
CEIG - Spanish Computer Graphics Conference (2014) , pp. 1–11
Pere-Pau Vázquez and Adolfo Muñoz (Editors)

CAVAST
The Crowd Animation, Visualization, and Simulation Testbed

A. Beacco1 & N. Pelechano1

1Universitat Politècnica de Catalunya

Abstract
Simulation, animation and rendering of crowds has become an important part of real-time applications such as
videogames. Virtual environments achieve higher realism when being populated by virtual crowds as opposed to
appearing uninhabited. There has been a large amount of research on simulation, animation and rendering of
crowds, but in most cases they seem to be treated separately as if the limitations in one area did not affect the
others. At the end of the day the goal is to populate environments with as many characters as possible in real
time, and it is of little use if one can for instance render thousands of characters in real time, but you cannot move
more than a hundred due to a simulation bottleneck. The goal of our work is to provide a framework that lets the
researcher focus on each of these topics at a time (simulation, animation, or rendering) and be able to explore and
push the boundaries on one topic without being strongly limited by the other related issues. This paper presents
therefore a new prototyping testbed for crowds that lets the researcher focus on one of these areas of research at
a time without loosing sight of the others. We offer default representations, animation and simulation controllers
for real time crowd simulation, that can easily be replaced or extended. Fully configurable level-of-detail for both
rendering and simulation is also available.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Crowds simulation [PAB08, TM13] is becoming more and
more important in computer applications such as building
evacuation planning, training, videogames, etc., with hun-
dreds or thousands of agents navigating in virtual environ-
ments. Some of these applications, in order to offer complete
interaction with the user, need to be run in real-time. In or-
der to achieve natural looking crowds, the simulation needs
to exhibits natural behaviors, to have characters that are ani-
mated with smooth and realistic looking walking styles, and
also that the rendering does not exhibit any noticeable arti-
facts. When simulating large numbers of characters the goal
is usually to produce both the best local motion and anima-
tion, minimizing the awkwardness of movements and elimi-
nating or lessening any visual artifacts.

Achieving simulation, animation and rendering of the
crowd in real-time becomes thus a major challenge. Al-
though each of these areas has been studied separately and
improvements have been presented in the literature, the in-
tegration of these three areas in one real-time system is not

straight forward. There are some commercial tools that pro-
vide aids to simulate crowds, but in most cases there are lim-
itations that cannot be overcome, such as finding bottlenecks
in a different area than the one you are researching on, thus
pushing you from meeting real time constraints as we in-
crease the size of the crowd.

Due to the high computational needs of each of these three
areas individually, the process of integrating animation, sim-
ulation and rendering of real time crowds, often presents
trade-offs between accuracy and quality of results. As we
will describe in this paper, these three areas cannot be treated
in a completely separated way as most current tools do, since
there is a strong overlapping between them, and users need
to be aware of this when setting up a simulation (see Figure
1). For example, we cannot increase the number of anima-
tions easily if we are rendering exclusively with impostors.

Currently it is not easy to find a real time framework that
allows you to easily work on one of these areas. If for exam-
ple you want to focus your research on a new steering behav-
ior, you will start and do most of your experiments by visual-

c© The Eurographics Association 2014.



A. Beacco & N. Pelechano / CAVAST: The Crowd Animation, Visualization, and Simulation Testbed

Figure 1: Simulation, Animation and Rendering of Crowds
are three overlapping research areas dependent on each
other which are continuously interacting.

izing a set of circles or cylinders representing your different
agents. But in the end you would like to see your results rep-
resented by 3D animated characters. The switch from having
2D circles to fully articulated 3D characters in real time can
be very time consuming. Or for example, your research in-
terest may be focused on implementing a new representation
for rendering thousands of characters. Once you achieve real
time visualization of such a huge amount of characters, you
do not want to end up displaying them in a grid formation or
giving the agents random positions where they stay in place.
Instead, one would want them to be animated and moving
in a virtual environment, if possible with collision avoidance
and natural animation. Again this is not straight forward in
current frameworks. And finally, the same applies for the an-
imation field, if you are defining new animation controllers
for 3D characters, you would like to test them with hundreds
of characters moving around a virtual environment with re-
alistic rendering.

In this paper, we present a novel framework that embeds
these three elements: Simulation, Animation and Rendering
of crowds. Each of them presented in an independent-but-
linked modular way. The final tool becomes then a proto-
typing testbed for crowds that allows the researcher to fo-
cus on one of these parts at a time without loosing sight of
the other two. This tool could also be very handy for in-
troducing crowd simulation in the classroom. Our bundle
includes some basic resources such as character models, li-
braries and implemented controllers interfaces, which allows
the researcher to have a basic crowd simulation engine to
get started, and to be able to focus exclusively in a particu-
lar area or research. Our module also lets the researcher to
have communication and interaction between these areas, if
he desires to treat some of them in a more dependent fashion.
We offer default representations, animation and simulation
interfaces and controllers in a modular way, that can easily
be extended with your new research work. We also include
a fully configurable system of level-of-detail for animation,
visualization and simulation.

2. Related Work

There are some well known commercial tools for model-
ing and simulation software such as 3D Studio Max [Auta],
Maya [Autc] or Blender [BF] that allow us to add crowds
to a virtual scene. There exist also many plug-ins for these
packages that can be used to extend their basic features.
For example Golaem Crowd [Goa14] is a powerful plug-
in for Maya [Autc]. Golaem Crowd is a complete commer-
cial package for crowd authoring, including tools for placing
crowds, create behaviors, animate characters, create diver-
sity of agents, and render the resulting simulations. Although
they offer some real-time previsualizations in order to help
the artists creating new crowds and defining behaviors, their
target is mostly the movie industry producing high quality
offline renders. It is not as much a research platform as it is
a commercial production tool. Also in the movie industry, a
major competitor is Massive [Mas14], an expensive crowd
simulation tool that has been used in many films.

In the crowd simulation literature there are some steering
behavior libraries such as OpenSteer [Rey], which also in-
cludes a demo software for simple visualizations of the im-
plemented steering behaviors through simple 2D representa-
tions. We can also find SteerSuite [SKFR09], a flexible but
easy-to-use set of tools, libraries, and test cases for steering
behaviors. The spirit of SteerSuite [SKFR09] was to make it
practical and easy-to-use, yet flexible and forward-looking,
to challenge researchers and developers to advance the state
of the art in steering. Although their simulation part is very
complete, there is not such thing as animated 3D characters
for visualization of the simulated crowds.

For character animation, there is just a few libraries that
we can easily include in any C++ project. A commercial ex-
ample would be Granny 3D [RGT], which includes a com-
plete animation system including features such as blend-
graphs, character behavior, events synchronization or pro-
cedural IK. But again it is a solution for artist and for com-
mercial products, not for doing research. Some free solu-
tions are Animadead [But], a skeletal animation library with
basic functionalities, or Cal3D [Cal] another skeletal anima-
tion library which also includes an animation mixer and in-
tegrates morph targets. The Hardware Accelerated Library
for Character Animation, HALCA [Spa], extends the Cal3D
library to include new features such as GLSL shaders sup-
port, morph animations, hardware accelerated morph targets
(blend shapes), dual quaternion skin shaders, JPEG texture
files, direct joint manipulation and other additions. The FBX
SDK [Autb] is another library allowing to read FBX files,
which is a widely used and extended format for character
modeling and animation. The API includes some skinning
examples, but you should still program your animation li-
brary to use FBX models imported with it. Our framework
currently offers HALCA [Spa] as the animation library, but
the user can create its own characters based on any other li-
brary.

c© The Eurographics Association 2014.



A. Beacco & N. Pelechano / CAVAST: The Crowd Animation, Visualization, and Simulation Testbed

Figure 2: Diagram with a rough overview of the classes in CAVAST.

In the case of applications that require real time crowd
simulation, such as video games, there are several tools
commonly used both commercial (Unreal [Epi14], Unity
[Uni14] and GameBryo [GU]) and open source (Ogre
[Ogr14] and Panda 3D [CMU]). Unreal [Epi14] is a widely
licensed game engine in the professional video game in-
dustry, with powerful and refined tools. Unity [Uni14] is a
newer game engine that is also used for professional games,
although it is more widely extended in the indy game de-
velopment community. It offers a render engine, a complete
animation system called Mecanim, with a very user-friendly
interface for authoring state machines (such as blend trees)
and retargeting capabilities. Mecanim also includes modules
for steering behavior and navmesh generation. It is relatively
easy to start a project and learn how to work with it, and a lot
of researchers are starting to use it. But it still remains a com-
mercial game engine, and you have to develop your exten-
sions using scripts. You can use your own C++ code, which
is faster, but you need to implement plug-ins and wrappers
for them. Gamebryo [GU] is a similar product, modular and
extensable, but still focused on game design. Ogre [Ogr14]
and Panda 3D [CMU] are open source graphic render en-
gines that include some features like animation systems or
simple AI modules, which can be easily extended.

With most of the systems described above, you will find
severe limitations when trying to scale up your work. For in-
stance you may have developed a new rendering technique
for thousands of deformable characters, but the selected en-
gine may only animate a few hundred in real time. Using

Unity [Uni14] you might be restricted to a fixed renderer and
to its animation system, unless you implement your own us-
ing plug-ins. Implementing and integrating rendering plug-
ins to Unity is possible although not straight forward, and
might require a pro-license. The rendering pipeline in Unity
is not always clear, and our experience says you can not com-
pletely control the OpenGL state. Ogre [Ogr14] has more
potential, and has a basic animation system, which should be
improved in newer versions, but you still need to integrate it
with your AI libraries. The learning curve of the Unreal En-
gine [Epi14] is hard, and might not be worth if you are aim-
ing for research and not for a professional and commercial
appealing result.

None of these solutions offers a flexible yet customizable
framework for the research community to work with when
it comes to real time requirements, giving them freedom to
modify either simulation, animation, rendering or any com-
bination of these parts. In addition to that you might not be
willing to pay expensive licenses if you are only targeting re-
search applications. There is though some research platform
in the crowd simulation field that are worth to mention.

CAROSA [All10] is an architecture to author the behav-
ior of agents, and obtain heterogeneous populations inhab-
iting a virtual environment. Its framework enables the spec-
ification and control of actions, and is able to link human
characteristics and high level behaviors to animated graph-
ical depictions. Although it does not include research tools
for rendering, it is prepared to be used on an external soft-
ware. ADAPT [SMKB13] is an open-source Unity library

c© The Eurographics Association 2014.



A. Beacco & N. Pelechano / CAVAST: The Crowd Animation, Visualization, and Simulation Testbed

delivering a platform for designing and authoring functional,
purposeful human characters in a rich virtual environment.
Its framework incorporates character animation, navigation,
and behavior with modular interchangeable and extensible
components. But since it is a library for Unity, it does not
allow you to control rendering. Project Metropolis [OE11]
aims to create the sight and sounds of a convincing crowd
of humans and traffic in a complex cityscape. They also
focus on exploring the perception of virtual humans and
crowds, through psychophysical experiments with human
participants. But Metropolis is a large and complicated re-
search project, with tens of research goals, rather than a tool
for researchers to get started working in the crowd simula-
tion field. Similar to what we aim to do, SmartBody [Sha]
is a character animation library that provides synchronized
locomotion, steering, object manipulation, lip syncing, gaz-
ing and nonverbal behavior in real-time. It uses Behavior
Markup Language (BML) to transform behavior descrip-
tions into real-time animations. SmartBody is a good tool
to develop and explore virtual human research and technolo-
gies, but it is focused on one character, or a small number
of characters, and not on crowds as it is our desire. Thus our
goal is to provide the graphics community with a tool in or-
der to be able to quickly get started on a new research project
related to crowd animation, visualization or simulation.

3. Overview

We present CAVAST: the Crowd Animation, Visualization
and Simulation Testbed, a new prototyping and develop-
ment framework, made for and by researchers of the graph-
ics community specialized in crowds. The goal of this work
is to provide a framework with state-of-the-art libraries and
simple interfaces to ease the work of starting a project re-
garding simulation, animation or rendering of crowd. This
framework provides a basis to start working in this field, fo-
cusing on solving a specific problem in simulation, anima-
tion or rendering without loosing sight of the other aspects,
that is conserving the communication and interaction possi-
bilities between them.

Figure 2 shows a rough overview of the classes and inter-
faces present in CAVAST. The scene render engine is going
to need some basic information to render an agent. This in-
cludes at least: visual representation (even if it is just a 2D
point), position and orientation.

The Agent class is the core class of our framework and it
is linked to:

• One or more Agent Controllers. These controllers deal
with the kind of simulation methodology used for
pathfinding and local motion. It also needs an interface
to assign and describe one or more Goals to the agents
(into a queue).

• One Avatar containing the Character Representation used
by the Rendering module. Notice that one avatar can be
shared by many agents.

• One or more Animation Controllers, an interface class in
charge of the Animation module to deal with skeletal ani-
mation.

Each one of these interfaces are described in more detail in
the following subsections.

3.1. Simulation

The Simulation module needs to include at least an imple-
mentation for the Agent Controller interface. This module
will be responsible for moving the Agent in the virtual envi-
ronment. The Agent Controller consists of either an imple-
mentation of a behavioral model based on for example steer-
ing, social forces, rules, or any other model that includes the
AI of the agent. Alternatively, it could be directly controlled
by the user input through a User Controller. When the Agent
is controlled autonomously, it is usually required to have cer-
tain goals. The type of goals required vary from one system
to another. Our framework provides a Goal interface and a
basic implementation consisting of just a Position. The user
can expand the kind of goals by implementing new Goals
such as a position with orientation, or a position with orien-
tation and time stamp. The Agent Controller has access to
the Scene in order to query information about fixed obsta-
cles, dynamic obstacles and other members of the Crowd.
This information can be used for collision avoidance for ex-
ample. Notice that the Agent Controller can also integrate
physics libraries to accelerate collision detection if needed.

3.1.1. Pathfinding

As for pathfinding, we provide a Pathfinder interface class
and a basic implementation of the A* algorithm [DP85].
This could be easily expanded to new Pathfinder classes such
as D* Lite [KL02], ARA* [LGT03], etc. This class works
over a Graph interface class, which can be either a Grid or
a Navigation Mesh representing the scene. A Pathfinder also
might need a Heuristic to work with, in our case we have a
simple Euclidean distance, but it could easily be any other
function estimating a cost to reach a node of the Graph. Our
current version only provides a Grid representation from a
randomized generated scene (filling cells in a grid with ob-
stacles), although we plan to include a navigation mesh cre-
ation module from any static 3D geometry loaded in the
scene. So, if the Agent Controller has a Pathfinder, it will
be used to find a path and generate intermediate goals (way
points) to insert into the goals queue of the Agent. Figure 3
shows a diagram of the simulation module in more detail, but
for the sake of clarity not all the classes have been included
in it.

3.1.2. Agent Controller

The main method an Agent Controller has to im-
plement is exeSimulation(ref Agent a, float
elapsedTime). This method will be in charge of ac-
tually moving the agent, and will modify attributes of

c© The Eurographics Association 2014.



A. Beacco & N. Pelechano / CAVAST: The Crowd Animation, Visualization, and Simulation Testbed

Figure 3: The simulation module

the Agent instance a, such as position, orientation, and
velocity, as the result of executing forward the simula-
tion during an elapsed time equal to elapsedTime. The
other method that an Agent Controller needs is get-
PathFinder(), returning the PathFinder of the con-
troller if there is any. A Pathfinder requires to implement a
function findpath(ref Graph graph, ref Node
start, ref Node end, ref Heuristic h), re-
turning a sequence of Nodes from graph representing a
path from start to end. A Graph will be composed of
Nodes, which can either be Cells in the case of a Grid or
Polygons in the case of a Navigation Mesh. A Goal must
have a function isReachedByAgent(ref Agent a)
returning true when it is reached by an Agent instance a.

3.1.3. Crowd simulation

Transparent to the user, the Crowd will be in charge of it-
erating over all its agents. Currently, when an agent does
not have a goal it will get one randomly assigned, although
an Agent has a function to set up its current Goal. If the
Agent Controller has a PathFinder, it uses it to find way-
points and insert them into the queue as intermediate goals.
Once a goal has been reached, the next goal of the queue is
the new goal to be used by the exeSimulation method.
Then the Agent Controller executes its simulation for the
elapsed time.

Figure 4 shows an example crowd of 200 cylinders mov-
ing in a random generated grid, using A* for path planning
and Reynolds [Rey99] for steering, using CAVAST.

3.2. Rendering

An Agent has to be associated with an Avatar. We call an
Avatar a collection of one or more Character Representa-
tions, along with the main dimensions we want for it, that
is the size we want for our representations for each 3D axis.
Having different representations allows us to use them for

different levels of detail (LODs), and the main size of the
Avatar allows us to be consistent between different repre-
sentations. If for example we want to replace our character
by some 3D model of a cylinder for far away agents, we
will be able to scale the cylinder to the same dimensions as
the original 3D mesh by scaling its bounding box. An im-
plementation of the Character Representation interface must
provide a Shader Program (with at least a Vertex and a Frag-
ment shader) and the methods render(), to render it indi-
vidually, and instancedRender(int n, ref Ver-
texBufferObject instancesDataBuffer) in or-
der to use instancing [Dud07b], efficiently rendering n
instances using the corresponding data in instances-
DataBuffer for each one of them. We also request for
methods to get the bounding box, the bounding sphere and
the bounding cylinder radius of the representation in order
to help for collision detection and selection algorithms.

3.2.1. Scene Render

CAVAST uses its own scene library to manage the crowd
scene. Its main modules are a Scene Graph represented by a
Scene Tree, and a Transform class which is the nodes class
of our Scene Tree. A Transform has a name and contains one
absolute transformation matrix and one relative to its parent.
A Transform can contain a Render Object, although it is not
required and therefore a Transform can be empty (to per-
form relative transformations). If so, it also needs a Shader
Program name to bind it before rendering. A Render Object
is an interface class for the scene library to know how to
render things in the Scene Graph, and one Avatar is a sub-
class of a Render Object. All of this is transparent to the user
who wants to implement its own Character Representations.
CAVAST and the Avatar class will be in charge of creating
the proper transforms and add them to the scene.

When a Crowd i is added to the Scene, a Transform named
“Crowd i” is added to the scene root. When adding agents
with the same Avatar, their corresponding Transforms are
grouped in a group Transform with the name of the Avatar.
Inside that transform, agents are also grouped by Character
Representations in a group transform for each one. When
using level of detail, agents can change between Character

Figure 4: An example simulation of 200 agents using
CAVAST.

c© The Eurographics Association 2014.



A. Beacco & N. Pelechano / CAVAST: The Crowd Animation, Visualization, and Simulation Testbed

Representations, and thus need to change between groups.
This is dynamically and automatically carried out by the
Crowd class. The main reason for doing this is to be able to
perform instancing, and to accelerate the rendering of all the
instances sharing the same Character Representation. Hav-
ing all the Transforms for all the instances of one represen-
tation in the same group makes it fast to fill the instances
data vertex buffer object with their individual data. Figure 5
shows an example view of a possible scene hierarchy.

Figure 5: An example view of a scene hierarchy.

3.2.2. Character Representations

Our current system provides two Character Representations:
a basic one based on just a cylinder 3D mesh (which could
be easily extended by any 3D static mesh) and an animated
Character Mesh in the Cal3D format [Cal] through HALCA
[Spa]. The user could introduce any other Character Repre-
sentations such as those based on impostors. As an immedi-
ate future work we plan to incorporate an automatic impostor
generation module and their corresponding implementations
of the Character Representation interface.

The constructor function should load the necessary ge-
ometry and resources (textures). A Shader Program should
be loaded using our Shader Manager, and its name should
be retrieved by the getShaderName() function (one of
the Character Representation interface functions). The ren-
der() function only needs to send all the necessary in-
formation to the shader (via uniforms, attributes, or what-
ever you want to use) and to render the geometry. In
addition, the instancedRender(int n, ref Ver-
texBufferObject instancesDataBuffer) func-
tion needs to bind the vertex buffer object and enable any
vertex attribute pointers necessary to render the different in-
stances.

Notice that the shader binding is done by the scene li-
brary when rendering the corresponding transform of the

Figure 6: Level of detail: 500 Avatars with a 3D static mesh
and with a cube for agents at 30 meters or more from the
camera.

agent. This allows the user to dinamically change the shader
through the interface (whenever the new shader is able to
handle the same data).

Figure 6 shows an example scene where 500 Avatars of
the same type are represented using two Character Repre-
sentations, a static 3D geometry for closer agents, and cubes
for farther aways agents. And figure 7 shows 1000 agents
represented using 4 different Avatars with only one Charac-
ter Mesh for each one.

Figure 7: 1000 characters of 4 different types of Avatars us-
ing only one Character Mesh of around 5000 triangles for
each one (without level of detail, nor animation).

3.3. Animation

A Character Representation may be animated, that is, have
a method of adapting the character representation to differ-
ent poses. The most extended approach for animating 3D
characters is skeletal animation [MTLTM88]. An alterna-
tive approach for mesh animation consists on having multi-
ple deformed meshes (one per keyframe) which are switched
rapidly to create the illusion of animation. You could avoid
computing the deformation of a character mesh by storing
pre-computed deformed meshes for each keyframe of the
animation, and then carefully sorting these meshes to take
cache coherency into account [UCT04]. Another further al-
ternative to skeletal animation is morph target animation,
where vertex positions are stored not only for the reference

c© The Eurographics Association 2014.



A. Beacco & N. Pelechano / CAVAST: The Crowd Animation, Visualization, and Simulation Testbed

pose, but also for each frame, or for each keyframe [Lor07].
Although impostors are easier for static objects, some works
use impostors to render crowds of animated agents. Depend-
ing on how they are implemented, impostors animation can
switch between different textures [TLC02], or may still use
the skeletal animation [BAPS12].

3.3.1. Preprocessing Animations

Independently of the Character Representation chosen, if
we want to animate it then we need to have an Animation
Set. An Animation Set is an interface class offered by our
framework, which is composed of different Animations (also
called animation clips). The Agent can have an Animation
Controller, in charge of selecting or synthesizing the best an-
imation, in order to properly follow its current motion. The
Animation Controller is thus dependent on the current Char-
acter Representation and on its Animation Set.

When using skeletal animation through an animation li-
brary, the animation controller will probably make an ex-
tended use of it. For example, we could have an Avatar
linked to an Agent, whose main Character Representation
is a character, rendered and animated with an accelerated
animation library, such as HALCA [Spa]. That Agent could
have a Locomotion Controller implementing an Animation
Controller, which will be using that library to preprocess
the Animation Set, by analyzing and extracting information
from each Animation. Then at execution time, the Locomo-
tion Controller could read the velocity values of the Agent,
decide which is the best Animation to play at that moment,
and use HALCA to do it.

3.3.2. Animation Controller

The Animation Controller needs to implement a method
animate(ref Agent a, ref CharacterRep-
resentation cr). Although the same Animation
Controller could be used by different Agents and/or differ-
ent Character Representations, it has sense to assume that
the different Character Representations of the same Avatar
could share the extracted information from the Animation
Set of the main Character Representation. An avatar should
walk or run at the same speed when it is represented by a 3D
mesh as when it is by an animated impostor. So even if the
Agent Controller is linked to the Agents, we can think that
there should be at least one Animation Controller instance
for each Avatar. And therefore a method processAnima-
tions(ref AnimationSet) should be implemented
too (although it can be empty if it is not required by your
controller implementation). With this interface the user
should be able to implement his own animation controllers,
to have different locomotion styles, idle behaviors, etc.

3.3.3. Instancing and Palette Skinning

At every frame agents are sorted in the Scene Tree, being
grouped by Avatar and by Character Representation. This

way we can fill a Vertex Buffer Object with the transform
matrices of all the Agent instances, send it to the GPU, and
perform just one render call with instancing. If we want to
animate all the instances individually, that is, with each agent
having its unique animation pose, their animation informa-
tion must be sent too. This could become a bottleneck and
therefore a problem, when the amount of agents is too high
and that information is too big.

For example, skeletal animation requires to send matri-
ces or quaternions for each joint of every agent. When talk-
ing about thousands of agents with character representations
of around 50 bones or more, the amount of information to
update and send to the GPU can be very large, and thus
the bandwidth between CPU and GPU can become a major
bottleneck. A solution is to have all the animations loaded
in the GPU and perform there the matrix palette skinning
[Dud07a], having a different pose for every instance.

We therefore suggest that an Animation Set class of a
Character Representation, in addition to have all the ana-
lyzed animations, implements a function createBuffer-
Texture() to create the buffer texture where all the ani-
mations will be encoded. This way the buffer will be binded
and the vertex shader will be able to use it to perform in-
stancing and palette skinning at the same time.

The advantage of this will be to have individual agents
playing different animations. The counterpart will be that
the vertex shader will be in charge of computing the blended
pose (given different animation instances and weights), by
blending within two key frames for each animation, and be-
tween the resulting poses of the different weighted anima-
tions. The number of animations blended at the same time,
as well as the geometry complexity of the character will have
a high impact over the performance. We therefore suggest to
apply this technique for representations as simple as possi-
ble, such as impostors.

3.4. Integration

Agents within a Crowd are represented by Avatars and their
Transforms, being part of the Scene Graph. At runtime the
Scene is rendered by our render engine using the Transform
information of every Render Object. In order to render each
Avatar, it takes the position and orientation of the corre-
sponding agent and builds the transformation matrix, which
is then used to render the selected Character Representation.
Depending on the distance to the camera, the Avatar selects
one Character Representation or another and its Shader Pro-
gram (implementing the Level of Detail selection). The user
sets the LODs through an interface. The simulation is car-
ried out on another thread, executing it for every instance
of every agent. Since an Agent Controller has access to the
Scene and to the Crowd, it can also have access to the possi-
ble obstacles of the scene as well as to the other agents. The
Animation is performed right before rendering the Avatar.

c© The Eurographics Association 2014.



A. Beacco & N. Pelechano / CAVAST: The Crowd Animation, Visualization, and Simulation Testbed

Figure 8: GUIs for managing the crowd agents, avatars and
controllers in CAVAST.

4. Features

Although this paper presents an ongoing work to build a tool
for crowd simulation, animation and rendering, we offer in
the current version a fully working framework with the main
functionalities and controllers already integrated. This tool
is built using OpenGL 4.3 for rendering and we offer dif-
ferent GUIs using Qt5 (see figure 8). It is therefore straight
forward for the user to create a crowd, add agents with differ-
ent Avatars, and assign controllers. A Shader Manager and
a Shader Editor are available allowing quick shader edit-
ing. Managers and graphic editors to configure the Levels-
Of-Detail for Simulation, Animation and Visualization are
also available. The user can interactively edit an Avatar by
changing the different Character Representation switching
distances and its main dimensions, or you can add more
than one Agent Controller and more than one Animation
Controller with different distance thresholds to one or more
Agents for each one (please see the accompanying video for
a demo).

The current tool has implemented a Character Represen-
tation called Model 3DS Representation without animations
which just uses a 3ds mesh file as a character, and one
HALCA Character which loads characters animated with
HALCA [Spa]. In future versions we want to add a repre-
sentation for characters in the FBX format by using the FBX
SDK [Autb]. There are also two simple unoptimized Agent
Controllers that perform a wandering behavior, one with col-
lision detection and avoidance, and the other without it. To
detect collisions each agent simply iterates over the other
agents, predicts future positions (according to the current ve-
locity) and checks intersection between the two agent radius.
We also provide a simple version of some of Reynolds steer-
ing behaviors [Rey99]. In addition to that we offer a simple

random grid generator and an A* Pathfinder that can work
with the Reynolds controller.

Also integrated in the current systems, there is a basic An-
imation Controller that works with our HALCA Characters
and analyzes their animations. It extracts the root speeds of
each animation and therefore is able to select the best one
and adjust its speed to match the speed of the agent in the
crowd simulation. This way we reduce the foot-sliding ef-
fect.

Figure 9 shows a crowd of agents represented by HALCA
Characters, moved by our Reynolds Controller and animated
with our basic Animation Controller.

Frustum culling using bounding spheres, and occlusion
culling with bouding boxes are implemented. As it has been
previously mentioned, the system is also prepared to support
instancing [Dud07b]. Stereoscopic visualization is also im-
plemented, so the port to a virtual reality environment is also
possible.

5. Results and Discussion

Even in its current preliminary stage, we believe that
CAVAST can be a powerful tool for researchers and students.
To show the potential of CAVAST, we provide some perfor-
mance measurements such as frame rates for different scenes
and different conditions, but it is important to notice that
CAVAST is designed to be flexible and adapt to the needs
and conditions of the work carried out by the user. There-
fore performance measurements will strongly vary depend-
ing on the different controllers used or implemented, but
having said this, we believe that the current framework pro-
vides higher performance benefits when it comes to crowd
simulation, than other tools mentioned in the related work
section of the paper. For example, using our test equipment
(PC Intel Core i7-2600K CPU 3.40 GHz, 16 GB Ram, and
a GeForce GTX 560 Ti), we can render a thousand char-
acters represented with a non-animated 3d model of 3000
polygons each at 90 fps. If we add an unoptimized Agent

Figure 9: A real time visualization of a crowd of agents
represented by HALCA Characters. using the Reynolds
Agent Controller and the basic Animation Controller from
CAVAST.

c© The Eurographics Association 2014.



A. Beacco & N. Pelechano / CAVAST: The Crowd Animation, Visualization, and Simulation Testbed

controller with collision detection, frame rate drops to 60
fps. But playing with the different LODs of the Agent con-
trollers and of the Character Representations, we can again
reach frame rates over 100 fps. Using animated characters
with HALCA of 5000 polygons each, but without an Agent
Controller and all playing the same animation and the same
pose (thus sharing the animation data), you can have a thou-
sand of them at 30 fps. But using an Animation Controller
and giving individuality to the animation of each agent, can
drop the frame rate to 23 fps. Adding an Agent Controller
and thus forcing to blend more than one animation for each
agent can drop again the frame rate to 14 fps.

These examples are just to illustrate that the performance
of CAVAST is strongly related to the Character Representa-
tions you use, the Controllers you implement and the LOD
configurations you choose. One interesting feature we would
like to add is a profiling tool that could give you automati-
cally information about your controllers and representations.
This should allow the user to identify potential bottlenecks
easily. It could also compare the performance between all
controllers, and automatically seek for the optimum LOD
set-up in order to keep a real-time frame rate. Figure 10
shows a screenshot of CAVAST with a 350 agents scenario
configured to have 60 fps.

6. Conclusions and Future Work

We have presented a new prototyping and development tool
for crowds research integrating animation, visualization and
simulation: CAVAST. By implementing some controller in-
terfaces and/or using some default ones, the CAVAST frame-
work allows the user to start a new research project on
crowds with all these parts running in real-time, featuring
configurable Level-of-Detail and multithread. Although it
may seem CAVAST do not outperforms other existing sys-
tems, our performance is strongly dependent on what you do
with it. Our main contribution with CAVAST is therefore a
flexible framework and a powerful tool with out-of-the-box
crowd sandbox features.

As future work we want to include more features and im-
plement more state of the art simulation and animation con-
trollers to be provided by default. We plan to add a module
for impostors generation which will allow the user to have
impostors rendering for any given character. We could pro-
vide callbacks for potential simulation events (such as a fire
alarm) to the Agent Controller interface, and add the corre-
sponding trigger button to the GUI, letting the user to imple-
ment the behavior in its own controllers. We want to separate
the path-finding simulation part and move it to another kind
of controller interface, and link it to a navigation mesh gen-
erator module. A nice thing to add would be a generalized
random generator of scenes (not just working with a grid
or axis aligned objects), as well as some challenging exam-
ple and benchmark scenarios. Finally, we would like to have
evaluation and profiling tools, such as an automatic output

of statistics or automatic perception tests. For example an
automatic render of the same scene or simulation with dif-
ferent controllers. This might imply to add the possibility of
recording and playing back simulations.

Currently the code is not multiplatform because we are
using a Windows version of the HALCA library, although it
should be possible to port it to other platforms when using
other animation libraries. Another limitation of the current
version is that the user needs to rebuild the entire applica-
tion to add new controllers, so we plan for a plugin API
or a scripting interface using LUA or C#. Also, characters
must be added into the code before being imported, but it
should be easy to add code in order to automatically import
resources in a specific folder. We would like to release a free
open source version of the code and make it available on-
line soon. We believe that CAVAST could be useful also as
an education tool for crowd simulation courses, allowing the
students to quickly and easily visualize the results of their
different algorithms.

Acknowledgements

This work has been funded by the Spanish Ministry of Sci-
ence and Innovation under Grant TIN2010-20590-C02-01.
A. Beacco is also supported by the grant FPUAP2009-2195
(Spanish Ministry of Education).

References
[All10] ALLBECK J.: Carosa: A tool for authoring npcs. In

Proceedings of the Third International Conference on Motion
in Games (Berlin, Heidelberg, 2010), MIG’10, Springer-Verlag,
pp. 182–193. 3

[Auta] AUTODESK: 3d studio max.
http://www.autodesk.com/products/autodesk-3ds-max/overview.
2

[Autb] AUTODESK: Fbx sdk.
http://www.autodesk.com/products/fbx/overview. 2, 8

[Autc] AUTODESK: Maya.
http://www.autodesk.com/products/autodesk-maya/overview. 2

[BAPS12] BEACCO A., ANDÚJAR C., PELECHANO N., SPAN-
LANG B.: Efficient rendering of animated characters through
optimized per-joint impostors. Journal of Computer Animation
and Virtual Worlds 23, 2 (2012), 33–47. 7

[BF] BLENDER-FOUNDATION: Blender.
http://www.blender.org/. 2

[But] BUTTERFIELD J.: Animadead: A skeletal animation li-
brary.
http://animadead.sourceforge.net/. 2

[Cal] CAL3D: 3d character animation library.
http://home.gna.org/cal3d/. 2, 6

[CMU] CARNEGIE-MELLON-UNIVERSITY: Panda 3d.
https://www.panda3d.org/. 3

[DP85] DECHTER R., PEARL J.: Generalized best-first search
strategies and the optimality of a*. J. ACM 32, 3 (1985), 505–
536. 4

[Dud07a] DUDASH B.: Animated crowd rendering. In GPU
Gems 3 (2007), pp. 39–52. 7

c© The Eurographics Association 2014.



A. Beacco & N. Pelechano / CAVAST: The Crowd Animation, Visualization, and Simulation Testbed

Figure 10: Screenshot of CAVAST.

[Dud07b] DUDASH B.: Skinned instancing. In NVIDIA SDK 10
(2007). 5, 8

[Epi14] EPIC: Unreal engine.
http://www.unrealengine.com/, 2014. 3

[Goa14] GOALEM: Golaem crowd.
http://www.golaem.com/content/products/golaem-
crowd/overview, 2014. 2

[GU] GAMEBASE-USA: Gamebryo.
http://www.gamebryo.com/index.php. 3

[KL02] KOENIG S., LIKHACHEV M.: D* Lite. In National Conf.
on AI (2002), AAAI, pp. 476–483. 4

[LGT03] LIKHACHEV M., GORDON G. J., THRUN S.: ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In NIPS
(2003). 4

[Lor07] LORACH T.: Gpu blend shapes. NVidia Whitepaper
(2007). 7

[Mas14] MASSIVE: Massive software.
http://www.http://www.massivesoftware.com, 2014. 2

[MTLTM88] MAGNENAT-THALMANN N., LAPERRIRE R.,
THALMANN D., MONTRÉAL U. D.: Joint-dependent local
deformations for hand animation and object grasping. In In
Proceedings on Graphics interface’88 (1988), pp. 26–33. 6

[OE11] O’SULLIVAN C., ENNIS C.: Metropolis: Multisensory
simulation of a populated city. In Games and Virtual Worlds
for Serious Applications (VS-GAMES), 2011 Third International
Conference on (May 2011), pp. 1–7. 4

[Ogr14] OGRE: Ogre: Object-oriented graphics rendering engine.
http:://www.ogre3d.org//, 2014. 3

[PAB08] PELECHANO N., ALLBECK J., BADLER N.: Virtual
Crowds: Methods, Simulation, and Control. Morgan & Claypool,
2008. 1

[Rey] REYNOLDS C.: Opensteer: Steering behaviors for au-

tonomous characters.
http://opensteer.sourceforge.net/. 2

[Rey99] REYNOLDS C.: Steering behaviors for autonomous char-
acters. In Game Developers Conference (1999). 5, 8

[RGT] RAD-GAME-TOOLS: Granny 3d.
http://www.radgametools.com/granny.html. 2

[Sha] SHAPIRO A.: Smartbody, university of southern california
institute for creative technologies.
http://smartbody.ict.usc.edu/. 4

[SKFR09] SINGH S., KAPADIA M., FALOUTSOS P., REINMAN
G.: An open framework for developing, evaluating, and shar-
ing steering algorithms. In Proceedings of the 2nd International
Workshop on Motion in Games (Berlin, Heidelberg, 2009), MIG
’09, Springer-Verlag, pp. 158–169. 2

[SMKB13] SHOULSON A., MARSHAK N., KAPADIA M.,
BADLER N.: ADAPT : The Agent Development and Prototyping
Testbed. ACM SIGGRAPH I3D (2013). 3

[Spa] SPANLANG B.: Hardware accelerated library for character
animation (halca).
http://www.lsi.upc.edu/∼bspanlang/animation/avatarslib/doc/.
2, 6, 7, 8

[TLC02] TECCHIA F., LOSCOS C., CHRYSANTHOU Y.: Image-
based crowd rendering. IEEE Comput. Graph. Appl. 22, 2 (2002),
36–43. 7

[TM13] THALMANN D., MUSSE S.: Crowd Simulation, Second
Edition. Springer, 2013. 1

[UCT04] ULICNY B., CIECHOMSKI P. D. H., THALMANN D.:
Crowdbrush: interactive authoring of real-time crowd scenes.
In Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation (Aire-la-Ville, Switzer-
land, Switzerland, 2004), SCA ’04, Eurographics Association,
pp. 243–252. 6

[Uni14] UNITY: Unity: Game engine.
http:://unity3d.com/, 2014. 3

c© The Eurographics Association 2014.


