 

define these models, a number of few elements have been added to the H-Anim 

structure defined in the previous section. [SMI00] 

The model is defined as a single surface instead of a number of separate 

segments, so that it gives the illusion of a single surface. This is achieved by using the 

same articulation structure but only attaching parts of a complete human model instead 

of  attaching the whole rigid objects to each  body part. Then, while the skeleton is 

being animated, each segment affects  particular parts the model in order to change the 

complete shape of the body. The segments store the association between the model and 

the skeleton, allowing deformation of the surface. 

 

2.5.3 Skin Deformations 

The vertices representing the 3D geometry of the model will be deformed based 

on the rotations and translations that are defined by the skeleton structure. In the 

Prometheus Avatar Toolkit there three methods have been used to achieve deformations 

of the avatar’s surface. These methods are: rigid animation, simple segment 

deformations and vertex weighing.  

 

Rigid Animation 

In this method, the shape of individual segments is not deformed because the 

vertices are subjected to rigid transformations [SMI00]. This method for seamless 

model animation is very fast and can be therefore use for slow computers or large 

models. 

In each frame, the rotation information of each bone is read, and the skeleton is 

recursively traversed to obtain the complete transformation at each joint and then apply 

it to their joints children and also to their child segment, which contain the geometry 

information. In order to calculate the position of the vertices for each frame, it is 

necessary to store the position of all the vertices in the original model. Since the vertices 

positions are modified, the body shape will change for each frame of the animation. 
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Non-rigid Animation 

The previous model is fast but unrealistic. It may give problems such as self-

intersect on the inside of a joint or triangles being stretched in the outside of a joint. 

Therefore a more realistic method is used to deform the surface of the body [SMI00]. 

The method used in the Prometheus Avatar is based in an implementation of the 

control layered animation method described by Sun et al. [SUN99] for layered model 

animation. 

The method used to deform the body shape based on the skeleton hierarchy 

parameterises each point in terms of the segment to which it is assigned. Each joint has 

associated a joint plane that is defined as the plane that bisects the angle of the joint and 

is orthogonal to the plane defined by adjacent joints. This joint planes will move with 

the skeleton, always bisecting the joint angle. Each segment will be thus bounded by at 

least two joint planes. Vertices can be parameterised in terms of a local coordinate 

system based upon the joint planes. Once a vertex is assigned to a particular segment, it 

is parameterised in local coordinates of that segment.  

As the skeleton layer is animated, the joints will change its local and global 

position, and so the joint planes will also change. Since the parameterisation of the 

space between planes is based on those joint planes, and the space is being deformed, 

therefore the position of the vertices which occupy that space will also change. 

The calculations needed in this method are all linear interpolation, hence the 

reconstruction is highly efficient and can be performed in real time.  

Vertex Weighing 

In this method , a single vertex can be attached to more than one bone and 

weights are applied to define the deformations. 

This method expresses the deformation of a surface as a function of either the 

pose of an underlying skeleton, or as a function of some other set or parameters control 

desirable in face animation such as {raise-eyebrown, smile,...} 

The main idea of this deformation approach comes from the observation that 

several types of deformation can be uniformly represented as mappings from a pose 

space. These previously disparate deformation can be accomplished within a single 

unified approach using interpolation [LEW00]. 
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3 ANALYSIS AND DESIGN 33  AANNAALLYYSSIISS  AANNDD  DDEESSIIGGNN  

The software described in this thesis was not created from scratch. A state-of-

the-art anatomically based modelling created by the University of Surrey and a cloth 

model created by Lee Bull, Research Fellow at UCL, already existed. 

Our goal for this project was to detect collision detection between a pre-existing 

polygonal mesh skin and a cloth model described by an irregular triangle mesh. For this 

purpose we needed to integrate both systems. 

The remainder of this thesis is organised as follows: first of all we review the 

existing cloth and skin modelling environment, then we discuss the tools we have added 

to it in order to perform collision detection, next we demonstrate the results that have 

been obtained and finally outline the future work that still needs to be done. 

 

3.1 Overview of existing environment 

As we have previously discussed, for the implementation of this project we have 

deal with two different systems. On one hand the Prometheus Avatar Toolkit developed 

by the university of Surrey and on the other hand the cloth model developed by the 

UCL, in this section we will introduce those systems in more detail. 

The primary development platform is Windows but there are also Unix and 

CAVE versions. The software is written in C++ and uses OpenGL. The project its been 

implemented using Visual C++ 

 

Prometheus Avatar Toolkit  

Skin deformations model 

The articulated body is represented by a tree structure that represents the parent-

child relationship of body segments. Each segment of the body corresponds to a bone 

and it is thus a section of the body between two successive joints or at the end of a tree 

branch. Every segment of the body has a default rotation and translation that gives its 

position in relation with its parent position. The complete model is a layered model 
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given by an skeleton and the skin. Each avatar contains a polygonal mesh that describes 

the skin, but also each bone of the skeleton has references to those vertices that are 

attached to it.  

For each frame step the position of those vertices attached to a bone that has 

done a movement is updated in order to obtain natural surface deformations during the 

animation of the avatar. 

In the following figure we can see the main classes of this skinned avatar 

system: 

AvatarC SkeletonC BoneC+1 +1 +1 +1..*

 

Figure 4. Classes Diagram of avatar 

Each avatar will contain a skeleton and that skeleton will be a hierarchy of bones 

that will change their positions during animation. 

 

Collision Model for the Cloth 

The collision and cloth model with which we are dealing has basically the 

following structure: 

Object_Node_Geometry

Object_Node_Skinned_Avatar

Vertex_Cloth

Coll ision_Vertex_Cloth Collision_Mesh Object_Node

+1..*

+1

+1+1 +1+1

 

Figure 5 Classes Diagram of Cloth Collision 

This are the main classes with which are used for the performance of the 

collision detection test. 
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Each vertex of the cloth is considered a potential collider that has to be tested 

against a collision mesh. The class Collision_Vertex_Cloth contains information 

relevant for each time step collision. 

In the original system each vertex cloth can collide with several collision meshes 

and for each one we need to store some information related with the collision such as 

position of the vertex before collision, position of collision, acceleration, velocity, 

feedback force to be applied to the vertex, etc. 

 

OBB Model 

In the following diagram we can observe all the classes involved in the collision 

detection algorithm: 

Object_Node_Geometry

Vertex_Cloth Object_NodeCollision_Mesh +1+1

SkeletonC BoneC

ObbC

+1
+1..*

+1

+1

AvatarC

+1

+1

Object_Node_Skinned_Avatar

+1

+1
Collision_Info_Aux_Skinned_Avatar

Collision_Skinned_Avatar +1+1

+1

+1

Coll ision_Vertex_Cloth
+1..*+1 +1+1

+1..*

+1..*
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In order to perform the collision detection test, three classes have been added: 

Object_Node_Skinned_Avatar: This class contains all the information regarding 

an object of the type avatar, such as  its geometry, global transformations, etc and it is 

the responsible of the initialisation of the avatar object. 

Collision_Skinned_Avatar: This class handles all the collision details concerning 

the avatar object. 

Collision_Info_Aux_Skinned_Avatar: This is an auxiliary class where we can 

store temporal information for each collision test between a triangle of the skin and a 

cloth vertex. 

 

3.2 Space subdivision of the body 

In order to generate naturalistic cloth animation we need to perform collision 

detection between cloth and skin of the avatar.  Ordinary collision detection methods 

find intersection between every vertex of the cloth and every vertex of the skin. 

However this method is impractical when we are dealing with real-time simulations 

which is our case. It is desirable to apply an efficient detection method whose 

complexity is independent of the complexity of objects. In this section we propose an 

efficient method for collision detection  using a space subdivision representation for the 

mesh of points that correspond to the skin based on Oriented Bounding Boxes (OBB). 

 

3.2.1 OBB’s vs. Other volumes 

There are several methods for space subdivision based on spheres, ellipsoids and 

axis-aligned bounding boxes (AABB’s). The choice of bounding volume is governed by 

two conflicting constraints [GOT96]: 

1.- It should fit the original models as tightly as possible 

2.- Testing with such volumes for intersection should be as fast as possible 

Simple primitives like AABBs and spheres do very well with respect to the 

second constraint. But they cannot fit tightly some primitives like long-thin oriented 
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models, which is mainly the kind of object that we are going to find in a human body 

model. 

OBBs and minimal ellipsoids provide tighter fits, but checking for intersection 

test with them is relatively expensive. 

  

  

Figure 6. Different kinds of bounding volumes 

 

The primary motivation for choosing OBBs is that not only do they have the 

advantage of their variable orientation but also they can bound geometry more tightly 

that AABB or Spheres so we can avoid more potential colliders for the posterior 

collision detection test between vertex and triangles.  

It is difficult to do a general analysis of the performance of collision detection 

algorithm because performance is situation specific. For our situation it is evident the 

advantage of OBB vs. AABB and spheres. For the analysis of OBB vs. ellipsoids  the 

main reason why we have chosen OBB is because the intersection test between vertices 
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and OBB has better computational time than intersection between vertices and 

ellipsoids. 

 

3.2.1 Oriented bounding Boxes 

In the first step of our algorithm we create an oriented bounding boxes 

representation of the human body. Since the human body is very irregular and cannot be 

described as an unique OBB we need thus to have a subdivision of the body into several 

parts, and then describe each part with an OBB.  

The body we are dealing with is already subdivided in different segments 

corresponding to the bones of the human skeleton. Each bone has attached a list of 

vertices that will change their position with each movement of the bone.  

 

Figure 7. Example of skeleton 
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An OBB is defined by a centre C
ρ

, a set of right-handed orthogonal axes 0A
ρ
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, 
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In order to obtain tight fitting OBB we need to compute the three orthogonal 

axes that define its orientation and also compute the position and dimension of the 

OBB. This method is called “Principal Component Analysis”, PCA.  

The covariance matrix S is calculated by: 

( ) ( )∑
=

−−=
n

i
i

t
i XXXX

n
S

0

1  

Each corresponds to a vertex of the skin attached to the bone we are working 

with, and it is defined by three variables that are its global coordinates  

iX

( )iii zyx ,, .

Once we have computed the covariance matrix we will calculate its three 

eigenvectors which are mutually orthogonal. After normalisation those three 

eigenvectors become axes of the OBB. 

Finally we need to find the maximum and minimum extends of the original set 

of vertices along each axis, and thus the size the OBB. 

 

3.2.2 Subdivision of boxes 

With the previous OBB representation we obtain boxes with a certain amount of 

vertices inside. This allow as to perform an intersection test between the OBB and the 

cloth to find out if the vertices of the skin within an OBB are potential colliders with the 

cloth. This method avoids performing collision detection tests with every vertex of the 

skin, but we can make it also more efficient by subdividing each OBB in smaller boxes. 
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For this purpose we decided to divide the OBB in a certain amount of boxes 

along the main axis of the OBB. The main axis is thus divided in regular segments and 

then the vertices attached to the bone are separated in sub-lists given by the space 

subdivision obtained by planes orthogonal to the main axis and located in each one of 

the subdivisions along the axis. 

  

Figure 8. Original OBB and its correspondent subdivision along the main axis 

 

3.2.3 OBB updates during animation 

In section 3.2.1 we have introduced how the OBB are obtained from the list of 

vertices attached to each bone. The method used to obtain the axis of the OBB from the 

covariance matrix has cost O(N) where N is the number of vertices. Since we are 

dealing with real time animation we cannot afford to compute the OBB for each step of 

the animation so we need to find a method to modify the OBB during animation with a 

computational cost independent of the complexity of the model we are working with. 

As we have briefly explained in section 1.3, the avatars are represented by a 

hierarchy of nodes. Each node in the graph represents an object. Nodes carry two types 

of information: 

- Joint data 

o Rotation 

- Segment data 

o Translation 

o Graphical data 
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The rotation and translation together give the transformation matrix which 

specifies how the object at that node is related to its parent node. The rotation refers to 

the joint rotation and will depend on the degrees of freedom of the joint and the 

translation is the position of the segment relative to its parent, that is the length of the 

bone. 

Each node of the graph has a local coordinate system (LC) which is independent 

of the rest of the nodes in the hierarchy. The matrix associated with the root can be 

thought of as transforming the root object into world coordinates (WC) 

In each bone we have stored its global transformation matrix and its local 

rotation and translation. In order to update the skeleton we only worry about the 

rotation, since the translation wont change during the animation. 

Every time the rotation matrices are updated we need to update also the 

transformation matrices. The global transformation matrix (GTM) of each bone is equal 

to the GTM of its parent multiplied by its local transformation matrix (LTM), so in 

order to update all the GTM we need to traverse the tree starting from the root and 

multiplying all the LTM. 

Once we have this transformations updated it is obvious that we can use them to 

update also the axis of the OBB so that the OBB will be transformed as the skeleton is 

animated. This method needs only a multiplication of each axis by the GTM of the 

bone, so it does not depend on the complexity of the model.  

Having  the OBB reoriented we would now need to compute its size since some 

of the vertices may have change its position relative to the bone. The method explained 

in section 3.2.1 needs also to test all the vertices associated with the bone, so again the 

cost is O(N). In order to avoid this we can allow some error in the size of the OBB by 

having the OBB slightly bigger than its correct size, so we do not need to compute its 

size for each step of the animation. 

By applying this method we may need to do some additional collision detection 

tests afterwards, but we avoid having to compute the size of the OBB each time the 

skeleton is animated which will save computational time. 
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3.4 Cloth Collision  

Collision detection is in our case to determine whether a vertex of the cloth is 

inside of the skin. A correct test must consider line segments which will be the vertices 

cloth trajectories between time steps and against faces of the skin in time step t . 

But in order to reduce the number of collision detection tests we previously perform 

some easier test where the elements colliding are vertices against OBB. 

1−it it i

 

3.4.1 Detection vertex-OBB 

A OBB is defined, as we have seen before, by a centre and three orthonormal 

axis that can be considered as a coordinate system. The OBB is bounded by 6 planes, so 

the first idea in order to detect if a vertex is inside a OBB would be to compare the 

vertex coordinate against these 6 planes.  

There is a better way to solve this problem. Assuming that the vertices 

coordinates are given in global coordinates, if we apply a mapping from the global 

coordinate system to the OBB coordinate system then we just need to compare the 

coordinates of the vertex against the right top corner of the OBB. 

 

Figure 9. Coordinates transformation mapping 
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Considering the following skeleton where we have the world coordinates system (WCS) 

at the bottom of the skeleton and the local coordinate system (LCS) of the OBB 

associated with the right shoulder. 

We need to obtain the transformation matrix which maps WC into LC of the 

OBB: 
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The vectors u, v and w of the LCS must rotate under transformation matrix  into 

the unit principal vectors i, j, k of VC [SLA02], therefore: 
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once we have the rotation matrix we need to compute the translation which 

transforms the OBB into the origin of the VC system. Lets call the OBB q then: 
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Finally the transformation matrix is thus: 
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This matrix is computed once at the initialisation part and then stored so that for 

every animation step it can be multiplied directly by the cloth coordinates to go from 

world coordinates to the OBB coordinates, so the only thing we have to compare to 

know if the vertex is inside the OBB is the coordinates of that vertex against the 

coordinates of the right top corner of the OBB 

 

3.4.2 Collision Detection vertex-triangle 

Once we have the two sets of points between which we need to compute 

collision detection vertex-triangle, we need first of all to compute the distance from the 

vertex to the triangle and if it is bellow a certain threshold then we consider that the 

point lies on the plane and therefore there may be an intersection. 

The next step is to compute the projection of this point on the plane. This can be 

obtained by computing the intersection between the plane and the ray that passes 

through that vertex with direction normal to the plane [SLA02].  

 

Figure 10. Vertex projection onto triangle plane 

The equation of the plane is given by: 

0=−++ dczbyax  
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Where (x, y, z) are coordinates and a, b, c and d are know. The cross product 

 gives a normal vector to the plane ( ) ( 0201 PPPP −×− ) ( )cban ,,=
ρ . It is obvious that 

there are two normal vectors to the plane pointing in opposite directions, this direction 

depends in the order of the points. Therefore it is important the particular labelling of 

the points which is usually done in counterclockwise order when looking the polygon 

from the front side. 

One useful fact about the equation of a plane is that it can determine the 

relationship between the plane and any other point in space. A plane divides the space in 

three subspaces which are the positive half-space, the negative half space and the space 

that contains all those point lying on the plane. 

Supposing we have the point (x,y,z) then: 

if  0>−++ dczbyax  then (x,y,z) is in the positive half-space (that is on the 

same side as the one which the normal vector (a,b,c) points) 

if then (x,y,z) is in the negative half-space, and finally 0<−++ dczbyax

if  then the point (x,y,z) lies on the plane. 0=−++ dczbyax

These facts give allows as to determine whether any particular point is located in 

front or behind the plane. 

Once we know the equation of the plane given by the three vertices that define 

the triangle we need to compute the intersection of the plane with the ray that goes 

through the point P in direction perpendicular to the plane. 

The equation of that ray is: 

ntPtq ρ
+=)(  with  0≥t

and the direction of the ray is given by the vector:  

),,( dwdvdudq =  

where the plane and polygon meet thus: 

0)()()( 000 =−+++++ dtdwwctdvvbtduua  

Therefore t can be obtained from: 

cdwbdvadu
cwbvaud

t
++
−−−

= 000  
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Then substituting t in the equation of the ray we obtain the point P=(x,y,z) which 

is the projection of the point q into the plane. 

Once we have the point p which obviously lies on the plane, we have to find out 

whereas p is inside the polygon itself or outside. The problem now is thus to determine 

if the point p given in 3D space is inside a polygon given also in 3D space. Since this is 

not an easy problem to be solved in 3D we are changing the problem to work in 2D 

space by using projection. 

 

3.4.1 Projections 

This method consists in projecting both the point p and the vertices of the 

polygon onto one of the principal planes (XY, XZ or YZ) [SLA02]. 

The inside/outside relationship between the projection point and the projected 

polygon would be the same as the original point did to the original polygon. The 

problem here is choosing the best plane to do the projection. The worst situation that we 

have to avoid is the one where the projection plane turns out to be orthogonal to the 

triangle plane, because in this case the projected plane will degenerate into a line. The 

main idea will be to choose the plane that is somehow most parallel to the triangle 

plane. This can be obtained by choosing the plane that minimises the angle between the 

normal to the plane of the triangle and the normal to the principal plane of projection. 

Assuming that the normals are normalised, the minimisation of the angle can be 

obtained by maximising the dot product of the normals.  

Since we are working with the principal axis, the dot product turns to be very 

easy to obtain: 

If plane is XY then the plane equation is Z=0 thus its normal vector of the 

principal plane is n pp
ρ =(0,0,1) and so the dot product cnn pp =⋅ , where nρ is the normal 

of the triangle plane. 

ρρ

If the plane is XZ then by the same reason the dot product turns out to be b and 

is the plane is YZ then the dot product is a. 
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Therefore the principal plane that we have to choose for the projection 

corresponds to the maximum absolute value of the coefficient in the plane equation of 

the triangle. 

The algorithm to obtain the projection is very simple: 

If  XY is  chosen then drop the z-coordinate for the triangle vertices and point p 

If  XZ is  chosen then drop the y-coordinate for the triangle vertices and point p 

If  YZ is  chosen then drop the x-coordinate for the triangle vertices and point p 

 

In other words, we can carry out the projection to 2D by dropping the coordinate 
x if |a| is the maximum value, drop y if it is |b| the maximum or drop z if |c| is the 
maximum. 

Once we have the 2D projection we need to determine if the point is inside the 
polygon. This is not an easy problem even in 2D if the polygon is allowed to have any 
shape, but this is not our case, since we are dealing with triangles and thus convex 
polygons. 

 
Figure 11. Triangle intersection 

 

Assuming the triangle vertices are given in a counterclockwise order and 
supposing then the equation of the lines forming the triangle edges are: ),( iii yxp =′

0)()(),( =−−−= iiiii dxyydyxxyxe  

iii xxdx −= +1  

iii yydy −= +1  
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For each line equation defining the triangle it is satisfied that those points (x,y) 

such that  lie on the positive half-space of the line, that is on the side where 

the normal to the vector lies. Those points which are outside the triangle will have a 

positive value for some line equation and a negative value for others, but for points 

located inside the triangle the values will be negative for all the line equations (they 

may also have some value 0 if the point lies on any edge). 

0),(0 >yxe

Hence the algorithm for determining if a point is inside a triangle will be: 

If for each edge i = 0,1,...,n-1 then the point is inside 0)( ≤pei

Otherwise it is outside 
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4 IMPLEMENTATION 44  IIMMPPLLEEMMEENNTTAATTIIOONN  

Our main goal in this project is to achieve real time performance of cloth 

simulation for skinned avatars, so we need an efficient algorithm to detect collision 

between the cloth and a deformable avatar. One of the optimisations done to avoid a 

squared cost in the collision detection algorithm is represent the body by OBB in order 

to have a simplification of the characters for the purpose of computing a test for 

intersection between the vertices and these OBB, previous to the vertex-triangle 

intersection. 

In our system, the character to be dressed is first approximated by OBB that 

closely match the character’s shape and its hierarchy is arranged in the exact same way 

as the character’s hierarchy. There is therefore one OBB associated with each bone and 

so in order to go through all the OBB we just need to traverse the skeleton hierarchy.  

This OBB representation greatly enhances the speed at which collision detection 

is performed in our system since  it is very  quick to compute the intersection by simply 

applying the transformation matrix to go from world coordinates to local coordinates of 

the OBB. 

The garments are based on a mass-spring particle system. The cloth is given by 

an irregular triangle mesh where each vertex can have a different mass. This mesh 

representing the cloth can also have textures applied to give more realism to the final 

image. The shape and position of the cloth pieces must match the shape and position of 

the characters to be dressed. 

Our main concern during the implementation part of the project has been to 

obtain the best computational time as possible. In order to obtain our target it has been 

necessary to take some assumptions and make some generalisations that are explained 

in detail in this section. 

 

38 



 

4.1 Space subdivision 

First of all we allow some tolerance error in the space subdivision to avoid 

recomputing it for each time step. Since the computation of the OBB has high 

computational time, we can not afford all the process of obtaining the tightest OBB for 

each time step, so when we calculate the size of an OBB we will store a slightly bigger 

box so that it can be used for every position of the bone in the skeleton. 

This assumption can be made since the object we are dealing with (the skin) is 

not going to change its shape in an unknown way. Skin vertices will have their position 

updated for each movement of the skeleton, but it is easy to estimate the final shape we 

can obtain even in an extreme situation. So it can be considered a good decision to work 

with a slightly bigger size of the OBB. 

This decision involves a higher number of collision detection tests between cloth 

vertices and skin triangles since there will be more cloth vertices satisfying the 

intersection test with the OBB. But even though we may have a higher number of 

collision detection tests to be done, we  avoid updating the size of the OBB which has a 

cost of O(N) where N is the number of vertices attached to a bone. 

In the analysis section we explained that in order to reduce the amount of 

triangles to compare for each OBB we also perform a subdivision along one of the axis 

of the OBB. This subdivision consists mainly in projecting each vertex of the skin onto 

one of the axis and depending on the segment of the axis where it lies it will belong to a 

particular subdivision of the OBB. This subdivision can be seen in the following figure: 

 

Figure 12. Subdivision of the OBB. Red vertices are the ones that belong to two adjacent 

subspaces of the OBB. 
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From the previous figure we can appreciate that the vertices that lie near the 

border of a segment may be projected in the adjacent segment after the skin has been  

modified. Since our main goal is to avoid unnecessary updates that require a lot of 

computational time we can allow certain modifications of the vertices without needing 

to update the space subdivision. This can be done by allowing a vertex near the border 

to belong to two adjacent subspaces. The only problem of this method is that we will 

need to apply the collision detection test twice for the triangles containing that particular 

vertex, but this will occur in very few situation. Therefore this method will manage to 

compute collision detection without any need of updating the space subdivision 

structure. 

 

4.2 Cloth implementation 

At the start of the simulation the mesh representing the cloth is given in global 

coordinates and it has associated the objects of the scene with which it can collide. In 

this case the object associated with the cloth mesh is an object representing the entire 

avatar.  

For every frame in the simulation, forces such as gravity, wind and internal 

damping are applied to the particles representing the cloth in order to modify the 

position of its vertices. After the dynamic forces are accumulated, an explicit integration 

is performed and the velocity and position of every particle is obtained. Once the new 

position for a cloth particle is acquired, it is verified that the particle does not penetrate 

any OBB. If this happens then a more accurate collision detection test between the 

particle and the skin has to be performed and in case we detect an intersection of the 

cloth with the skin then  the cloth vertex position has to be calculated. The particle is 

moved to that position and a feedback force is applied to avoid collision in the 

following frames. 
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4.3 Collision Detection Algorithm  

Our algorithm tests first of all the intersection of each cloth vertex against all the 

OBB. Once an intersection between a cloth vertex and an OBB is detected then  we 

determine the subdivision inside the OBB where the vertex lies and therefore we will 

compute vertex-triangle intersection with only the triangles that lie in the same 

subdivision. 

The algorithm is the following: 

For each OBB detect vertex-OBB intersection 

{ 

If intersection occurs: 

{ 

Project vertex onto main axis of the OBB to determine the subdivision 

For all the triangles in the subdivision: 

{ 

  Compute the distance between the vertex and the triangle plane 

  If distance smaller than previous_distance then: 

   If vertex projection inside triangle 

    Store triangle reference and distance 

} 

} 

} 

This collision detection algorithm will test all the OBB and then will compute 

intersection vertex-triangle where vertex-OBB intersection occurs. 

Two optimisations have been done for this algorithm. First of all we don’t need 

to test intersection against all the vertices within an OBB since we use the projection 

method described in section (4.1) to narrow the number of triangles to compute 

intersection. 
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The second optimisation of the algorithm is that since we are only interested in 

the closest triangle, after an intersection occurs we store the distance and therefore in 

the following possible intersections we will only compute the vertex-triangle 

intersection when the distance between the vertex and the triangle is bellow the previous 

intersections detected for that particular vertex cloth 

Once we have acquired all the information  related with the intersection we need 

to calculate the new position of the cloth vertex and the feedback force needed to be 

applied. 

 

4.4 Cloth Vertex Update 

 Once a intersection between a cloth vertex and a OBB has been detected, we 

need to compute whether the particle intersects any of the triangles within the OBB. To 

compute the intersection we need to have all the elements in global coordinates, so first 

of all we need to modify the coordinates of the skin from global to local coordinates. 

This transformation is given by multiplying the local transformation matrices applied to 

each bone on the traversal from the root bone to the bone associated with the OBB 

where the skin vertex is included. 

Once we have all the data in global coordinates we have to compute the distance 

between the cloth vertex and the triangles of the skin with which it may collide. We can 

have several situations depending on this distance. 

The first situation we may have is that the vertex does not approach enough any 

of the triangles and therefore there is no intersection vertex-triangle as we can see in the 

following picture: 

 

Figure 13. Triangle with no intersection 
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In this case we do not need to modify the forces applied to the vertex nor its 

position, and the collision test will return a negative value. 

If the vertex approaches any of the triangles we use three different distance 

thresholds to determine the action we should perform with the cloth vertex colliding. 

Those thresholds are: 

- OUTSIDE 

- ON SURFACE 

- INSIDE 

Those thresholds will be selected depending on how accurate the final result is 

required . The bigger the thresholds the easier the intersections are to detect but the 

higher the computational time required will be. 

The OUTSIDE threshold will determine when the cloth is approaching a triangle 

and therefore it may have a collision within the following frames. This case can be seen 

in the following figure: 

 

Figure 14. Triangle with intersection but without feedback force 

When this occurs we need to compute a feedback force since we want to modify 

the total force  order to avoid the vertex moving towards the skin, but we will not 

modify the vertex collision position. 

The feedback force will be given by Newton’s Law: 

F=m·a 

Where m is the mass of the cloth vertex and a is the acceleration that we want to 

apply to the movement of the vertex. 
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The module of the acceleration will be inversely proportional to the distance 

between the vertex and the surface and the direction of the acceleration will be equal to 

the normal of the surface. 

=aρ SURFACE_THRESHOLD – distance 

and na ρρ
=  

Thus the feedback force is: 

amF ρρ
⋅=  

This feedback force returned by the collision detection algorithm is the response 

force and will be added to the total force applied to the vertex due to gravity, wind, etc. 

in order to modify the direction of the movement for the following frames of the 

animation and therefore avoid the intersection with the skin. 

 

The last two possibilities are shown in the following figures: 

 

Figure 15. Triangle with intersection and feedback force 

The figure on the left shows the case when the distance between the cloth vertex 

and the plane is bellow the SURFACE threshold, and the figure on the right shows the 

case when the cloth vertex has already penetrate the triangle. Both cases will be treated 

in the same way. 

First of all we need to compute the feedback force that will be added to the total 

force applied to the vertex, so that we will modify the direction of the vertex movement 

for the following frames of the animation. This is done in the same way as we have seen 

for the previous case. 
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For the case where the vertex does intersect the skin we need to compute the 

collision position to be at a certain threshold distance from the surface of the skin. 

The new position will be computed as the intersection of the line with direction 

equal to the normal of the plane and passing through the projection of the point on the 

triangle plane. 

)',','(´ zyxP =   where P’ is the projection of the point P onto the plane 

NPPos
ρ

+= '   where N
ρ

is the normal to the plane 

 

 4.5 Public Software 

Collision Detection Libraries: 

There are several algorithms for collision detection that have been already 

implemented and are available for public domain, for example: 

I_COLLIDE Collision detection package available at: 

 http://www.cs.unc.edu/~geom/I_COLLIDE.html  

RAPID Interference detection package available at:  

http://www.cs.unc.edu/~geom/OBB/OBBT.html 

 

GSL – GNU Scientific Library: 

In order to compute the axis of the OBB the GSL library has been used to 

compute the eigenvectors of the covariance matrix. 

This public software can be found in: 

http://www.gnu.org/software/gsl/ 
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5 TESTING 55  TTEESSTTIINNGG  

In order to detect the capability of our collision system we have two models 

which can be seen in the following figures: 

 

Figure 16. Models 

 

First of all we want to compute the reduction of potential colliders of the skin 

model for each animation step. Both model consist of a polygon  mesh. The number of 

vertices and polygons (triangles in our  case) are: 

No. of vertices = 1290 

No. of polygons = 2576 

 The model on  the left contains 240 OBB and the one on the right 255.  

 

46 



 

5.1 OBB 

The first step of our algorithm is to compute the OBB associated with each bone. 

In the following figures we can observe the OBB associated with all the bones of the 

skeleton. 

            

Figure 17. Test of OBBs 

In the following figures we can see how the OBB are reoriented depending on 

the movement of the bones:  

 

Figure 18. OBB updated during animation 
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Figure 19. OBB update 

48 



 

5.2 Reduction of the number of triangles 

Once competed the OBB associated with each bone we perform a subdivision of 

the OBB along one of the three axes of its coordinates system. For each OBB we have 

15 subdivisions in order to reduce the number of vertices and polygons within each 

space partitioning so the later collision detection test will perform quicker since there 

are less triangles to test. 

Depending on the axis selected to do the subdivision we obtain slightly different 

results. In the following tables we can observe the values obtained for each model. 

Results for the left figure:  

Axis No. polyg/OBB

(Average case) 

No. polyg/OBB

(Worst case) 

No. vertic/OBB 

(Average case) 

No. vertic/OBB

(Worst case) 

0 29.3 163 6.6 27 

1 27.2 128 6.4 28 

2 26.3 189 6.6 28 

 

Results for the right figure: 

Axis 

 

No. polyg/OBB

(Average case) 

No. polyg/OBB

(Worst case) 

No. vertic/OBB 

(Average case) 

No. vertic/OBB

(Worst case) 

0 27.3 158 6.0 22 

1 25.5 220 6.1 23 

2 24 203 5.9 27 

 

After testing the cloth mesh against the OBB enclosing the skin the number of 

collision detection test to be done will depend only on the average number of polygons 

for each OBB, since in most of the situation one cloth vertex will collide with only one 

space subdivision. Therefore the number of triangles against which we apply collision 

detection for each cloth vertex has been reduced from 2576 to approximately 26 which 

means a reduction of about 99%. 
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In the worst situation we will have a cloth vertex that can collide with two 

adjacent space subdivision, since we have allow a tolerance error to avoid the update of 

the OBB in each time step. In this case the number of triangles to be tested against each 

cloth vertex will be about 52 (the correspondent to sum the average number of polygons 

of two space subdivisions). This implies a reduction of about  98% 
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6 RESUULTS 66  RREESSULLTTSS  

Our system has been used to perform collision detection between a garment with 

skirt shape and a virtual 3D mannequin obtained from the scanning of a real person. The 

cloth model contains 264 vertices and the avatar model contains 1290 vertices. 

Our  algorithm has been implemented using an OBB hierarchical representation. 

These OBBs allow a preliminary test between vertices of the cloth and skin triangles to 

eliminate them for the intersection tests. This method dramatically reduces the number 

of triangles against which the collision detection test has to be done. This optimisation, 

as we have previously mentioned, achieves a reduction of about 98%. 

The method we have implemented not only optimises the number of collision 

detection tests, but also it is scalable since it is independent of the complexity of the 

model. 

In practice, the implementation of collision detection and response methods can 

account for anything up to 90% of the total computation required for a typical 

simulation.. Our algorithm reduces the frame rate by  65% when performing both, 

collision detection and response in an 800MHz machine running Windows 2000 with a 

GeForce2 card.  

The model previously presented has been also tested when collision detection 

was being performed without our optimised algorithm. The results showed a decrease in 

the frame rate of about 99.8% 

If we consider only collision detection without applying feedback forces for the 

response, our reduces the frame rate by about 37%. 

From the values obtained we can state that our optimisation significantly 

improves the frame rate when collision detection is being applied. In the following 

figure we illustrate the result of our algorithm.              
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Figure 20. Visual results of collision detection 

The regular distribution of points that can be seen in the cloth, shows the cloth 

vertices against which the collision detection algorithm is being applied. 

The green cloth vertex represent those vertices that do not intersect with any 

OBB and therefore they are not being tested for intersection with the skin. The blue 

vertices represented those vertices of the cloth that are inside one or maybe more OBB 

but the collision detection test has given a false result, which means that they are no 

close enough to the skin so there is no intersection. 

The red vertices represent those vertices that are inside an OBB, and intersect a 

triangle of the skin polygon mesh or are bellow a threshold so that they may intersect in 

the following frames. In this case a feedback force is applied so that the vertices will be 

separated from the skin. This can be observed in the waist of the skirt from the image in 

the left to the image on the right. It can be seen that the upper part of the cloth gets 

wider as the skirt falls around the body due to the gravity force. 
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7 CONCLUSIONS, EVALUATION AAND 

FURTHER WORK 

77  CCOONNCCLLUUSSIIOONNSS,,  EEVVAALLUUAATTIIOONN  ANNDD  

FFUURRTTHHEERR  WWOORRKK     

Simulation of cloth deformation has many applications in engineering, the textile 

industry and the entertainment industry. It involves both computer graphics and the 

understanding of the physical properties of such fabric materials. We need therefore to 

have efficient collision detection methods to determine the deformations of the cloth 

depending on the underlying human body. 

Real-time graphics simulations, where the shapes of  the bodies deform 

continuously over time, constitute a particular challenge since the possibilities of using 

pre-calculated data and data structures are dramatically decreased. The result of this 

work is an efficient collision detection algorithm that works well for real-time 

simulations of deformable  human bodies represented by polygonal meshes. 

The method proposed in this project its based on a bounding volume hierarchy 

whose bounding volumes are OBB. This space subdivision is suitable to be prebuilt 

before simulation time for many types of deformable bodies and very fast to update 

during simulation time. 

In computer graphics, the emphasis is placed on the possibility of detecting 

collision in real-time, specially in computer animation applications, even if speed is 

gained at the cost of losing precision. This is the main reason why hierarchical 

representations are often used in this domain, since they provide higher precision as one 

moves down the hierarchy, therefore allowing to adapt output precision to the 

computing time available.  A further work could be then to compute approximate 

collision detection given the intersection with the OBB and the distance to its main axis 

in order to avoid computing accurate detection with the polygons of the skin. This 

approximation could be done depending on the computational time available for each 

frame and considering for example the viewpoint as a factor when choosing the level of 

detail for each space subdivision. 

In our project we compute the OBB directly from the polygonal mesh associated 

with each bone. We have seen in the results that this method leads to an orientation of 

the axes dependent on the distribution of the vertices along the bone. It could be 
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possible to obtain a more accurate OBB if before starting to compute the eigenvectors 

we carried out some process to obtain an homogeneous level of detail in the mesh of 

vertices representing the skin of the avatar. 

Even though the OBB are updated during the animation, so far we have 

conducted collision detection experiments only on a static human body. A further step 

would be therefore to implement dynamic simulation of cloth on moving virtual humans 

using the presented approach, evaluate its efficiency and see how it compares to other 

existing methods. 

There is much more interesting work to do regarding collision detection between 

cloth and deforming bodies, as for example: 

- Use some kind of space subdivision also for the cloth model or use 

adjacency graphs to narrow the number of collision detection test. 

- Use frame to frame coherence to guess the most likely vertices to collide in 

the following frames of the animation and discard those that are far away 

from a potential collider. 

- Use information about the viewpoint to perform collision detection with 

different levels of accuracy depending on how visible a vertex is from the 

current viewpoint. 

- Improve the quality of the physics simulation and avoid also self collision 

detection among vertices of the cloth. 
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