
Clearance for diversity of agents’ sizes in Navigation Meshes

Ramon Olivaa,b, Nuria Pelechanoa

aVirvig, Universitat Politècnica de Catalunya
bEventLab, Universitat de Barcelona

Abstract

There are two frequent artifacts in crowd simulation caused by navigation mesh design. The first appears when all agents attempt
to traverse the navigation mesh and share the same way points through portals, thus increasing the probability of collisions with
other agents or queues forming around portals. The second is caused by way points being assigned at locations where clearance
is not guaranteed, which causes the agents to either walk too close to the static geometry, slide along walls or get stuck. To
overcome this we use the full length of the portal and propose a novel method for dynamically calculating way points based on
current trajectory, destination, and clearance, therefore guaranteeing that agents in a crowd will have different way points assigned.
To achieve collision free paths we propose two novel techniques: the first provides the computation of paths with clearance for
cells of any shape (even with concavities) and the second presents a new method for calculating portals with clearance, so that the
dynamically assigned way points will always guarantee collision free paths relative to the static geometry. In this paper, we extend
our previous work by describing a new version of the algorithm that is suitable for a larger number of navigation meshes, while
further improving performance. Our results show how the combination of portals with exact clearance and dynamic way points
improve local movement by reducing the number of collision between agents and the static geometry. We evaluate our algorithm
with a variety of scenarios and compare our results with traditional way points to show that our technique also offers better use of
the space by the agents.

Keywords: clearance, navigation meshes, dynamic way points

1. Introduction1

Applications such as video games require characters within2

a crowd to follow visually convincing paths in real time. Char-3

acters should move towards their destination along a realistic4

path, and at the same time maintain an appropriate amount of5

clearance with respect to the obstacles and avoid collisions with6

other agents as smoothly as possible.7

Navigation meshes (NavMeshes) are commonly used to carry8

out navigation of autonomous characters. NavMeshes consist9

of a data structure that encodes the free space of the scene by10

splitting it into convex polygons, known as cells. A Cell-and-11

Portal Graph (CPG) is obtained where a node represents a cell12

of the partition and a portal is an edge of the graph that con-13

nects two adjacent cells. Then, given a start and a goal posi-14

tion, paths can be calculated through a variant of the classic A*15

algorithm. Finally, at every step of the simulation, a local move-16

ment algorithm is applied in order to guide the agent through the17

obtained path by computing intermediate goal positions (com-18

monly known as way points) that connect the different nodes of19

the path.20

When simulating a variety of characters, it is convenient to21

be able to calculate the shortest route for the characters based on22

their size. If we think of applications such as video games, this23

would allow a skinny character to escape from a large monster24

by running through a narrow passage. The algorithm imple-25

mented must also be efficient, as for a large scenario the paths26

for all characters need to be calculated within a small fraction27

of a second.28

The method used to compute the way points is also critical29

in order to produce visually convincing routes. Most proposed30

solutions are based on computing a single point over the portal31

(usually at the center, or at the endpoints of the portal), so most32

agents share the same way point. This results in agents that33

tend to line up when approaching the portal from the same side,34

or form bottlenecks when attempting to cross the portal from35

different directions. These perceptually unpleasant artifacts ar-36

tificially reduce the flow rates through portals and the overall37

time for agents to reach their destination. An algorithm that can38

run in real time by assigning different way points to different39

characters can mitigate these issues.40

Previous work is either bounded to a specific amount of41

clearance, only works with a specific type of navigation mesh42

(e.g. triangular meshes, medial axis), or calculates portal clear-43

ance on a per cell basis ignoring neighboring cells [1]. In con-44

trast, our method is able to deal with an arbitrary amount of45

clearance and can work with any type of NavMesh. This ap-46

plies even if cells are not strictly convex, or are too narrow.47

Main Contributions. This paper presents a novel system48

to guarantee character trajectories with clearance that make the49

most of the available free space in the NavMesh. We present50

three contributions. Firstly, a novel technique to dynamically51

use the whole collision free space of portals to assign way points.52

Secondly, a novel method for calculating clearance in naviga-53

Preprint submitted to Computers & Graphics October 22, 2014

tion meshes consisting of cells of any shape. Finally, a general54

new technique to compute clearance over portals considering55

edges of neighboring cells. The algorithm is both straight for-56

ward and computationally efficient to allow the simulation of57

large crowds.58

2. Related Work59

Path planning of autonomous characters in virtual environ-60

ments is a central problem in the fields of robotics, videogames,61

and crowd simulation. The most popular solutions are based on62

a combination of global and local movement techniques.63

The target of global navigation techniques is to provide a64

representation of the free space of the scene that is usually ob-65

tained by either constructing a roadmap or a navigation mesh.66

The main objective of both approaches is to generate a graph67

that can be used by a search algorithm (usually A* [2]) to find68

a path free of obstacles between two points in the scene.69

The roadmap approach [3][4][5][6] captures the connectiv-70

ity of the free space by using a network of standardized paths71

(lines, curves). The main limitation of this representation is72

that it does not describe the geometry of the scene, nor where73

the obstacles are. Consequently, avoidance of dynamic obsta-74

cles is usually a hard task and not always possible, as exposed75

in [5].76

The navigation mesh approach [7][8][9][10][11][12] con-77

sists of the partition of the navigable space of the scene into con-78

vex regions, guaranteeing that a character can move between79

two points of the same cell following a straight line, without80

getting stuck in local minima. NavMeshes have become more81

popular than roadmaps as the representation of the free space is82

more intuitive, clean, and provides a better description of loca-83

tion of the obstacles. We therefore focus on this environmental84

decomposition technique.85

Local movement techniques aim to provide a mechanism86

for the autonomous characters to move from one location to the87

next in a path in a smooth and natural manner, while avoiding88

collisions with dynamic obstacles. These methods are generally89

driven by setting way points within the portals of the NavMesh90

that work as attractors to steer the agents in the right direc-91

tion [13][14][15][16][17][18]. The main problem of this ap-92

proach is that characters tend to line up as they share the same93

attractor point over the portal. Some methods for achieving va-94

riety in characters’ routes have been proposed. For example95

Pettre et. al. [19] presented a solution for roadmaps based on96

having a denser sampling of nodes, which allows for a better97

use of the free space at the expense of longer computational98

time. Other approaches using skeletons [20] allow for larger99

or smaller distances to the skeleton depending on crowd den-100

sity. The problem with this later approach is that characters are101

spread as the density increases, but when densities are low they102

all tend to follow the same trajectories.103

An improvement to traditional way points was introduced104

in [21] by using way portals where the whole length of the por-105

tal can be used to attract the local movement of the agents, thus106

resulting in more natural looking paths. However, this method107

does not properly address the problem of clearance, as it as-108

sumes that a cell is accessible by a character if the length of the109

portal that needs to be crossed is greater than or equal to the110

diameter of the character, which is not always the case as we111

will show in this paper.112

In order to carry out path planning and guarantee that the re-113

sulting paths will have an arbitrary amount of clearance, a com-114

mon solution consists of enlarging the obstacles by a specific115

amount of clearance known as the Minkowski sum. An exam-116

ple of an application using this method is Recast [22]. The main117

advantage of this approach is that every calculated path has the118

desired amount of clearance and as it is calculated offline, it119

does not have an impact on the performance of the path finding120

algorithm being used. However, its major drawback is that it is121

bounded to a specific value of clearance, so all characters must122

have either this size or smaller.123

In [23], Kallman introduced a new type of triangulation124

called Local Clearance Triangulation (LCT) that allows paths125

to be computed free of obstacles with arbitrary clearance. Such126

triangulation is obtained by a process that iteratively refines the127

Constrained Delaunay Triangulation (CDT) resulting from the128

starting set of obstacles. The resulting structure determines if129

there exists a path free of obstacles for a given clearance value.130

However, it introduces more cells in the partition of the scene,131

thus dropping the performance of the path finding algorithm.132

Another limitation of the method is that it only works for the de-133

scribed LCT but cannot be generalized to any navigation mesh.134

In [24], the Medial Axis of the set of obstacles is extracted135

to create a new data structure called the Explicit Corridor Map136

(ECM). The ECM computes the shortest path, the path that has137

the largest amount of clearance, or any path in between. This138

work has been further extended to calculate a finer set of at-139

tractors to obtain smoother paths [25][26]. Straight skeletons140

have also been used to calculate roadmaps for path finding of141

multiple characters [20].142

In [1] an algorithm to calculate paths with clearance for any143

type of NavMesh was introduced. However the algorithm cal-144

culated clearance on a per cell basis, ignoring the fact that in145

some navigation meshes with narrow cells, clearance may be146

defined by edges of neighboring cells. In this work, we extend147

the previous algorithm to make it suitable for a larger number of148

navigation meshes by introducing a recursive step, and we also149

present new techniques to improve efficiency for several steps150

of the algorithm.151

3. Clearance Value of a Cell152

Given a cell C, we define a cell cross as the pair (P1, P2)153

of C, where P1 is the entry portal and P2 is the exit portal.154

We classify the obstacle edges of the cell into edges to the left155

(stringLeft) and edges to the right (stringRight) in respect to the156

path that crosses the cell from the entry portal to the exit portal157

(see Figure 1). Note that it is not necessary to have strictly con-158

vex cells, as cells generated by NEOGEN [12] are allowed to159

have certain concavities depending on the convexity relaxation160

threshold chosen when creating the mesh.161

2

The algorithm examines every portal endpoint and notch162

(i.e., a vertex such that its internal angle is greater than π) present163

in stringLeft and determines the closest edge in stringRight.164

The distance between the notch and the closest edge is the clear-165

ance value of this notch. Note that in this case, the endpoints of166

each string must be treated as if they were notches. If the clos-167

est edge to the notch is a portal edge, the algorithm recursively168

checks the distance between the notch and the edges lying in169

the adjacent cell through the portal. The clearance value of the170

left string clL is the minimum of those distances. To compute171

the clearance value of the right string clR, we proceed in the172

same way. Finally, the clearance value of the described path is173

computed as follows:174

cl (P1,P2) = min (clL, clR) (1)175

Figure 1: Clearance calculation for a given cell.

It is only necessary to check the distance of the notches of176

the string against the edges of the opposite string, as in the case177

of a convex vertex, the distance to the opposite string must be178

greater than or equal to the clearance value of the cell. This pro-179

cess is done off-line once the NavMesh of the virtual scenario180

has been generated and, for each cell, we store in a table the181

clearance value of every possible cell cross. This is because it182

is possible to have a cell with three or more portals, where an183

agent with a large radius can walk for example from portal P1184

to P2, but not from portal P1 to P3 (see Figure 2).185

Figure 2: Example of different clearance depending on the crossing path
through a cell.

4. Finding Portals with Enough Clearance186

In order to avoid artifacts such as characters bouncing, slid-187

ing or getting stuck on the edges of the geometry, we should188

only assign way points that have enough clearance (i.e. that189

they have the required distance from the static geometry for190

the character to traverse the portal without collision). Note that191

Figure 3: Examples of fixed way points that cause collisions. On the left, the
way point is fixed at the center of a cell which causes a collision with the geom-
etry. On the right the way point is assigned at a distance r of the portal endpoint
also causing collision.

fixing way points to the center of the cell does not always guar-192

antee collision free traversals, as shown in Figure 3.193

Let CA be the cell where the character is currently located,194

CB be the next cell in the path and P the portal that joins both195

cells. We want to calculate the sub-segment P′ of P such that196

all points in P′ have enough clearance.197

The algorithm for finding portals with enough clearance198

proceeds by reducing the size of the original portals based on199

the following three cases:200

1. Limitations given by the endpoints of the current portal.201

2. Limitations given by the endpoints of the portals that must202

be crossed to go from the current cell to the target cell in203

the path (usually portals in either CA, CB or their neigbor-204

ing cells).205

3. Limitation given by obstacle edges of the adjacent cells206

(or neighbors).207

Cases 1 and 2 assume that the endpoints of portals are lo-208

cated over obstacles as occurs in most navigation meshes. In209

the case of grid based navigation meshes or when T-joints exist210

between portals, this would not be the case for certain portals211

and thus the algorithm should only consider those endpoints212

that are located over obstacles.213

Case 1: The algorithm starts by displacing each endpoint214

of P a distance of r units towards the center of the portal as we215

can see in Figure 4. The resulting sub-segment P′ has enough216

clearance only if the other edges in CA and CB are at a distance217

greater than or equal to r fromP′. If not , this sub-segment must218

be further refined to guarantee collision-free traversability.219

Figure 4: Example portal P that connects CA and CB. The shrunk portal P′

is initialized by displacing the endpoints of the original portal P a distance r
towards its center.

In order to further shrink portal P′ based on cases 2 and 3,220

we need to consider portals and edges as if they were defined221

3

for each cell in counter-clock wise order (Figure 5 depicts this222

situation). CA and CB are thus two polygons with vertices given223

in counter-clockwise order. P can then be treated as two iden-224

tical overlapping segments given in opposite order depending225

on which cell they belong to. We refer to them as PAB for the226

oriented edge that belongs to CA, and PBA for the oriented edge227

that belongs to CB.228

Figure 5: CA and CB separated by P are in fact two independent polygons with
their vertices oriented in counter-clockwise order, so P is the overlapping of
PAB and PBA.

Case 2: Let CB be an intermediate cell on the character’s229

path (i.e., a cell that is neither the starting cell of the path nor230

the final one). In this case we have to cross the cell by crossing231

two portals, an entry portal P and an exit portal PBC (portal that232

connects cell CB with the next cell in the path CC). In such a sit-233

uation, it is possible that the endpoints of P′ are determined by234

the endpoints of any exit portals inPE1, ...,PEn, wherePEi indi-235

cates a portal in the sequence of portals that needs to be crossed236

to go from CB to the final cell in the path CGoal. This occurs237

when one (or both) endpoint of a portal PEi is at a distance less238

than or equal to the desired clearance value from the entry por-239

tal P. To handle this situation, we check if a circumference (of240

radius=agent’s clearance) centered on the endpoints of the first241

exit portal PBC intersects with P′. If this intersection exists, we242

update P′ accordingly and the process continues iteratively by243

checking the next exit portal. The algorithm stops when we find244

the first exit portal PEi that fails the test (none of its endpoints245

determines the endpoints of P′) or when CGoal is reached.246

We take the polygons with oriented edges from Figure 5,247

and define PBA [0] as the origin of the oriented portal PBA, and248

PBA [1] as the end. As the portals are also given in counter-249

clockwise order, we can state that the origin of any portal can250

only limit the clearance of the end of the portal for which we251

are calculating clearance, so PBC [0] can only shorten P′BA [1],252

and PBC [1] can only shorten P′BA [0]. The algorithm to further253

shorten P′BA continues through the following two cases:254

• If the circumference centered on PBC [0] intersects P′BA255

at a single point, thenP′BA [1] is set to be this intersection256

point.257

• If the circumference centered on PBC [0] intersects P′BA258

at two points, then P′BA [1] is set to be the intersection259

point that is furthest from PBA [1].260

Similarly, a circumference centered on PBC [1] is checked261

for intersections against P′BA to determine if P′BA [0] needs to262

be updated. Figure 6 shows the result of the algorithm using263

an example cell. Figure 7 illustrates the importance of respect-264

ing the ordering of the portals when calculating portals with265

clearance. Even though in both cases the characters can walk266

through the portals, in the first case (Figure 7 top) the way267

points assigned over the portals would continuously push the268

characters to collide with the static geometry.269

Figure 6: The endpoint P′BA [1] of the entry portal is determined by the end-
point PBC [0] of the exit portal, as the circumference centered on PBC [0] in-
tersects P′BA. The other end of P′BA is not modified, as the circumference
centered on PBC [1] does not intersect P′BA.

Figure 7: On the top we can see an example of what the character’s trajectory
would be if P′ was not shrunk respecting the direction of the portals. The
trajectory leads to a collision with the static geometry. On the bottom we can
see the trajectory when clearance is calculated correctly.

Case 3: The final case to consider takes into account whether270

any obstacle edge limits the clearance of the portal. This can271

happen when an edge or portal of the current cell is at a dis-272

tance smaller than the clearance value of the portal that we are273

shrinking. In the case of portals, the process must be repeated274

recursively.275

Given a cell CX , with a set of vertices in counter-clockwise276

order {v0, v1, ..., vn}, where each consecutive pair of vertices in277

the sequence defines an oriented edge of the cell, i.e: ~e(i,i+1) is278

the edge starting in vertex vi and ending in vertex vi+1, for i =279

[0, n − 1]. We define the shrinking direction of an edge, ~s(i,i+1),280

as the unit vector perpendicular to the edge with its direction281

pointing towards the interior of the cell (Figure 8).282

The algorithm proceeds by displacing each edge ~e(i,i+1) a283

distance of r units along its shrinking direction, ~s(i,i+1), if the284

shrinking direction points towards the portal (otherwise there is285

no chance of intersection). After displacement we obtain v′ (i)286

4

and v′ (i + 1) as the results of displacing vertices vi and vi+1 .287

For each displaced edge ~e′(i,i+1), we calculate its intersection288

against P′BA, and if such an intersection exists, the correspond-289

ing endpoint of P′BA is updated depending on the direction of290

~e′(i,i+1)as follows:291

1. if the edge is an obstacle edge:292

(a) If v′(i) is on the side of CB and v′(i+1) is on the side of293

CA, then PBA [0] is set to be the intersection point.294

(b) If v′(i) is on the side of CA and v′(i+1) is on the side of295

CB, then P′BA [1] is set to be the intersection point.296

2. if the edge is a portal leading to CD:297

(a) If v′(i) is on the side of CB and v′(i+1) is on the side of298

CA, then repeat the algorithm for the edges in CD to299

update PBA [0] if necessary.300

(b) If v′(i) is on the side of CA and v′(i+1) is on the side of301

CB, then repeat the algorithm for the edges in CD to302

update P′BA [1] if necessary.303

Figure 8 shows this process over the example scenario with304

a magnified view of the area of interest. The same process is305

performed for P′AB and finally, P′ is computed as the resulting306

sub-segment of the intersection between P′AB and P′BA. Every307

point in P′ is guaranteed to have enough clearance. Figure 9308

shows the result of the algorithm.309

Figure 8: Close up of the top left of Figure 6 with the shrinking process due to
displacing edges.

Figure 9: Final result P′ after calculating the merging of the intermediate solu-
tions P′AB and P′BA. The resulting shrunk portal before merging illustrates the
application of the three cases: Case 1 can be seen in c, Case 2 results in b and
case 3 in a and d. P′ is given in this example by the most limiting endpoints
which are a and b.

To accelerate the computation of the shrunk portal, we store310

the result of the transformation for a particular value of clear-311

ance in a table. The next time that the portal needs to be shrunk,312

the table is checked for that particular clearance value so it does313

not need to be computed again.314

In general, Case 3 will always be the most restrictive and315

thus the key calculation, however there can be exceptions such316

as illustrated in Figure 10 where case 3 does not limit the clear-317

ance of the portal. Therefore all three cases are necessary, as if318

we simply use distance from endpoints we would fail to gener-319

ate natural paths in certain scenarios.320

Figure 10: These examples show different situations where portal clearance is
not defined simply by Case 3, and thus Cases 1 and 2 are necessary.

In Figure 11 we show an example where the recursive step321

would be necessary to compute exact clearance over the portal.322

Without recursivity the clearance on the left extreme of the por-323

tal would be given by the end point on the left hand side of the324

neighbouring portal, but with recursivity it is further reduced to325

the new intersection point a.326

Figure 11: Example where the recursive step is necessary to compute clearance
correctly.

Critical Radius:327

All our calculations are required to perform in real time and328

we have already described an approach to speed up the sys-329

tem by storing information about clearance for agents of dif-330

ferent radii. Other agents with radius similar to those already331

stored can then look up the information from a table instead of332

re-calculating. An additional technique implemented to speed333

up the process consists of pre-calculating a critical radius, ρ.334

The critical radius is defined as the maximum radius for which335

clearance depends exclusively on keeping a distance ρ from the336

portal endpoints. It is calculated by computing the minimum337

distance to an obstacle edge with its shrinking direction point-338

ing towards the current portal. During run time, only agents339

of radius larger than ρ need to compute the portal clearance340

5

algorithm described in this section. Agents with radius r be-341

low ρ only need to keep a distance of r from the portal end-342

points. As the critical radius is calculated off-line, this provides343

a speed up of 1.15 times faster on average during the real-time344

calculations. This speed up has been calculated over a variety345

of scenarios, most of them handmade to fully test the method.346

However in most of the scenarios obtained with NEOGEN, por-347

tal clearance is influenced exclusively by the portal endpoints,348

and thus the number of portals for which the full clearance al-349

gorithm needs to be executed will be minimal.350

5. Dynamic Way Points351

The method used to steer the character from one cell to352

another is a key aspect to create natural routes in navigation353

meshes. When way points are assigned at a fixed position, usu-354

ally the center of the portals, animation artifacts arise (Figure355

12). The most common artifacts are line formation among char-356

acters that move in the same direction, and bottlenecks caused357

by characters crossing cells in opposite directions and being358

forced to pass through the same point. A typical approach in359

video games consists of setting the way points at a distance r360

from the closest endpoint of the portal (where r is the radius361

of the character). This solution provides slightly more natural362

paths since paths are apparently shorter and at least two way363

points are available for each portal, but it does not completely364

solve the problem. Our work focuses on dynamically calculat-365

ing way points over the shrunk portal (Figure 13).366

Figure 12: Typical lining up artifacts and bottlenecks when way points are set
at either the center (left) or the closest endpoint of the portal (right).

Our dynamic way point assignation is based on the position367

of the character within the cell. First of all, we check if the368

goal position of the character is visible from its current position369

(i.e., the segment joining the current and the goal position of the370

character only produces an intersection with portal edges). In371

that case, the attractor point is simply the goal position. If the372

segment does intersect with at least one obstacle edge, we need373

to compute a way point over the next portal in the path to steer374

the character towards the next cell of the path. Our target is to375

avoid characters having the same attractor point, so we compute376

the orthogonal projection point q of the current position of the377

character p overP′, whereP′ is the shrunk portal after applying378

the algorithm described in section 4 over the portal P. If q lies379

outside the limits of P′, then the furthest endpoint of P′ with380

respect to the current position of the character is selected as a381

temporal attractor, until q is valid.382

The position of the characters is given by the local move-383

ment algorithm used to steer them. This algorithm will natu-384

rally move characters away from each other to avoid collision.385

Each character’s position approaching a portal will be different,386

so their projection over the portal will also be different making387

it virtually impossible for two different characters to share the388

same attractor point over the portal if the characters are at risk389

of colliding.390

Figure 13: The attractor point of the red character is its own goal since it is
visible from its current location. The green character has its orthogonal pro-
jection, q2, over the portal as its way point, whereas the blue character has the
farthest away endpoint of the portal assigned as its way point, since its current
orthogonal projection lies outside the portal with clearance P′.

We have determined empirically that in the case of q being391

invalid, the furthest endpoint of P′ is a better candidate as a392

temporal attractor than the closest one. This is because when393

the steering attractor is the closest endpoint, the character tends394

to move too close to the walls, producing a bad quality route.395

6. Local Movement396

The local movement algorithm is based on a simple steer-397

ing behavior with some extension to include physical forces as398

described in HiDAC [15]. Collision detection and repulsion399

forces between agents are calculated using the Bullet Physics400

Engine [27]. We have also used this library to perform cal-401

culations to speed up the detection of agents crossing portals.402

Agents move towards their next assigned dynamic way point403

while avoiding the static geometry and other moving obstacles.404

In order to keep track of the cell in which the character is lo-405

cated we have taken advantage of some of the features that the406

Bullet Physics Engine offers. By assigning a rigid body to the407

floor of each cell, we can efficiently compute the intersection408

between the character and the cells using Bullet’s space parti-409

tioning.410

This solves artifacts that usually appear when agents ap-411

proach their assigned way point, and end up moving back and412

forth trying to reach the threshold distance to the target point.413

With our technique, a portal can be crossed at any point inde-414

pendently of the distance to their next assigned way point.415

Note that with the method described above to detect when416

agents cross portals, we improve the local movement of both417

centered and dynamic way points. Traditional center way points418

require the agents to be a certain distance from the way point419

in order to assign the next portal. In many cases this leads to420

6

agents moving back and forth around portals as they attempt to421

reach a specific distance from an attractor. In our implemen-422

tation this is not strictly necessary, as agents may cross portals423

despite not having reached their next way point. When this hap-424

pens, they are immediately assigned to a new way point in the425

next portal without losing track of their current cell information.426

This avoids a common problem that arises in many simulations427

where the agents only update their current cell when they have428

reached their assigned way point, and thus agents may end up429

”lost”.430

7. Results431

In order to evaluate the results obtained with our algorithm,432

we have carried out both qualitative and quantitative analysis.433

We have examined whether our clearance method combined434

with dynamic way points achieves a better use of space, and435

whether the performance of our algorithm is sufficient to work436

with large groups of agents in real time whilst computing paths437

with clearance and collision free way points.438

Figure 14 (and the accompanying videos1) shows a com-439

parison between using traditional way points (WP) at the center440

of portals and our method with dynamic way points (DWP) for441

two example scenarios. The first scenario is shaped as a donut442

and the second is shaped as a cross with static obstacles ran-443

domly located. The local movement algorithm is the same for444

all scenarios, and it is based on a simple rule based model with445

collision avoidance, steering towards attractors (way points) and446

collision response. For each character, a random cell of the en-447

vironment is selected as its destination cell. A path finding al-448

gorithm based on A* calculates the sequence of cells that the449

character needs to walk through to go from its current cell to450

the destination. Way points are assigned over portals connect-451

ing consecutive cells. Once a character reaches its destination452

cell, a new one is randomly assigned. Characters are consid-453

ered to cross a portal as soon as the Bullet Physics Engine [27]454

detects that the character has arrived in the next cell of the path.455

Dynamic way points make better use of the space, use straight456

trajectories whenever possible and offer more natural looking457

trajectories for the characters, even when using a very simple458

rule based model for their local movement. When way points459

are fixed at the center of portals, we can observe that not only do460

the paths not make use of the available space but also that they461

are more chaotic as characters bounce around portals trying to462

get close to the way point while avoiding each other.463

Dynamic way points offer a better distribution of agents464

over portals which allows more agents to cross portals simul-465

taneously. This increases flow rates through portals since it466

avoids artificial line formation. For example, in the donut sce-467

nario with 200 agents walking in the same direction, we observe468

22% higher flow rates.469

1www.lsi.upc.edu/~npelechano/videos/C&G2014_Clearance.

mov

Figure 14: Comparison between having way points at the center of portals (on
the left) and dynamic way points (on the right) for the donut scenario with 25
agents (top row), large cross scenario with 50 agents (middle row) and close up
of the paths crossing a portal (bottom row).

7.1. Performance470

The following results have been obtained in an Intel Core471

i7-3770 CPU @ 3.40GHz, 16GB of RAM, NVIDIA GeForce472

680GTX . Figure 15 compares the time spent per query (mi-473

croseconds) of different versions of the portal shrinking method:474

• SimpleShrink(-/+): A fast and simple method, commonly475

used on videogames and other virtual applications, that476

simply displaces the endpoints of the portal r units to-477

wards its center. The (+) version uses a lookup table to478

store previously computed shrunk portals, and the (-) cal-479

culates it at every simulation step.480

• ExactShrink(-/+): Our exact clearance solution described481

in section 4. The (+) version uses a lookup table to store482

previously computed shrunk portals while the (-) calcu-483

lates it at every simulation step.484

Each test case consists of a set of queries where, for each485

query, we randomly chose a cell of the NavMesh, a trajectory486

to cross this cell (i.e. an entry portal and an exit portal) and a487

clearance value (0.5, 1 or 1.5).488

The results of this experiment highlight the efficiency of489

our exact clearance method (ExactShrink(+)). The efficiency490

of the algorithm increases with the number of queries as the491

chance of producing a redundant query is higher, and even-492

tually, every query will be redundant. Results show that for493

the case of 1000 random queries, the cost of ExactShrink(+)494

is just 1.41 times the cost of the most efficient version (in this495

case SimpleShrink(-)) and 1.2 times for 2000 random queries.496

This means that the algorithm for calculating portals with ex-497

act clearance presented in this paper (ExactShrink(+)) is around498

7

Figure 15: Comparison of the time taken per query (in microseconds) as the
number of queries increases for the different shrinking techniques.

20% more time consuming for 2000 queries than simpler im-499

plementations, but it also guarantees that every computed path500

will have enough clearance with the static geometry. As the501

number of queries increases, this percentage is further reduced.502

For the given example, we get a probability of hit of 50% for503

1000 queries, which means that one in two queries does not504

need to be computed since it is already stored in the lookup ta-505

ble, and 90% probability of hit when it reaches 6000. The time506

taken by the ExactShrink(+) algorithm converges towards the507

SimpleShrink(+) method.508

It is also important to emphasize that this increment in time509

does not have a big impact on the overall simulation since it is510

insignificant compared to the cost of AI, rendering or physics.511

Including the recursive step when calculating clearance makes512

our method more robust without introducing a noticeable im-513

pact on the computational time.514

The memory requirements to store the lookup table are min-515

imal, since for each radius size we only need two 3D point coor-516

dinates for the corresponding shrunk portal. For example, in the517

cross scenario with 208 portals, 3 character sizes and 12Bytes518

per 3D point, the total memory required is less than 15K.519

As there are many elements that affect the resulting frame520

rate of an application, such as: rendering engine, physics li-521

brary, local movement algorithm, size of the scenario, size of522

the crowd, and so on, we are not interested in how many charac-523

ters we can simulate in real time, but in comparing our method524

for paths with clearance against the standard solution where525

characters walk towards way points fixed at the center of por-526

tals without checking for any kind of clearance against the static527

geometry. Figure 16 shows a comparison of the average frame528

rate achieved as the number of characters increases with and529

without our technique, when all the other elements of the simu-530

lation stay the same. This graph compares the standard solution531

(in red) against our technique (in blue). The results are practi-532

cally the same (less than 5% smaller frame rate on average with533

our method), meaning that the computational time required to534

calculate portals with clearance and dynamic way points is in-535

significant within the overall simulation time. Both simulations536

can handle up to 500 characters in real time. Therefore we can537

claim that the computational cost of our technique is insignifi-538

cant for the overall simulation time and that it provides results539

that are perceptually more convincing and make better use of540

the space, as shown in Figure 17 and the accompanying videos.541

Figure 16: Average frame rates obtained in the large ”‘cross”’ scenario as the
number of characters increase for our method and a standard solution

7.2. Path finding542

To show the results achieved by the path finding algorithm543

with clearance, we can observe in Figure 17 the different paths544

used by the characters depending on their size. The larger char-545

acters only traverse those cells with a clearance larger than their546

radius. Another nice outcome of the presented method is the547

use of space made by the characters depending on their size.548

We can observe in the image how as the characters’ size de-549

creases, the final emerging trajectories of their color are wider,550

since their way points are assigned over larger shrunk portals.551

7.3. Comparison of dynamic collisions552

To demonstrate quantitatively that having dynamic way points553

not only provides better visual results independently of the lo-554

cal movement algorithm used, but also drastically reduces the555

number of collisions by spreading the crowd over the length556

of the portal, we have run several experiments to compare the557

average number of collisions for both fixed center way points558

and dynamic way points. We account for a collision between559

two rigid bodies at every tick of the physics engine (60x per560

second). Collisions are considered when an agent is in contact561

with the geometry (which also accounts for agents being stuck562

next to a wall due to a badly located way point)563

As shown in Figure 18, for up to 100 agents the number of564

collisions between agents is almost zero, since at low densities565

there are not many chances of collisions and basic avoidance566

behavior can steer agents away from collisions. However once567

the densities start increasing we can observe how even when568

all the agents move in the same direction, collisions start ap-569

pearing. As the graph shows, the number of collisions for fixed570

center WP is much higher than for DWP, since forcing all the571

agents to move towards the same point leads to chaotic behavior572

with loops in the agents’ trajectories. This occurs for up to 175573

agents for the donut scenario, since from this point onwards the574

density of agents in the environment is so high that bottlenecks575

are almost impossible to avoid.576

In Figure 19 we can observe a comparison between the577

average number of collisions per clock tick as the number of578

agents increases for fixed centered versus dynamic way points.579

Our method to dynamically assign way points achieves a much580

8

Figure 17: Trajectories followed by characters of different size. From left to right, the larger characters (red, r = 2.0) will not use the narrower portals and thus
they can only walk through 97 of the 130 cells in the Navmesh, the medium characters can already get through most of the portals (yellow, r = 1.5) therefore being
able to walk through 110 cells, and finally the smaller size characters (green, r = 0.5) can walk through all the portals having the largest shrunk portals (walkable
cells=130).

Figure 18: Comparing the average number of collisions per second between
agents for the donut scenario as the number of agents increases. We compare
dynamic way points against fixed center way points. On the top right we show
the scenario with 100 agents and on the top bottom with 175 agents

lower number of collisions between agents which not only re-581

duces artificial bottlenecks in the environment, but also results582

in smoother and more natural trajectories. As in the donut sce-583

nario, once the number of agents increases beyond 125, differ-584

ences in the number of collisions start emerging between DWP585

and fixed center WP, until the total number is higher than 225.586

At this point, the high density of agents makes collisions in-587

evitable, independent of the method used.588

Figure 19: Comparing the average number of collisions per clock tick between
agents for the cross scenario as the number of agents increases. We compare
dynamic way points against fixed center way points. On the top right we have
the cross scenario with 125 agents, and on the bottom right the same scenario
with 225 agents.

While the graphs vary depending on the size of the scenario,589

length of portals and local navigation method, we observe that590

in all of our experiments, dynamic way points achieve better591

results than fixed center WP.592

7.4. Comparison of collisions against geometry593

The main advantage of having exact clearance calculations594

is that we guarantee that way points will only be assigned over595

portals where collision free paths exist. To evaluate this quan-596

titatively, we have run several experiments using different sce-597

narios and compared the following methods: (1) dynamic way598

points (DWP) over portals with exact clearance, (2) DWP over599

portals with simple clearance, and (3) fixed center way points.600

For the three methods, the local movement algorithm is the601

same, and the agents’ goal cell is chosen randomly every time602

they reach their destination. For each case we have counted the603

number of collisions against the geometry that results from way604

points being badly assigned.605

Obviously the results depend strongly on the quality of the606

portals created and the overall geometry. To show the poten-607

tial of our method, we have designed scenarios with several ex-608

amples of problematic portals (mostly ill-conditioned portals).609

Figure 20 shows the results of each of the methods in terms of610

paths followed by agents, and situations where they can easily611

get stuck trying to walk through a portal that does not guaran-612

tee clearance. As shown in Cases 2 and 3, agents may even613

get completely stuck against the geometry, whereas with our614

exact clearance method, agents are always steered towards way615

points that guarantee traversability. This holds even for maps616

with many ill-conditioned cells, such as the ones created man-617

ually for these experiments.618

The quantitative results in terms of number of collisions619

against the geometry for this particular scenario are shown in620

Figure 21. The three methods use the same local movement621

algorithm, therefore the only difference comes from how and622

where way points are assigned. Our method outperforms pre-623

vious work with regards to reducing the number of collisions624

against the geometry. We have performed comparisons for dif-625

ferent crowd sizes. We have demonstrated that the differences626

become less significant as the crowd size increases. This occurs627

because there is a point where collisions are due to the high den-628

sity of the crowd and not just the location of way points. In all629

cases, exact clearance provides the lowest number of collisions630

9

Figure 20: Comparing paths between the three methods. From left to right:
(1) DWP over portals with exact clearance, (2) DWP over portals with simple
clearance, and (3) fixed center way points. The areas where agents get stuck
due to an ill-conditioned cell with a portal too close to the geometry (narrow
cell) are circled.

against the geometry. If we compare fixed center against dy-631

namic way points with simple clearance, fixed center performs632

better when it comes to avoiding collisions against the static ge-633

ometry, since in most cases the center way point will be located634

at the furthest point from the geometry.635

Figure 21: Average number of collisions against the geometry for each method
tested (collisions counted at each clock tick, which corresponds to 60Hz).

Finally, Figure 22 shows the importance of using our exact636

clearance calculation when there are ill-conditioned cells. In637

this example we can see the portal calculated with our exact638

method against the simple method often used in video games.639

In both cases the segments over the portals that are traversable640

for each method are shown with a thin blue line. The character641

for which this clearance has been calculated is also circled in642

blue. In both examples, a red agent is trying to move from cell643

A to cell B. Our exact clearance algorithm provides the exact644

segment over the portal that can be crossed without collisions645

or errors. In the case of simple clearance, we can observe how646

the character is being steered towards a position that will lead647

to the wrong cell and to collisions against the geometry.648

8. Conclusions649

We have presented a general technique to compute paths650

free of obstacles with an arbitrary value of clearance that can651

be easily integrated in any existing navigation mesh system.652

Our method can be divided into the following three steps.653

Firstly, during the construction of the NavMesh, the clearance654

value of each cell is computed in order to obtain paths that guar-655

antee clearance when applying the A* algorithm. Secondly,656

Figure 22: Clearance calculated with our exact algorithm (left) and with the
simple clearance method (right).

the portals of the path are refined by shrinking them depending657

on the clearance required for each character and the surround-658

ing geometry. Finally, way points over the shrunk portals are659

computed based on the character position and hence, it mostly660

avoids two characters sharing the same attractor point.661

Bullet Physics Engine [27] has been integrated in order to662

improve the overall quality of the simulation. Although its main663

purpose is to solve the collisions against moving and static ge-664

ometry, we have used Bullet to efficiently detect when a portal665

crossing has been produced and avoided artifacts that arise in666

traditional methods as characters approach their target position.667

Results show that our method is fast enough compared to668

simplest implementations, but produces paths of higher qual-669

ity as it takes into account clearance for both path planning670

and way point calculations, and its dynamic assignation of way671

points along portals avoids characters lining up when crossing672

portals or causing bottlenecks.673

We have tested our algorithm with NavMeshes of a vari-674

ety of scenarios created by NEOGEN [12] which is a NavMesh675

generator that provides an almost near-optimal number of cells676

with very few ill-conditioned cells. To show the potential of our677

method even for other kinds of NavMeshes, we have also man-678

ually generated navigation meshes with ill-conditioned cells.679

For the qualitative evaluation of this work we have consid-680

ered that higher quality paths are those that tend to use most of681

the available space, avoid artificial line formation, reduce bot-682

tlenecks and collisions. In this paper we have also provided a683

quantitative evaluation of the improvements achieved with our684

exact clearance method by counting collisions against static and685

dynamic geometry. Results show how our method provides not686

only smoother paths with better usage of space, but also re-687

duces the average number of collisions that are caused by way688

points not being correctly assigned. Compared to our previ-689

ous work [1], we have made significants improvements in terms690

of generality as our new algorithm can handle a larger variety691

of navigation meshes, while improving performance with the692

introduction of the critical radius and a revised version of the693

code.694

Acknowledgements695

This work has been partially funded by the Spanish Ministry696

of Science and Innovation under Grant TIN2010-20590-C01-697

01.698

10

References699

[1] Oliva R, Pelechano N. A generalized exact arbitrary clearance technique700

for navigation meshes. In: Proceedings of Motion on Games. MIG ’13;701

New York, NY, USA: ACM. ISBN 978-1-4503-2546-2; 2013, p. 103–10.702

doi:\bibinfo{doi}{10.1145/2522628.2522900}. URL http://doi.acm.703

org/10.1145/2522628.2522900.704

[2] Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic determi-705

nation of minimum cost paths. Systems Science and Cybernetics, IEEE706

Transactions on 1968;4(2):100–7. doi:\bibinfo{doi}{10.1109/tssc.1968.707

300136}.708

[3] Arikan O, Chenney S, Forsyth DA. Efficient multi-agent path planning.709

In: Proceedings of the Eurographic workshop on Computer animation and710

simulation. New York, NY, USA: Springer-Verlag New York, Inc. ISBN711

3-211-83711-6; 2001, p. 151–62.712

[4] Young T. Expanded geometry for points-of-visibility pathfinding. In:713

Game Programming Gems 2. Charles River Media; 2001, p. 317–23.714

[5] Sud A, Gayle R, Andersen E, Guy S, Lin M, Manocha D. Real-time nav-715

igation of independent agents using adaptive roadmaps. In: Proceedings716

of the 2007 ACM symposium on Virtual reality software and technology.717

VRST ’07; New York, NY, USA: ACM. ISBN 978-1-59593-863-3; 2007,718

p. 99–106.719

[6] Rodriguez S, Amato NM. Roadmap-based level clearing of buildings.720

In: Proceedings of the 4th international conference on Motion in Games.721

MIG’11; Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-642-25089-7;722

2011, p. 340–52.723

[7] Snook G. Simplified 3d movement and pathfinding using navigation724

meshes. In: Game Programming Gems. Charles River Media; 2000, p.725

288–304.726

[8] Tozour P. Ai game programming wisdom. In: Rabin S, editor. Building a727

Near-Optimal Navigation Mesh. Charles River Media; 2002, p. 171–85.728

[9] Kallmann M. Path planning in triangulations. In: Proceedings of the IJ-729

CAI Workshop on Reasoning, Representation, and Learning in Computer730

Games. Edinburgh, Scotland; 2005,.731

[10] Pettre J, Laumond JP, Thalmann D. A navigation graph for real-time732

crowd animation on multilayered and uneven terrain. In: Proceedings of733

the 1st International Workshop on Crowd Simulation. 2005, p. 81–90.734

[11] van Toll W, Cook IV AF, Geraerts R. A navigation mesh for dy-735

namic environments. Journal of Visualization and Computer Animation736

2012;23(6):535–46.737

[12] Oliva R, Pelechano N. Neogen: Near optimal generator of nav-738

igation meshes for 3d multi-layered environments. Computer739

And Graphics 2013;doi:\bibinfo{doi}{10.1016/j.cag.2013.03.004}.740

URL http://www.sciencedirect.com/science/article/pii/741

S0097849313000435.742

[13] Reynolds CW. Flocks, herds and schools: A distributed behavioral743

model. SIGGRAPH Comput Graph 1987;21(4):25–34. doi:\bibinfo{doi}744

{10.1145/37402.37406}.745

[14] Reynolds CW. Steering behaviors for autonomous characters. In: Pro-746

ceedings of Game Developers Conference 1999. GDC ’99; San Francisco,747

California: Miller Freeman Game Group; 1999, p. 763–82.748

[15] Pelechano N, Allbeck JM, Badler NI. Controlling individual agents749

in high-density crowd simulation. In: Proceedings of the 2007 ACM750

SIGGRAPH/Eurographics symposium on Computer animation. SCA ’07;751

Aire-la-Ville, Switzerland, Switzerland: Eurographics Association. ISBN752

978-1-59593-624-0; 2007, p. 99–108.753

[16] van den Berg J, Lin M, Manocha D. Reciprocal velocity obstacles for754

real-time multi-agent navigation. In: 2008 IEEE International Conference755

on Robotics and Automation. IEEE. ISBN 978-1-4244-1646-2; 2008, p.756

1928–35. doi:\bibinfo{doi}{10.1109/robot.2008.4543489}. URL http:757

//gamma.cs.unc.edu/RVO/.758

[17] van den Berg J, Patil S, Sewall J, Manocha D, Lin M. Interactive759

navigation of multiple agents in crowded environments. In: Proceed-760

ings of the 2008 symposium on Interactive 3D graphics and games. I3D761

’08; New York, NY, USA: ACM. ISBN 978-1-59593-983-8; 2008,762

p. 139–47. doi:\bibinfo{doi}{10.1145/1342250.1342272}. URL http:763

//doi.acm.org/10.1145/1342250.1342272.764

[18] Snape J, van den Berg J, Guy SJ, Manocha D. The hybrid reciprocal765

velocity obstacle. Trans Rob 2011;27(4):696–706. doi:\bibinfo{doi}{10.766

1109/TRO.2011.2120810}. URL http://dx.doi.org/10.1109/TRO.767

2011.2120810.768

[19] Pettre J, Thalmann D. Path planning for crowds: From shared goals to769

individual behaviors. In: Eurographics Short Presentations. 2005,.770

[20] Haciomeroglu M, Laycock RG, Day AM. Distributing pedestrians in a771

virtual environment. vol. 0. Los Alamitos, CA, USA: IEEE Computer772

Society. ISBN 0-7695-3005-2; 2007, p. 152–9. doi:\bibinfo{doi}{http:773

//doi.ieeecomputersociety.org/10.1109/CW.2007.9}.774

[21] Curtis S, Snape J, Manocha D. Way portals: efficient multi-agent naviga-775

tion with line-segment goals. In: Proceedings of the ACM SIGGRAPH776

Symposium on Interactive 3D Graphics and Games. I3D ’12; New York,777

NY, USA: ACM. ISBN 978-1-4503-1194-6; 2012, p. 15–22.778

[22] Mononen M. Recast navigation toolkit; 2009.779

http://code.google.com/p/recastnavigation/.780

[23] Kallmann M. Shortest paths with arbitrary clearance from navigation781

meshes. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics782

Symposium on Computer Animation. SCA ’10; Aire-la-Ville, Switzer-783

land, Switzerland: Eurographics Association; 2010, p. 159–68.784

[24] Geraerts R. Planning short paths with clearance using explicit corri-785

dors. In: IEEE International Conference on Robotics and Automa-786

tion, ICRA 2010, Anchorage, Alaska, USA, 3-7 May 2010. IEEE; 2010,787

p. 1997–2004. doi:\bibinfo{doi}{http://dx.doi.org/10.1109/ROBOT.2010.788

5509263}.789

[25] Karamouzas I, Geraerts R, Overmars M. Indicative routes for path plan-790

ning and crowd simulation. In: Proceedings of the 4th International Con-791

ference on the Foundations of Digital Games. 2009, p. 113–20.792

[26] Jaklin N, Cook IV AF, Geraerts R. Real-time path planning in het-793

erogeneous environments. Computer Animation and Virtual Worlds794

2013;5(24):285–95.795

[27] Coumans E. Bullet physics library; 2013. http://bulletphysics.org/.796

11

